iriried applied
L sciences

Article

PetriNet Editor + PetriNet Engine: New Software Tool
For Modelling and Control of Discrete Event Systems
Using Petri Nets and Code Generation

Erik Kucera *2, Oto Haffner , Peter Draho$, Roman Leskovsky and Jan Ciganek

Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava,
812 19 Bratislava, Slovakia; oto.haffner@stuba.sk (O.H.); peter.drahos@stuba.sk (P.D.);
roman.leskovsky@stuba.sk (R.L.); jan.ciganek@stuba.sk (J.C.)

* Correspondence: erik.kucera@stuba.sk

check for
Received: 27 September 2020; Accepted: 26 October 2020; Published: 29 October 2020 updates

Abstract: Petri nets are an important tool for creation of new platforms for digitised production
systems due to their versatility in modelling discrete event systems. For the development of modern
complex production processes for Industry 4.0, using advanced mathematical models based on Petri
nets is an appropriate and effective option. The main aim of the proposed article is to design a new
software tool for modelling and control of discrete event systems using Arduino-type microcontrollers
and code generation techniques. To accomplish this task, a new tool called “PetriNet editor + PetriNet
engine” based on Petri nets is proposed able to generate the code for the microcontroller according to
the modelled Petri net. The developed software tool was successfully verified in control of a laboratory
plant. Offering a graphical environment for the design of discrete event system control algorithms,
it can be used for education, research and practice in cyber-physical systems (Industry 4.0).

Keywords: discrete event systems; code generation; cyber-physical systems; system control;
microcontroller; Petri nets

1. Introduction

Cyber-physical system development is a dynamic discipline that requires several tasks, such as
system design, property specification, implementation and system testing [1]. For the final product,
these operations are essential, so it is necessary to first create a system model [2—4]. Development of
control methods for discrete event systems belongs to new trends in mechatronics and automation.
Using the Petri nets formalisms, the control rules can be managed in a very robust, efficient, and visual
way. In this article, new Petri net tool for modelling and control of discrete event systems using
microcontrollers is developed. Case study dealing with control of a laboratory car wiper system
is presented.

During the research it was important to look for projects and articles on the modeling and control
of discrete or hybrid systems using high-level Petri nets. An important point was to find out whether
the existing research projects were only concerned with the theory, or whether some open-source
software tools were used or developed directly to support modeling and control using high-level
Petri nets. It would be useful to find the above kind of research projects for the practical results of the
presented one.

In articles [5,6] authors deal with the use of colour and hybrid Petri nets for modelling traffic
on highways and crossroads. There are also important projects from these authors in the field of
manufacturing systems [7,8]. Unfortunately, it is not specified that the results are just theoretical
models, or that they have been simulated or applied in practice using a software system.

Appl. Sci. 2020, 10, 7662; doi:10.3390/app10217662 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-4880-6746
https://orcid.org/0000-0003-4973-012X
http://dx.doi.org/10.3390/app10217662
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/21/7662?type=check_update&version=2

Appl. Sci. 2020, 10, 7662 20f19

A software tool named Snoopy [9] offers modelling that is based on more Petri nets classes like
hybrid, music, colour, stochastic Petri nets, etc. Many types of biology and chemistry study were
solved by using this software tool. The source code is not available, unfortunately.

An absorbing software tool called Visual Object Net++ that supports hybrid Petri nets was
developed in [10]. There are many articles [11,12] describing capabilities of Visual Object Net+-+.
Unfortunately, this software tool is closed-source and has not been further developed.

Coloured Petri nets are used in [13,14] for modelling of automated storage and retrieval systems.

HYPENS is a powerful open-source Matlab modeling platform for timed discrete, continuous,
and hybrid Petri nets [15]. It is no longer available for download, however. A Petri net model in
HYPENS can only be defined using matrices as stated therein, and graphical representation is not
supported. This fact excludes one of the benefits of Petri nets, and support for newer MATLAB versions
is also uncertain.

GPenSIM is a software tool for modeling and simulation of discrete event systems [16]. It provides
several simulation and analysis options for Petri net models. The support of timed Petri nets is a major
advantage [17]. GPenSIM is used in the paper [18] for the simulation of a flexible production system,
but not for its control. The Petri net is represented, as in the previous case, only by matrices and can
not be defined graphically.

The well-known open-source Petri net tool with graphical representation of Petri nets is PIPE
(Platform Independent Petri Net Editor) [19]. It offers more options for Petri net analysis but it does
not offer functions for control of real systems using Petri net formalisms.

The language of Modelica and the OpenModelica open-source tool are one of the important
research approaches. There is a library in this tool that supports modeling by Petri nets. One of
OpenModelica benefits is that it is possible to link a Petri Net model with other Modelica components.
The first Petri net toolbox was introduced in paper [20] and its extension is proposed in [21]. There is an
important addition (named PNlib) that includes a support of extended hybrid Petri nets for modeling
of processes in biological organisms. It is proposed and described in papers [22,23]. This tool was,
however, designed specifically for the Dymola commercial tool and not for OpenModelica, so its
usability and potential applications in scientific research is limited. In 2015, a updated version of PNlib
that worked partially in OpenModelica was released by the team that created PNlib. Unfortunately,
for control purposes using microcontrollers, it was not possible to use OpenModelica because the
COM port communication support was lacking.

