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Featured Application: The 6-wheel general purpose autonomous mobile robot can be used
for various material transport tasks. Fully autonomous disinfection of large areas is provided
with optional UV+ germicide add-on.

Abstract: This paper describes the development of Phollower—an autonomous mobile robot
intended to perform various logistical tasks in both industrial and civil environments. Phollower is
equipped with the latest types of industrial components and sensors. It also employs advanced
embedded navigation and localization software to create its own virtual maps and thereby to navigate
autonomously within the mapped area. The whole development process has been focused on building
a device that meets European safety standards. Phollower is a universal mobile platform that can
be quickly expanded with specialized add-ons. A germicidal add-on for disinfection of indoor
areas using UV-C light is described as a technology that helps to battle with the ongoing COVID-19
pandemic crisis. The hardware topology combined with the proposed open Programmable Logic
Controller (PLC) code and open-Powerlink communication bus creates a unique and easily extendable
robot platform.

Keywords: autonomous robots; COVID-19; open PLC; safety devices; simultaneous localization
and mapping

1. Introduction

Industry 4.0 means not only changes in the traditional industrial environment but also changes
in everyday life. E-shops try to offer the most comprehensive range of goods available in stock.
Producers in the automotive industry aim to adjust ever more to the customer’s individual needs
and expectations. In healthcare, there are strong efforts to reduce the routine work of healthcare
professionals to enable them to focus more on nursing the sick instead. Based on all the examples
mentioned above, there is a high potential for using intelligent robots that can perform not only
repetitive tasks but also collaborate with humans and for the robot to be able to change its workload
quickly and efficiently. In this regard, automated guided vehicles (AGVs) until now have been number
one in the field of logistics. Single-purpose mobile robots have been used to transfer material from
point A to point B using navigation lines, mainly in industrial halls. While Industry 4.0 is considered
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to be a current standard in industrial technologies, AGVs are frequently replaced by a new type
of mobile logistics robots, known as autonomous mobile robots (AMRs). In comparison to AGVs,
this new technology enables faster and more efficient deployment in operation; it is ‘more-intelligent’,
and therefore, it cooperates better with the system environment and gives the user the option to assign
tasks efficiently and promptly.

The contribution of this paper consists of the following. It presents the development of an AMR
named Phollower, whose development process was founded on previous experience gained while
developing its successful predecessor—Pathfinder [1]. While Pathfinder was designed for operation
solely in the health service environment, the new generation, Phollower, is primarily focused on being
a universal autonomous mobile robot that meets European safety standards. Phollower has been built
exclusively from industrial components.

The development of Phollower was focused on the ease of use and the ability of solving different
types of logistics tasks. What makes it different to other available solutions on the market is the use
of various interchangeable add-ons and an open access software approach. Our aims were robust
mechanical design, sufficient space for material transport, collision avoidance features, and a simple
user interface. Phollower can be used as an autonomously working self-employed machine whose
tasks are set up by web interface. Even more, API interfaces and operation of several Phollower robots
from the central control system is possible. It has an intuitive and user-friendly web interface that
guides users with help texts providing detailed operating instructions.

While many solutions of today’s AMRs are based on Robotic Operation System (ROS), there are
also other frameworks that can be applied, such as Google ROBEL or Apollo BAIDU to mention a few.
It should be stressed that by utilizing ROS in general AMR solution, a strong technological dependence
and one-track ROS orientation arises. To use different approach, a part of Phollower technology is API
as a set of standardized and described commands, events, status and sensor messages, all of which
enable full control of Phollower. The API is based on Python language that is platform independent
(Linux or Windows). New features can be added using an open Programmable Logic Controller
(PLC) library that enables safety customization to meet all requirements of manufacturing processes.
This paper provides a detailed overview of all the features of Phollower’s technology.

2. Related Work

Phollower has been designed and developed as an AMR for the industrial and civil indoor
environments. In operation, such a complicated device is challenged by adverse and unspecified
situations that may result in hazardous behavior [2]. It is indisputable that safety is a crucial
characteristic here. Therefore, from the early beginning, all the safety requirements for machinery
had to be applied in the whole development process in accordance with Directive 2006/42/EC of the
European Parliament and of the Council of Europe [3,4]. This directive includes a set of standards
and must be fulfilled by any machinery intended to be placed on the European market. In the case of
mobile platforms, compliance with the following standards is required:

• EN ISO 12100: General principles for design,
• EN 60204-1: Safety of machinery, electrical equipment,
• EN 1175-1+A1: Safety of industrial trucks, requirement for battery powered trucks, and
• EN 1525: Driverless trucks and their systems.

Safety must be quantified, and it must be shown with confidence that the vehicle is safe.
Several approaches for vehicle safety validation can be found in the literature:

(a) worst-case scenarios, using the assumption that less demanding situations are handled if the
worst-case is handled. This is done by directed testing, and it is the most straightforward and yet
valid approach;
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(b) to use models to verify that different parts of the AMR work together safely. This requires
valid models for everything that can affect the system, which is time-consuming and not
always applicable;

(c) to use field tests and from their results show statistically the vehicle is safe enough, where the
Extreme Value Theory statistic method can be used [5] with a high validity and lower amount of
data required.

Three different safety concepts were proposed and discussed in [6] to design a safe environment
for indoor AMRs. They include the safety ring for reliable object detection, safe navigation,
and environmental awareness. However, not all proposed concepts for MiR100 [6] have been
implemented, and their mutual evaluation is still missing. For [7], safe and robust movement in
a complex 3D environment, scenarios were obtained by the combination of variable step-size rapidly
exploring random-tree (RRT) method for global path planning together with the local planner for safe
path optimization. A solution for the quantitative derivation of the collision risk with the speed control
strategies for safe indoor navigation was presented in [8]. The safety speed margin and minimum time
for path optimization were chosen as the two criteria by which safety was guaranteed. Safe and rapid
AMR navigation in greenhouses was proposed in [9].

A modification of differential evolution optimization algorithm was introduced to find optimal
and safe navigation points to avoid damage of agricultural products. An exciting safety approach is the
detection of “smartphone zombies” that was shown in [10] using Light Detection and Ranging (LiDAR)
point cloud streams and an enhanced segmentation-based method. It enables the AMR to recognize
and avoid pedestrians with smartphones and thereby navigate safely. Potential safety and security
features during the design level phase of AMR development were studied in [11], but the presented
solutions suffer from low latency in communication systems. Commercial AMRs with comparable
technology to Phollower [12–16] mostly use safety LiDAR system with probabilistic algorithms.

3. Mechanical Design

Wheeled mechanisms are the most favorable for mobile robots indoors because of their mechanical
simplicity and high efficiency [17–19]. Phollower was constructed as a 6-wheel robot (see Figure 1),
with the two center wheels powered. These are placed on a rocker arm along with the front and
rear supporting wheels. Such a balanced system enables the robot to overcome some uneven or hilly
terrain of up to 5◦ gradient, as shown in Figure 2. Phollower’s built-in balance system consists of
the following:

• main rocker arm,
• front supporting wheel,
• bearing housing used to connect the electric drive to the powered wheel,
• socket in which the safety encoder is being placed, and
• system of two gear wheels to ensure the transmission of the turning motion of the main powered

wheel to the safety encoder axis.

The electric drive and powered wheel mounting must be designed to be strong enough to carry
the weight of one-sixth of the total weight consisting of the robot’s weight along with the carried load.
Therefore, the connection of drive and wheel is made via a bearing housing designed for this purpose.
This type of mechanical design allows Phollower to carry a heavier load without any risk of damaging
the drive axle.

The robot’s load-bearing structure is built of a welded steel beam construction on which all the
mechanical and electric components of the robot are mounted. The total load capacity was designed
for a direct load of 100 kg (see Table 1). All wheels are protected by aluminum covers on the sides,
which are a partly protective cover. Only the necessary parts remain uncovered.