There is a similar research described in [24] that can be compared to our one. The authors use fuzzy
interpreted Petri nets (FIPN) for code generation in structured text (ST) format for programmable logic
controllers (PLC) that are widely used in industry. Our idea was to use cost-effective microcontrollers
for discrete event system control.

The above survey has shown that there is a lack of Petri net formalism-based tools to support real
systems control using a hardware control system (microcontroller). An original software tool based on
microcontrollers was developed in the presented article to control discrete event systems using the
formalism of Petri nets.

2. Materials & Methods

The open-source PNEditor was selected as the basis for the newly developed software tool [25].
It is possible to model systems using basic Petri nets in this editor. The software program is
implemented in Java programming language. It is published under an open source license. The
primary benefit is well-structured code, simple architecture and developer direct support as well. It
also contains the possibility of determining the boundedness of the Petri net and it can inspect P (place)
invariants and T (transition) invariants. The disadvantage is that only basic Petri nets are supported.
As part of presented research, support for timed Petri nets interpreted for control had to be added.

Appl. Sci. 2020, 10, 7662 30f19

The developed extension of this tool is called “PetriNet editor + PetriNet engine”. The main
aim of the proposed article is to present the developed software for control of discrete event systems
verified on laboratory discrete event system.

In the article two main questions of the control system design are discussed: should the Petri
net logic be stored in the microcontroller or in a PC able to communicate with the microcontroller?
Both approaches have their benefits and drawbacks.

If the Petri net logic is stored in the microcontroller, the main benefit is independence of the
control unit from the software application (a program running on a PC). The Petri net logic is
modelled using a PC and subsequently translated to a program code loaded into the microcontroller.
Afterwards, the PC and the microcontroller can be disconnected. Another benefit is the possibility
of real-time control. Among the drawbacks are limited computational and memory resources of the
microcontroller, need for repeated program compilation and upload to the microcontroller (mainly
during the development phase). The proposed solution is depicted in Figure 1.

3 MICROCONTROLLER ¢ 3 CONTROLLED
COMPUTER + PETRI NET LOGIC SYSTEM

Figure 1. Basic scheme of proposed solution—Petri net’s logic in microcontroller [26].

When the Petri net control logic is stored on a PC in a specialised SW application, it is possible to
control the system directly. Only the program with the communication protocol for communication
between the PC and the microcontroller is stored in the microcontroller. This solution eliminates the
need to recompile and reupload the program during the development. Another benefit consists in the
elimination of restrictions on computing and storage resources because a PC has almost unlimited
resources compared with a microcontroller. One of the main drawbacks is that the control system
cannot respond in real time. The proposed solution is shown in Figure 2.

COMPUTER ¢ 3 ¢ 3 CONTROLLED
[+ PETRI NET LOGIC MICROCONTROLLER SYSTEM

=+ ©—0 ¥

Figure 2. Basic scheme of proposed solution—Petri net’s logic in PC [26].

Differences between the two approaches are specified in Table 1.

Table 1. Comparison of two concepts of system control using Petri nets [26].

Petri net Logic in PC Petri Net Logic in Microcontroller

limited capability of real-time control real-time control

much more computation and memory resources available limited computation and memory resources

code in microcontroller does not need recompiling during development repeated compiling is needed

PC must be still online independence of control unit

Software module PN2ARDUINO described in our article [26] is based on the second approach
(Figure 2) so the Petri net runs on a personal computer. For communication between the SW application
and microcontroller, the Firmata protocol [27] has been used. Firmata is a protocol designed for
communication between a microcontroller and a computer (or a mobile device like smartphone, tablet,
etc.). It is based on MIDI messages [28]. MIDI (musical instrument digital interface) message is made

Appl. Sci. 2020, 10, 7662 40f19

up of 8-bit status byte which is generally followed by one or two data bytes. Firmata protocol can be
implemented in firmware of various microcontrollers; mostly Arduino-family microcontrollers are
used. On the PC, a client library is needed. These libraries are available for many languages like Java,
Python, .NET, PHP, etc.

On the Arduino side, the Standard Firmata 2.3.2 version is used, the client application on the PC
is based on Firmata4j 2.3.3 library, which is programmed in Java. The advantage of using Firmata
consists in the possibility of using another microcontroller compatible with Firmata.

Our new proposed article describes new Petri Net application that consists of two modules:
PetriNet editor and PetriNet engine. So the application is called “PetriNet editor + PetriNet engine”.
It is based on the first approach (Figure 1) so the Petri net is implemented directly to the microcontroller.

3. Results

3.1. Description of Developed Software Tool: “PetriNet editor + PetriNet engine”

The role of the Petri net editor is to allow the user to graphically model the Petri net. Our Petri net
editor is an extension of PNEditor. PNEditor originally allowed only basic work with places, transitions,
and arcs. Support for connection to Arduino and support for time Petri nets were implemented.
PetriNet engine is the new module which enriches the application with possibility to generate control
code for microcontroller according to the modelled Petri net.