Both center wheels are independent and driven by servomotors. Each servomotor has (in addition
to its own resolver) one more safety encoder that evaluates an actual speed value for the needs of the
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safety ring. The odometry is calculated by resolvers and combined with the odometry obtained
from laser scanners. This data fusion increases navigation accuracy; furthermore, drawbacks of both
methods are mutually eliminated. For example, wheel odometry is problematic during rotation
movement, whereas scanners can handle it smoothly. Conversely, scanners fail on long corridors that
do not contain contours. There, the output patterns of scanners do not change, but wheel odometry
can precisely detect a real robot movement.

Figure 1. An overview of Phollower’s base construction.

Figure 2. Phollower’s balance system to overcome uneven terrain.

Table 1. Basic mechanical parameters of Phollower.

Symbol Quantity Value

m total vehicle weight (load + vehicle) 201.5 kg
mL maximum load weight 100 kg
vmax maximum speed 1.125 m/s
r braked wheels radius 0.05 m
j gear ratio of braked wheels 5
f0 wheel friction 0.1 Nm
Mb braking torque 2.2 Nm
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4. Electrical Design

The position of the built-in electrical components was adjusted to the size of the space remaining
inside the construction (see Figure 3). Lead-acid batteries are mounted between the parts of the rocker
arm balance system. Placing the heavy batteries near the center of gravity improves the stability of the
chassis, especially when it is fully loaded. A Programmable Logic Controller (PLC) with integrated
programmable safety cards was installed and used to control the drives and also to process the signals.
Safety cards evaluate the signals coming from the safety sensors and switch the STO input of the drive
inverter, if necessary.

An industrial computer with the Linux operating system was used for calculating and processing
the trajectory, as well as for navigation. Fast and reliable communication between the PLC and
the industrial computer are provided by the open-Powerlink industrial bus, while openPowerlink
Stack is used for the Linux part. The interconnections of all components are shown in Figure 4.
This technology was developed in [1] where more detailed information is provided.

Figure 3. Positions of built-in electrical components.

Figure 4. Interconnections between all electrical components in Phollower.
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5. Safety

5.1. Laser Scanner Placement

In the past, human safety was one of the main concerns that prevented autonomous robots from
performing certain specific tasks (e.g., physical human–robot interaction). Basic human safety is
ensured here using a pair of Hokuyo UAM-05LP-301 safety laser scanners, placed at opposite corners
of the robot. However, to achieve human protection all around, the construction of Phollower had to be
tailored to not have any part or a component interfering with the active measuring field of each laser
scanner. The key requirement is to ensure the widest possible field of the scanners vision, ideally to
cover all 360◦ around the robot and thereby operate safely and navigate precisely. This was achieved
by narrowing the cover plates in the section that corresponds to the active measuring field of the
scanners, as shown in Figure 5. In this way, a 360◦ continuous protective safety field was secured
without any blind angles. A similar approach was used in [6]. Both scanners are fixed directly to the
robot’s structure and protected by the top cover plate, while only the scanning part of the scanner
remains unprotected.

Safety scanners enable to set up the safety zone up to 5 m and the warning zone up to 20 m.
These scanners are primarily dedicated for AGV applications, and a safety zone can be recalculated
in real time based on data obtained from digital inputs and based on data from safety encoders.
Safety scanners meet the requirements of PLd Cathegory 3 and SIL 2 standards.

Figure 5. The measuring slot and placement of safety zone scanners.

5.2. Safety Zones

The safety requirements of Phollower are considered to include both passive and active machinery
safety. Protective metal covers ensure passive safety. Active safety consists of electrical drives with
their safety codecs, a safety PLC that evaluates the direction and speed of the robot according to signals
from safety encoders, and safety scanners that are used for monitoring the area in front of and behind
the machinery (i.e., the safety zone). Note that it is essential to use a safety chain consisting of safety
encoders, safety PLC, and safety laser scanners.

It must be stressed that the size and the shape of the safety zone vary with the direction of
movement and the actual speed of the robot. Therefore, its size and shape need to be thoroughly
calculated, implemented, and experimentally verified. The setup and the braking distance protocol
was created for the safety scanners. It characterizes the relationship of braking distance depending on
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the direction of movement, actual speed, and the shape and size of the safety zone. These parameters
were calculated for a fully loaded vehicle with a safety factor of 1.2 (120% weight overload).

Safety LiDAR operation can be disrupted by a random reflection of shiny objects, such as a glass
or mirror. This is detected by Phollower as a “false” safety zone disruption, and it is followed by
an immediate stop. These glints are unpredictable, so this routine has been adopted and safety stop
is executed every time the glint is detected. There is one more additional 3D camera-based algorithm
that detects obstacles above or below the LiDAR scan height range. Used 3D cameras do not have
safety certification, but a camera certification is not required by the safety standard. This additional
algorithm records a point cloud in front of the robot in the longitudinal direction, and if an obstacle
is detected in the point cloud, the robot will decelerate and stop to avoid collision. This protection is
applied across the entire width of the robot’s body and detects obstacles 5 cm above the floor.

5.3. Braking Distance

The calculation of the robot’s braking distance is done in two steps. Firstly, a deceleration value
aB is obtained from the braking force Fb (in Table 1) and friction force Ft:

Fb =
2jMb

r
, (1)

Ft = f0mg, (2)

ab =
Fb + Ft

m
. (3)

The value of ab is then used to determine braking distance sb as follows. A momentum p of the
vehicle with the total mass m moving with speed v is defined as:

p = mv. (4)

The braking force Fb over the time ∆t must be applied to change the momentum to zero:

∆p = Fb∆t. (5)

Therefore, a braking time tb needed to completely stop the vehicle from its initial speed vinit is

tb =
∆p
Fb

=
mvinit

Fb
. (6)

Finally, a braking distance sb is calculated as

sb = vinittb +
1
2

abt2
b. (7)

The value of braking distance sb is needed for calculation of the size of safety zone S, given by EN
ISO 13855 and EN IEC 62046 standards together with the manufacturer’s recommended setting of the
safety laser scanner [20]. The following formula was used that is specifically related to the safety zone
S of scanners placed on the mobile platform:

S = v(tb + ts) + Lsb + ss + sg. (8)

Parameter sg is determined in compliance with the manufacturer’s recommendation. It increases
the safety zone as the ground clearance of the vehicle increases (see Figure 6). Table 2 contains all
values needed for the calculation of safety zone in Equation (8).
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Figure 6. Parameter sg as a function of vehicle ground clearance h.

Table 2. Parameters for calculation of safety zone size from Equation (8).

Symbol Quantity Unit

S safety zone size mm
v actual speed of vehicle mm/s
tb machinery braking time s
ts safety scanner response time s
sb braking distance mm
L coefficient of brake wear %
ss tolerance of stopping before the obstacle mm
sg distance based on AMR’s round clearance mm

5.4. Experimental Verification of Safety Zone

Experimental verification consisted of a series of measurements of the actual braking distance at
different speeds of the robot with a total weight of 120 kg. During the experiment, various types of
objects were used as an obstacle. Each of them simulated parts of the human body in different positions.
Specifically, a standing child simulation, a standing adult simulation, a lying adult simulation,
and a reliable obstacle simulation were required (Figure 7). The comparison of the theoretical and
experimental values of the braking distance is shown in Table 3.

Table 3. Results of breaking distance calculated vs. measured values.

vin (m/s) tb (s) sb (m) Calculated sb (m) Measured sb (m)

1.20 0.3792 0.2275 0.3913 0.390
1.10 0.3476 0.1912 0.3413 0.330
1.00 0.3160 0.1580 0.2944 0.280
0.90 0.2844 0.1280 0.2508 0.210
0.80 0.2528 0.1011 0.2103 0.180
0.70 0.2212 0.0774 0.1729 0.130
0.60 0.1896 0.0569 0.1387 0.110
0.50 0.1580 0.0395 0.1077 0.080
0.40 0.1264 0.0253 0.0799 0.070
0.30 0.0948 0.0142 0.0552 0.050
0.20 0.0632 0.0063 0.0336 0.020
0.10 0.0316 0.0016 0.0152 0.015
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Figure 7. Experimental verification of the braking distance value.