The following functional requirements were defined:

e After launching the application, the user is given the opportunity to directly create and model
a Petri net, which is a model of a particular selected event system, which the user has chosen to
analyse and/or control.

e Petri net modeling must meet at least the basic required mathematical formalisms, ideally this
solution concept will be extended by other specific properties of Petri nets, which were the subject
of the previous analysis.

o In case the user decides that the created model is final, he/she must be able to clearly associate the
individual components of the Petri net with the control modules of the selected microcontroller.

e The application must be able to process the choice of these dependencies and automatically adjust
them to avoid possible collisions when defining different actions on one component.

o The necessary functionality of the system must be the possibility of setting of specific values
needed for proper communication with the microcontroller.

o The system must be able to communicate with the selected microcontroller based on the
selected parameters.

e One of the essential functions is the creation of such an option in the system, by which the user can
automatically generate a control logic algorithm based on the specific properties of the selected
microcontroller and modelled Petri net.

e It must be possible to upload the generated algorithm (program code) to the microcontroller.

o The system will inform the user through the visualisation of text messages about the current
ongoing activity and the result of the system status itself, in order to provide the user with
an overview of whether the action was successful, or for what reason and in which step failed.

The scheme of the proposed and implemented solution can be seen in Figure 3. The application
consists of two modules. The first is a tool that can be used to model and simulate a Petri net (PetriNet
editor). The second is a module that generate program code based on the mathematical formalisms
of the modeled Petri net. This code can be uploaded to the selected microcontroller (Arduino). Then,
it can control the real hardware (sensors/actuators) connected to it.

Appl. Sci. 2020, 10, 7662

control algorithm

generates ﬁ
program code

T1 P2

&S

(

P1
ensors and

P3
ctuators

Arduino

Petri Net

=

Figure 3. “PetriNet editor + PetriNet engine”—Scheme of proposed and implemented solution.

The use-case diagram of the developed software tool is depicted in Figure 4.

Load Petri
<<extend>> _____-— net
Petri Net ~ \&--—""""""
modelling ;& <<extend>>
= Save Petri
net
Set connected
microcontroller
Association
with Petri
<<extend>> ____--- P
Association N\, ____—--=-"" net transition
of Petri net
with microcontroller
<<extend>>

element

Association
with Petri
net place

Add time delay

Use

Read of measuread
values from
sensors

Code generation
for microcontroller

<<include>> -

-
-
-

Code upload
to microcontroller

Control of
connected
actuators

Figure 4. “PetriNet editor + PetriNet engine”—Use-case diagram.

50f19

Appl. Sci. 2020, 10, 7662 6 0f 19

3.1.1. Presentation Layer—PetriNet Editor

As the basis of the presentation layer (GUI) of the application, we decided to use the modeling
tool PNEditor, which was necessary to modify and adapt to the system designed by us. To illustrate,
we present the following Figure 5. Here you can see the original PNEditor application, which we
implemented our designed solution in.

7 Untitled [modified] - PMEditor - O x
File Edit Draw Element Roles Subnet Algorithms Help

neaBsS8 Enelsed|hOQO0~% HE

Roles
2L

18 [X

M

Set label
Convert transition(s) to subnet(s)
Add transition(s) to role(s)

Remove transition(s) from role(s)
Cut Ctrl+X

Copy Ctrl+C
Delete Delete

@ & 8 DH@?%

Figure 5. GUI of original PNEditor.

The step of enabling the generation of the control algorithm itself is preceded by a set of
dependencies that the user in the system is forced to perform. First of all, it is necessary to select
the board for which the code is to be generated. We have implemented support for three types of
Arduino boards, namely Nano, Uno and Mega 2560. It is also necessary to determine the parameters
needed to create the correct communication path, which is the setting of the serial port through which
the selected board will communicate with the computer. Part of this setting is also the possibility to
specify whether the user wants to keep temporary files created during code generation in the directory
structure of the application, and the choice of an extended compilation listing in the log.

Secondly, the basis for generating the control algorithm is the association of the Petri net with
the individual components of the Arduino. We implemented the support of the association to the
places and also the transitions of the Petri net. After right-clicking on the selected element, the user
has the option to specify this association, which is specified by selecting the Arduino pin, which must
be selected based on the required functionality. Support for digital and analog I/O (input/output)
as well as specific components such as the servo motor and seven-segment display was successfully
implemented. By selecting the required component, the availability of free pins on the board that can
be associated is adjusted based on an agreed convention.

For example, the connection of a seven-segment display itself requires eight digital pins for
control, but also one virtual control pin, which gives us the number that the display will currently
display. It is called a virtual pin because it does not need to be physically connected to the board.
However, it is necessary for the ability to transfer information and control the board. By selecting this
component, the system automatically reserves the first nine digital pins of the board, which the user
no longer has the possibility to associate with another element of the Petri net, thus avoiding collisions
and conflicts in control. All user-defined properties are added to the output . pflow file under the
individual added XML elements of the file structure.

The developed system generates code in C++ language, which represents a full-fledged Arduino
project. Its output is a standard . ino file that meets the specifics of the Wiring library used by the
Arduino IDE. It defines the exact structure of this file, which consists of two main program blocks,
namely the function setup () and loop(). The first is performed only once. The second is performed
continuously and repeatedly until the power supply to the board is disconnected. Without their

Appl. Sci. 2020, 10, 7662 7 0f 19

presence, the program would end in error and never execute. The body of the logic for performing
these functions is generated dynamically by the system based on the specifics of the modeled Petri net.