6. Navigation and Interface

6.1. Position in the Map

The navigation system is based on a combination of the mechanical wheel rolling data and
data from a pair of safety scanners. The output signal from scanners consists of an array of points
representing the measured distance from the obstacles located in the nearby environment. The safety
scanner provides the measurement range of 0◦ to 270◦ with an incremental step of 0.25◦. All these
points are transmitted in the form of polar coordinates. The safety scanners output data are shown in
Figure 8.

Figure 8. The signals from both front and rear scanner (left), and the final output 360◦ environment
scan (right).

The first step in the safety scanner data processing is represented by the conversion of each
output signal into a common polar coordinate system. The conversion results in 1080 points acquired
via the front scanner and another 1080 points acquired with the rear scanner. However, there are
overlapping parts in the field of view of both scanners, which can be observed in Figure 8 (left).
The final output signal from both scanners has to be merged, in the range from 0◦ to 360◦, with an
incremental step of 0.25. The final data consist of 1440 points needed to create a virtual 360◦ laser scan
of the environment, Figure 8 (right). B&R PCL library [21] is used for the calculation of the virtual total
angle laser scan. It transforms individual points into a point cloud object. The final laser scan with the
required parameters is regenerated from that point cloud.

The calculation of the robot’s location within the virtual map is provided using Andrea Censi’s
Canonical Scan Matcher algorithm [22] and Monte Carlo localization [23]. Andrea Censi’s Canonical
Scan Matcher algorithm is based on the fusion of odometry from the wheels, together with the changes
in the contours of the laser scan.

The output signal coming from the laser odometry always represents only a delta offset from
the previous position, which leads to integration error in the absolute position due to delta offset
integration. Monte Carlo localization is used for elimination of the integration offset. It compares the
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shape of the current laser scan and the virtual environment map, and, based on the comparison of
the actual information of what the robot sees and the information from the map of what the robot
should see, the integration error is suppressed.

Global positioning accuracy has been verified by a set of measurements. Phollower was equipped
with a chessboard pattern on its top and then navigated from randomly chosen locations to the certain
measurement station. An area above this station was monitored by camera, and precise position
(xy coordinates) was obtained by comparing the chessboard position with camera data each time the
robot stopped. Evaluation of data obtained by this measurement showed average positioning accuracy
error less than 1 cm.

6.2. Predefined Trajectories

The fundamental function of each AMR is to get from the current position within the environment
to a user-determined position. Phollower provides two different approaches. Each of them is suitable
for a different type of environment. However, the choice of the approach to be used is made solely by
the user.

The predefined trajectory is usually suitable for an industrial environment, where fixed rules for
the movement of the motorized industrial systems are applied. This type of use is mainly represented
as operations with material supplies needed for production lines. In such cases, the specific paths
along which these systems can move and perform are precisely defined and marked. A mechanical
barrier often separates these paths from the rest of the environment. This version with predefined
trajectories also represents a virtual path (virtual magnetic tape for AGV systems) within a virtual map.
All preset stops are interconnected by a strictly defined trajectory. Altogether it creates a route network
around which the robot can move. For route calculation purposes, Dijkstra’s algorithm is used [24].

Figure 9 shows the route network together with the actual trajectory of the robot. A specialized
web interface for the visualization of the map, stops, and trajectory was implemented for this type
of operation. It gives the user the option to select individual targets and control the course of
an autonomous movement. This type of navigation comes with the disadvantage that the robot
is not able to dynamically bypass obstacles on the path. In this mode, Phollower only sends a
notification about the barrier on the route to a nearby responsible human operator.

Figure 9. An example of a predefined trajectory operation.

6.3. Dynamic Trajectories

The opposite concept is represented by dynamic trajectories shown in Figure 10. In this case,
the user only defines some individual stops within the environment. After that, Phollower performs
the route calculation within the virtual map between the stations using the A star algorithm [25].
This type of trajectory determination is suitable for environments where it is not strictly defined
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where the robot can or cannot move. As dynamic trajectories are executed cyclically, it is also
suitable in environments where many moving obstacles occur randomly. Hospitals and shopping
malls are potential environments with demanding requirements for which dynamic trajectories are
particularly suitable. For both operation modes, the execution of the chosen path is a task for
the position controller. Phollower uses the well-known pure pursuit algorithm iterated in every
cycle, which means continual updating of the actual vehicle position and a new look-ahead point
determination. Detailed information about the implementation of the pure-pursuit algorithm can be
found in [1].