The system allows you to upload the generated control algorithm directly to the Arduino
microcontroller. For this action, it is necessary to have the Arduino IDE installed on the computer
(which the editor is running on), as the compilation and subsequent loading takes place by internal
invocation of the command via the command line of the AvrDude utility, which is part of this IDE.

In order to avoid possible freezing of the main thread of the GUI application, the overall process
of compilation and loading is realised by means of a special thread created specifically for this purpose.
Figure 6 shows how the application looks like at present after the implementation of individual
functionalities.

File Edit Draw Element Arduino Additional Settings Help

OBIB &EAnwROO— b >

: I:Assnc\ate PN Mode with Arduino Pin X

[[] Enable assocation
Choose Arduino Pin:
D2

Choase Function:
Digital OUT

Apply delay:
No delay -

Threshold range low:
-1
Threshold range high:

-1
< >
av [inverse logic
Run:

Peditor [oKk | Cancel I Arduno
[12:09:01] Cannot establish connection to Arduino device

CLEAR

Figure 6. GUI of developed extension of PNEditor named PetriNet editor.
3.1.2. Application Layer—PetriNet Engine

The result of the first part of the implementation was the graphical interface providing the in Petri
nets modelling functionality. The application layer of the program system (called PetriNet engine)
provides conversion of the modelled Petri net to the program code realising control of the discrete event
system. The PetriNet engine is the very core of the program enabling to generate a control algorithm.

The editor generates a C++ code with regard to specifics of the Arduino platform. The code
generation emulates creation of a regular project for the Arduino IDE consisting of two phases. In the
first phase, all the necessary .h and . cpp files are collected, which are pre-prepared and are part of
the project.

These files contain, for example, definitions of the Place, Transition, Arc, and FiringScheduler
classes. In the second phase, the main . ino file of the project is created on the basis of the currently
modelled Petri net.

Because the creation of an . ino file is dynamic, a general template is used in which the generator
writes the necessary code lines in the specified places (Figure 7).

Appl. Sci. 2020, 10, 7662 8 0f 19

Mt b b 2 e et e e e b e e e e e e e B e e e e T S

4{comments}

FF A A R kR R e R R R e R R e R R R ok ok ko R ok ko R e

f/ imports
${imports}

/ global variables
$3{globalVariables}

ff initial setup
vold setup()

i
4{ setupBody}

}

f/ main infinite loop
vold loop()

i
#{ loopBody}
T

Figure 7. Template of . ino file.

The StrSubstitutor library from Apache is used to work with the template. All necessary
information about the net status and settings for Arduino are stored in the Subnet and ArduinoManager
objects. The resulting generation status, the code itself and all error messages are displayed in the log
window in the PetriNet editor.

After a successful preparation of the whole necessary source code, this code can be uploaded to
Arduino directly from the editor. The generated files are a full-fledged project for the Arduino IDE and
it is possible to open and edit them in an external program.

The compilation and upload of the code is performed using the AvrDude program. AvrDude is
a utility for working with the contents of ROM and EEPROM memories of AVR microcontrollers.
AvrDude is part of the Arduino IDE program by default.

All statements and information messages created by AvrDude are captured and displayed in the
PetriNet editor log window. In addition, the total time of compilation and upload of the project to
Arduino is calculated and displayed.

The PetriNet editor stores Petri net information in an XML file. New elements were added to
the existing XML structure of the original PNEditor output. On the global level of the XML Petri
net structure, the arduinoManager element was added to store information about the board type,
serial port number, selected time policy and transition fire strategy, and some other information about
the compilation and upload process.

Each place and transition associated with an Arduino includes additional information in the
arduinoNodeExtension element e.g.the pin number, the type of performed function and some other
parameters. An example is shown in Figure 8.

In the PetriNet editor, it is possible to create two types of places and transitions—places and
transitions associated with an Arduino pin, and places and transitions without association. This latter
option has been retained for the sake of a greater flexibility in net modeling. Transitions of both types
support time information. The time assigned to a transition can be deterministic or stochastic.

The PetriNet editor is used just for graphical modelling of the Petri net and does not implement
any logic; the logic is implemented in the PetriNet engine—the second part of the presented solution.
The design of the proposed prototype application able to implement the logic of Petri nets has faced
several challenges in terms of functionality and possible scalability supported by new Petri nets aspects:

e mapping of a formal Petri net model into an object language,

e definition of an appropriate transition firing mechanism to ensure consistency and parallelism
throughout the start-up period of the net,

o conflict resolution in several possible executable transitions,

Appl. Sci. 2020, 10, 7662

90f19

e emulation of non-determinism of Petri nets,

e support for timed Petri nets.

<arduinoManager:

<board>Arduinc Uno</board:

<port>COMB«</port:
<verbosetOutput>falsed/verbosetOutput:
<preserveTempFiles»>false</preserveTempFiles:
<timingPolicyType:Stochastic</timingPolicyTypes
<firingPolicyType>ROUND _ROBIN</firingPolicyType>

</arduinoManager:

<transition:

<earliestFiringTime>1888</earliestFiringTime:
<latestFiringTime:3888</latestFiringTime>
<priority>5</priority:
<arduinoNodeExtension>
<enabled*02</enabled:
<pin:D2</pin:
<function:>DIGITAL_IN</function:
< delayOccurrence Type »BEFORE</ delayDccurrenceType >
<inverselogic:false</inverselogic:
<thresholdRangelow>148</thresholdRangeLlow:
<thresholdRangeHigh»>188</thresholdRangeHigh>
</arduinohNodeExtensions

</transition>

Figure 8. Part of the XML file describing the connection to Arduino.

The PetriNet engine is implemented in C++ and considers Arduino as a target platform with
limited computing and memory performance. The architecture of the program uses an object-oriented
approach, which allows a relatively simple mapping of software components to Petri net elements

(Figure 9).

Arduino Engine

Node FiringSecheduler

pin: int

id: char *

firingPolicyType: FiringPolicyType

nodeType: NodeType

functionType: FunctionType
extended: int

thresholdRangelLow: int

thresholdRangeHigh: int

inverselogic: int

7

Place

capacity: int
tokens: int
servo: Servo

+ apply (): void

]

Transition

allTransitions: Transition **

+ nextToFire (): Transition

connectedArcs: Arc **
connectedArcsCount: int
earliestFiringTime: int

- latestFiringTime: int

- applyDelay: int

Arc

source: Node *
destination: Node *
type: ArcType

- multiplicity: int

+ fire (): void
+ isEnabled (): int

+ getPlaceNode (): Node *
+ getTransitionNode (}: Node *

Figure 9. PetriNet engine—class diagram.

The logic is not centralised, but distributed to the individual Petri net elements. The main
components are Place, Transition, Arc and FiringScheduler. Due to partial common functionality,
places and transitions have a common parent class. An important component is FiringScheduler
which according to the chosen strategy resolves transition conflicts and determines which of the
executable transitions will be fired.

Appl. Sci. 2020, 10, 7662 10 0f 19

3.1.3. Transition Firing Strategy

In the main cycle of the program, the PetriNet engine goes through all the transitions and searches
for those that are executable, and then, according to the chosen strategy, selects the next transition to
be executed. Four strategies are implemented:

1. In the order the individual transitions were created in the editor—Each crawl of executable
transitions starts from the first transition. As a result, for example, if the first transition is still
executable, it will also be executed and no other transition will ever be selected to start.

2. By priority—Each transition carries information about the priority. The priority is any number in
the range 0-32,767. The range is limited by the supported size of the int data type on Arduino
boards with ATMega microcontroller. A transition with a higher number has a higher priority.
In case of equality of priorities, the first strategy is taken into account.

3. In the order that takes into account the last running transition—Internally, the last running
transition is stored and the transition with the following index is selected from the set of executable
transitions. The difference from the first rule is that all executable transitions have the ability to
be run.

4. Random—The next transition is selected randomly from the set of currently executable transitions.

3.1.4. Memory Optimisation

ATmega328 has 32 KB of flash memory, 2 KB of SRAM memory and 1 KB of EEPROM memory.
From the numbers, it can be seen that the SRAM memory is small compared to the flash memory.
When the SRAM memory is full, the program may behave unexpectedly. The memory had to be
optimised for the PetriNet engine to run stably, as a simple Petri net consisting of one place and two
transitions took up 89% of the SRAM memory. To optimise memory usage, the ability to move all
strings from SRAM memory to flash memory was used. This is done using the approach provided by
PROGMEM. PROGMEM is a variable modifier that tells the compiler to store the marked variable in
flash memory.

In this way, the optimised memory showed high efficiency in the described application. Table 2
shows the memory usage before and after optimisation.

Without optimization, the relatively simple Petri net, consisting of 10 places and 10 transitions,
could not be compiled. After optimisation, it was possible to compile a Petri net consisting of 40 places
and 40 transitions.

Table 2. The use of memory without optimisation and with optimisation.

Number of Numberof Use of Memory without Optimisation Use of Memory with Optimisation

Places Transitions ~ py gy SRAM FLASH SRAM
) 0 12308 B 1812B 13328 B 444 B
(38 %) (88 %) (41 %) 21 %)

0) 12178 B 1832B 13622 B 444 B
(37 %) (89 %) (42 %) 21 %)

)) 12822 B 1842 B 14240 B 452B
(39 %) (89 %) (44 %) (22 %)

)) 13204 B 1856 B 14672 B 468 B
(40 %) (90 %) (45 %) (22 %)

s R 13528 B 1872B 15100 B 484 B

(41 %) (91 %) (46 %) (23 %)

Appl. Sci. 2020, 10, 7662 110f19

Table 2. Cont.

Number of Numberof Use of Memory without Optimisation Use of Memory with Optimisation

Places Transitions ~ py \ gy SRAM FLASH SRAM
5 s 14248 B 1904 B 15958 B 518B
(44 %) (92 %) (49 %) (25 %)

o g 15286 B 1954B 17314 B 574 B
(47 %) (95 %) (53 %) (28 %)

0 0 16 166 B 2040 B 18042 B 606 B
(49 %) (99 %) (55 %) (29 %)

5 5 17748 B 2068 B 19994 B 690 B
(55 %) (100 %) (61 %) (33 %)

0 0 19500 B 2152B 22226 B 782 B
(60 %) (105 %) (68 %) (38 %)
10 10 26 688 B 2508 B 29730 B 1182B
(82 %) (122 %) (92 %) (57 %)

3.1.5. Time Policy

The PetriNet engine provides simple support for timed Petri nets at the transition level, and two
time strategies can be applied: deterministic and stochastic. Using the deterministic time policy,
a user-defined delay is applied to the transition. Using the stochastic one, the user enters a time
interval and the length of the delay is randomly selected from the entered interval. It is possible to
associate an action over the selected Arduino pin with the duration of the transition: digital output or
analog output realised by PWM (pulse-width modulation).