Figure 10. An example of a dynamic trajectory operation.

7. Addons and Extensions

7.1. Phollower Extendability

One of the most important and innovative contributions of Phollower technology is the possibility
to plug in various types of functional extensions, known as “add-ons”. The prerequisite has been
prepared using the open-Powerlink communication bus [26], which enables the design and further
connection of any compatible devices to the existing system. However, to be able to control the add-ons
and to process their data through the master PLC, it is necessary to add new service routines directly to
the PLC. Most commercial devices do not make their source codes available as open-source, and there
is no possibility for the user to change them. This is why Phollower is designed otherwise.

A pre-created project for the Automation Studio software was created and made available,
in which the basic functionality of Phollower is created as a binary library. This concept provides a
solution that allows users to open the system and to add their own devices and software packages.
Furthermore, this concept keeps the intellectual property of the essential service software protected.
On the other hand, it still makes it possible to expand the system freely. This solution only underlines
the system’s versatility and the ease of how Phollower adapts to the specific user requirements.

The option to expand the system with the various types of add-ons based on the software solution
mentioned above requires hardware preparation. In the case of Phollower, this is ensured by the set
of connectors placed on the top of the cover plate (detailed in Figure 11). These connectors provide
the power input, connection to the LAN Ethernet, connection to the open-Powerlink bus, four preset
digital inputs, and another four preset digital outputs. These digital I/Os can be used immediately in
cooperation with the add-ons shown in Figure 12. The combination of the available interfaces creates
a versatile system able to be expanded with a set of additional I/O cards, with drivers for small or
mid-size electrical drives, with various display units or additional safety features.
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Figure 11. Freely available Phollower interfaces.

Figure 12. Various add-ons for Phollower: (a) simple transport, (b) locked box transport, (c) towing
add-on, and (d) Phollower UV+ germicide add-on.

Figure 12 shows selected add-ons that have been already designed and tested with Phollower.
In Figure 12a an essential passive add-on for transportation of various types of materials is shown.
The add-on in Figure 12b serves as a safe way to transport material in a locked box. The add-on in
Figure 12c was developed for the autonomous towing of trucks. In cooperation with the safety encoder,
the towing add-on can ensure a safety tracking gap function between the robot and a truck.

7.2. Germicide Add-On

COVID-19, the disease caused by the novel coronavirus, has created a global lockdown.
People located in contaminated areas are putting themselves at considerable potential risk. To reduce
human contact in these affected indoor and outdoor areas, disinfecting robots are being developed [27].
One of the ways to eliminate the virus without chemicals is to use UV-C light. Automatically controlled
non-contact ultraviolet surface disinfection robots can be used because COVID-19 also spreads via
contaminated surfaces [28]. This disinfection procedure will inactivate the coronavirus without any
further modification.

UV-based disinfection robots, such as UVD Robot [29], Violet [30], Connor [31], or Wellwit
WDR01C [32], are usually made as single-purpose devices. Moreover, their simpler versions must be
operated manually. In contrast, the disinfection ability of Phollower is purely designed as an optional
add-on. We consider this add-on conception one of the most important features of Phollower.

Phollower UV+ (see Figure 12d) is the special add-on with germicidal radiators designed to
disinfect spaces using UV light in exposed environments such as hospitals. It consists of four 1500 mm
long germicidal tubes with 75W power, placed vertically opposite each other to the central supporting
structure. A warning beacon is placed at the top of the supporting structure. It lights-up 15 s before
the radiator starts to emit light to warn the operator and surrounding humans to leave the place and
not to enter during disinfection.

As the primary objective, safety functions have also been implemented in this add-on. The four
widescreen cameras with algorithms for human detection have been placed on the top of the central
supporting structure (under the beacon). If a human body happens to be detected during disinfection,
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the germicidal radiators will turn-off to ensure safety and to prevent any human being exposed to UV
radiation.