The start of the transition consists of two phases. In the first, tokens are taken from all input
places according to the multiplicity of the respective arcs, and in the second, the appropriate number
of tokens is added to the output places. PetriNet engine provides flexibility in delay placement. It can
be placed:

o Before the actual start of the transition—before the first phase—In this way, it is ensured that
the new marking is applied to the input places only after a delay.

o Between the first and second phase—In this case, the tokens are taken from the input places,
a delay is applied, and only then the markings at the output places change.

e After starting the transition—The time delay of the transition is applied only after a complete
change of Petri net marking, but before selecting the next transition to start.

3.2. Case Study: Control of Laboratory Discrete Event System

For demonstration purposes, a Petri net for control of a car wiper system was modeled using the
proposed application. In modern cars, wipers are able to work in both manual and automatic modes.
In manual mode, switching the wipers on and off is usually controlled by a lever or a button. When the
wipers work in automatic mode, the car’s control subsystem takes care of everything. Switching on,
off, setting the wiper intensity according to the intensity of the rain is automatic and no intervention
by the car driver is required. The only action required by the driver is to enable automatic mode.

The proposed control system implements all mentioned requirements. The Petri net representing this
system uses several functions supported by the PetriNet engine. These are mainly Arduino-associated
places and transitions, time transitions, priority transitions, capacity places, and reset arcs. The Petri net is
shown in Figure 10. The graphical representation of Petri net is standard, more information can be found
e.g., in [29]. The double arrow is used for reset arcs.

Appl. Sci. 2020, 10, 7662 120f19

The capacities of places are:

o guard-1
e auto-2

e manual -2
e rainS-2
e servo-6

e rainF-2

The priorities of transitions are:

e COFF-4

e AUTO-0

e MANUAL-0
o rainStrg-1

o rainFtrg-1

o manual trgr-1
o turnOnS-2

e turnonF-2

o turnOffS-3

o turnOff F-3

rain S trg 1rnOn S™5 5 7S S

guard 5

turnOff F

Ry
A

MANUAL manual manual trgr

rain F

Figure 10. Petri net for control of laboratory car wiper system.

The system consists of three buttons—a button to start the automatic mode, to start the manual
mode and to turn off the current mode. These buttons are represented by AUTO, MANUAL, and OFF
transitions. The next component of the system is the rain sensor. It is a simple analog device that
changes the size of the output signal according to the size of the sensor area, which is damp or covered
with water. The transition rain S trg is activated if the rain intensity is within 30% of the range of the
rain sensor. If the rain intensity is higher, the transition rain F trg is activated. The servo motor that
drives the wiper is represented by a place named servo. A place named auto and a place named manual
are associated with an LED. The blue LED indicates the activated automatic mode and the red LED
indicates the manual mode.

The wiring diagram of the individual components with the Arduino Uno is shown in Figure 11.

Appl. Sci. 2020, 10, 7662 13 of 19

(X)) (UNO

:]’; I'-.-

e

Figure 11. Scheme of laboratory car wiper system.

After starting, the system is in an initial state, when it is possible to select automatic or manual
mode by pressing the appropriate button. Depending on the selected mode, the corresponding LED
lights up. By activating the MANUAL transition, i.e., by pressing the red button, the token is moved
from the place guard to the place manual. The place manual is associated with the Arduino pin where
the red LED is connected, so this LED lights up. There will be zero tokens in the place guard, this will
ensure that automatic mode cannot be activated during manual mode. At the same time, the OFF
transition becomes executable, because the place guard, which is its output place, has a capacity equal
to one and at the same time there is no token in it.

In the state of the system, which is shown in Figure 12, there are two executable transitions in the
Petri net. The OFF transition is associated with the Arduino pin where the white button is connected.
Therefore, this transition will only be triggered if this button is pressed. The only executable transition
is therefore the manual trg transition, and this transition will therefore be started automatically.

Starting the manual trg transition will change the marking of place rain F and there will be one
token in it. This makes the transition turn on F executable. The turn on F transition has a higher priority
than the manual trg transition, and will therefore be fired in the next iteration. Associated with this
transition is a delay that represents the time during which the wiper is in the on position. Rotation of
the servo motor to the desired position is realised by the capacity of the place and the multiplicity of
the input arc. The rotation of the servo motor is directly proportional to the number of tokens in place
with respect to its capacity.

Subsequently, the turn off F, which has the highest priority of the currently executable transitions,
will be started. The delay associated with this transition represents the time when the wiper is off.
This process is shown in Figure 13.

The analogous description applies to the automatic mode, with the difference that the actual start
of the wiper is conditioned by the signal from the rain sensor.

It is possible to activate the OFF transition at any time, because it has the highest priority.

Appl. Sci. 2020, 10, 7662 14 of 19

rain S trg urnOn S™5

MAMNUAL manal manual trgr

rain S trg 1rmOn S™5

MANLIAL manual manual trar i
rain F

Figure 12. Petri net for control of laboratory car wiper system-initial marking and marking after

starting manual mode.

rain S trg tmOn S™_5

MANUAL manual rnanual rar

turnOn S™_5

rain S trg

MANUAL manual manual trar

Figure 13. Petri net for control of laboratory car wiper system—the action of wiping.

Appl. Sci. 2020, 10, 7662 150f 19

The OFF transition is connected by reset arcs to the manual and auto places, and thus its firing
takes all tokens from the given places (Figure 14). This will make some transitions no longer executable.
If the system is currently in a wiper-on state, setting transition firing priorities will ensure that the
wiper cycle is completed before the system returns to its original state.

rain S rg

guard

turnOff F

MANUAL manual manual trgr -
rainF

MANUAL manual manual trgr

ranF
Figure 14. Petri net for control of laboratory car wiper system—turning off the manual mode.

7

We can conclude that the ability of discrete event control with “PetriNet editor + PetriNet engine”
was successfully verified and can be generalised for other applications. The provided discrete event
control case study is a basic example. Researchers in discrete event control design can use it for
different and even more complicated scenarios.

In manufacturing processes for Industry 4.0, time-driven and event-driven dynamics are
combined. We propose individual parts of the manufacturing process to be characterised by
cyber-physical states (e.g., pressure, velocity, position, temperature, etc.) described by time-driven
dynamics, and by temporal states (e.g., operation start and stop times) described by event-driven
dynamics. A hybrid system model for control of manufacturing processes represents the behaviour of
dynamical systems which states can evolve continuously as well as instantaneously. Such systems arise
when control algorithms that involve digital smart devices are applied to continuous-time systems,
or due to the intrinsic dynamics (e.g., mechatronic systems with bumps, electrical and mechanical
devices for switching control). Hybrid control based on discrete event control methods can be used
to improve performance and robustness compared to conventional (PID) control [30]. In such case,
using hybrid dynamics is unavoidable for modelling complex interactions between digital and analog
components of a complex manufacturing system.

In practice, one important class of discrete event systems are automated storage and retrieval
systems (AS/RS) which are an important part of logistics. Nowadays, there is a high demand for new
modelling and control methods of such systems in automotive in Slovakia. Across continents, economic
activity is gaining unprecedented dimensions. The consumer lifestyle of a majority of population

Appl. Sci. 2020, 10, 7662 16 of 19

requires production of large quantities of goods in a short time. The benefit of AS/RS consists mainly
in saving the human capital, and in higher reliability. The research on AS/RS, their examples and
modelling using Petri nets can be found in [13,14].

The Smart Industry concept is a national initiative in Slovakia aiming to transform and strengthen
its industry; it is based upon using the Industry 4.0 methodology and the latest research activities in
academia and practice mainly in automotive. Research and applications in this field are focused mainly
on small and medium-sized enterprises whereby one of important features is the design of optimal
architectures and hybrid control of individual subprocesses. An example of reference architecture of
a workplace in which production is realised with minimum human intervention is shown in Figure 15.

Figure 15. Possible architecture for small and medium enterprises consists of storages, cognitive robots,
hybrid control, CNC machines, and laser quality testing.

4. Conclusions

The article presents an extension of the PNEditor named “PetriNet editor + PetriNet engine” able
to generate a program code for a microcontroller. This new software tool enables to control discrete
event systems using timed interpreted Petri nets thus supporting the the control paradigm according
to which the Petri net control logic is implemented directly in the microcontroller. The main virtue
of the upgraded software tool is its capability to control complex discrete event systems exploiting
the Petri nets formalism able to support many challenging scenarios in modern production systems
operating in the Industry 4.0 framework.

The contribution of the research to the field of smart manufacturing systems can be summarised
as follows:

e Development of the software application “PetriNet editor + PetriNet engine” supporting
modelling and control of discrete event systems
A new software application called “PetriNet Editor + PetriNet Engine”, based on the open-source
Petri Net editor PNEditor, has been created for the support of modeling of systems using timed
interpreted Petri Nets. As a result, it enables to implement control algorithms on Arduino-type
microcontrollers and other compatible microcontrollers as well.

e Verification of the developed software system on a laboratory plant
To verify the developed application “PetriNet editor + PetriNet engine”, and demonstrate its
capabilities to control discrete event systems a laboratory car wiper system was proposed based on
Arduino Uno microcontroller. The respective Petri net was modelled in the developed “PetriNet

Appl. Sci. 2020, 10, 7662 17 0f 19

editor + PetriNet engine”, and the designed control was demonstrated on the real-world discrete
event system.

e Verification of the developed original control methodology based on timed interpreted
Petri nets
Obtained results have proved that the “PetriNet editor + PetriNet engine” can be successfully
used to control real plants; though the provided case study is just a basic example, the proposed
procedure can be generalised for more complex applications and even more complicated scenarios.
Hybrid systems for Industry 4.0 manufacturing processes are a combination of time-driven and
event-driven dynamics. Compared with conventional (PID) control, the hybrid control based
on discrete event control methods considerably improves controlled system performance and
robustness because using hybrid dynamics is unavoidable to reflect the interplay between digital
and analog components of a complex manufacturing system.