There are two disinfection modes for the germicidal add-on:

(a) the UV-C radiator is activated at the stations only, during the transfer to the next station,
light emission is deactivated;

(b) the UV-C radiator is activated both at the stations and during movement, the user can adjust both
the times spent on the station and the movement speed from 0.01 m/s to maximum speed.

The operating period per one battery charge is around 4 h of disinfection time using a standard
monitoring device [33]. It means that several rooms can be decontaminated. Note, that it heavily
depends on the spatial arrangement of rooms and resulting movement trajectories.

7.3. Calculation of Maximum Speed for Radiant Exposure

Let P be the radiant power of one germicide tube. Note that radiation is possible only in
the horizontal direction. Irradiance Ee (radiant flux received by a surface per unit area) from one tube
is based on the cylinder surface S:

Ee =
P
S

, (9)

S = 2πr(r + h). (10)

where h is the tube height (m) and r is the distance (m) between the germicide tube and a nearby point
that must be exposed to UVC (a red point in Figure 13).

Figure 13. The geometry of robot movement during disinfection.

The longer the point is exposed to given irradiation, the more viruses will be killed. This is given
by radiant exposure He (J/m2). The value of radiant exposure He = 3500 µWs/cm2 is needed to kill
99% of the covid viruses [34]. Note that speed of the moving robot must be adjusted to ensure desired
radiant exposure.

In Figure 13, the red point is a place along the trajectory that needs to be disinfected, purple circles
are two germicide tubes, and l is the distance traveled by the robot during which a point to be
disinfected is exposed to UVC:

l = 2d tan 45◦. (11)

The time tdre needed to reach value He = 3500 µWs/cm2 is calculated by

tdre =
Pt

P
, (12)

where Pt is the the value of the equivalent power needed to ensure 3500 µWs/cm2, and P is a function
of distance d. Table 4 shows examples of maximum speed vmax

vmax =
l

tdre
, (13)
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of the robot for effective disinfection. The maximum speed for each segment of robot trajectory is
calculated in order to ensure desired radiant exposure of given surfaces along path. It can be concluded
that predefined trajectories of Phollower with this add-on will ensure safe and effective disinfection.
However, the proposed germicide add-on has one disadvantage. Germicide tubes are placed vertically,
and therefore floors are less exposed to UV+ radiation. The highest point of radiation is at the height
of an average adult’s shoulder. Disinfection of surfaces and objects in reachable distance of a human’s
hand is a primary objective here, as these surfaces can be tapped or touched by hands and infected by
viruses. This disadvantage can be solved by using one more horizontally placed tube in the front part
of Phollower. This will be offered as another add-on functionality.

The power consumption of UV+ add-on is 300 W, which reduces the total operating time of the
robot by around 40%. A full charge of the battery takes 75 min and enables several disinfections per
night. However, the UV+ add-on operates with the same battery as the remaining part of the robot to
not increase production costs. Moreover, if the UV+ add-on was powered by its own separate battery
and both batteries were charged form the same charger, a balance circuit would have been required to
charge unevenly discharged batteries.

Table 4. Examples of maximum speed for a given surface distance.

r (m) He (µWs/cm2) l (m) tdre(s) vmax (m/s)

1 477 2 7.3 0.28
2 170 4 20.5 0.19
3 88 6 40 0.15
4 54 8 65 0.12

8. Conclusions

This paper has described the development of Phollower, a general-purpose 6-wheel autonomous
mobile robot with center axle drive. Using the latest B&R Industrial Automation hardware
components and the most recent software stacks and libraries for autonomous localization, navigation,
and mapping, we have developed a platform that is versatile and easily modifiable. The development
process has been targeted at two goals: meeting the safety requirements of European certification
bodies and designing a universal robot. The coronavirus epidemic has put a spotlight on automated
disinfecting technology as a potentially vital tool to protect humans. Instead of manual disinfection,
which increases the risk of exposure of cleaning personnel, autonomous mobile robots could lead
to cost-effective, fast, and effective disinfection. In light of these circumstances, the versatility and
flexibility of Phollower could be a great benefit. Future development will be focused on raising its load
capabilities and on extending the several add-ons provided. The backbone of solutions will still be
tied to open-PLC and open-Powerlink technologies.
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