The scientific and application contributions as declared in the three above points describe the
developed original modelling and control procedures and solutions for discrete event systems, and
can further be modified for the next research and practice in Industry 4.0.

5. Patents

The system for control of discrete event using Petri nets mentioned in the article is protected by
utility model number 7984 by Industrial Property Office of the Slovak Republic (https://wbr.indprop.
gov.sk/WebRegistre /UzitkovyVzor/Detail /68-2017).

Author Contributions: E.K. proposed the idea in this paper and prepared the software application; O.H., P.D.
and].C. designed the experiments, E.K. and P.D. performed the experiments; O.H., R.L. and E.K. analyzed the
data; E.K. wrote the paper; O.H., PD., R.L. and J.C. edited and reviewed the paper; All authors have read and
agreed to the published version of the manuscript.

Funding: This work has been supported by the Cultural and Educational Grant Agency of the Ministry of
Education, Science, Research and Sport of the Slovak Republic, KEGA 038STU-4/2018 and KEGA 016STU-4/2020,
and by the Slovak Research and Development Agency APVV-17-0190.

Acknowledgments: We would like to thank to Pavol Cesek and Ladislav Bris for helping with programming the
implementation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Planke, L]J.; Lim, Y,; Gardi, A.; Sabatini, R.; Kistan, T.; Ezer, N. A Cyber-Physical-Human System for
One-to-Many UAS Operations: Cognitive Load Analysis. Sensors 2020, 20, 5467. [CrossRef] [PubMed]

2. Blume, C.; Blume, S.; Thiede, S.; Herrmann, C. Data-Driven Digital Twins for Technical Building Services
Operation in Factories: A Cooling Tower Case Study. |. Manuf. Mater. Process. 2020, 4, 97. [CrossRef]

3. Kaid, H,; Al-Ahmari, A.; Li, Z.; Davidrajuh, R. Intelligent Colored Token Petri Nets for Modeling, Control,
and Validation of Dynamic Changes in Reconfigurable Manufacturing Systems. Processes 2020, 8, 358.
[CrossRef]

4. Pombo, I.; Godino, L.; Sdnchez,].A.; Lizarralde, R. Expectations and limitations of Cyber-Physical Systems
(CPS) for Advanced Manufacturing: A View from the Grinding Industry. Future Internet 2020, 12, 159.
[CrossRef]

5. Dotoli, N.; Fanti, M.; Meloni, C. Coordination and real time optimization of signal timing plans for urban
traffic control. In Proceedings of the IEEE International Conference on Networking, Sensing and Control,
Taipei, Taiwan, 21-23 March 2004; Volome 2, pp. 1069-1074. [CrossRef]

6. Boschian, V.; Dotoli, M.; Fanti, M.; lacobellis, G.; Ukovich, W. A Metamodeling Approach to the Management
of Intermodal Transportation Networks. IEEE Trans. Autom. Sci. Eng. 2011, 8, 457-469. [CrossRef]

7. Cong, X.; Fanti, M.; Mangini, A.M.; Li, Z. Decentralized Diagnosis by Petri Nets and Integer Linear
Programming. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 1689-1700. [CrossRef]

https://wbr.indprop.gov.sk/WebRegistre/UzitkovyVzor/Detail/68-2017
https://wbr.indprop.gov.sk/WebRegistre/UzitkovyVzor/Detail/68-2017
http://dx.doi.org/10.3390/s20195467
http://www.ncbi.nlm.nih.gov/pubmed/32977713
http://dx.doi.org/10.3390/jmmp4040097
http://dx.doi.org/10.3390/pr8030358
http://dx.doi.org/10.3390/fi12090159
http://dx.doi.org/10.1109/ICNSC.2004.1297095
http://dx.doi.org/10.1109/TASE.2010.2090870
http://dx.doi.org/10.1109/TSMC.2017.2726108

Appl. Sci. 2020, 10, 7662 18 0f 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Fanti, M.; Mangini, A.M.; Roccotelli, M.; Ukovich, W. A District Energy Management Based on Thermal
Comfort Satisfaction and Real-Time Power Balancing. IEEE Trans. Autom. Sci. Eng. 2015, 12, 1271-1284.
[CrossRef]

Heiner, M.; Herajy, M; Liu, F,; Rohr, C.; Schwarick, M. Snoopy—A unifying Petri net tool. In Proceedings of
the International Conference on Application and Theory of Petri Nets and Concurrency, Hamburg, Germany,
25-29 June 2012; pp. 398—407.

Drath, R. Description of hybrid systems by modified petri nets. In Modelling, Analysis, and Design of Hybrid
Systems; Springer: Berlin/Heidelberg, Germany, 2002; pp. 15-36.

Chouikha, M.; Decknatel, G.; Drath, R.; Frey, G.; Miiller, C.; Simon, C.; Wolter, K. Petri net-based
descriptions for discrete-continuous systems. Automatisierungstechnik Methoden und Anwendungen der
Steuerungs- Regelungs-und Informationstechnik 2000, 48, 415. [CrossRef]

Drighiciu, M.A.; Cismaru, D.C. Modeling a Water Bottling Line Using Petri Nets; Annals of the University of
Craiova, Electrical Engineering Series; Universitaria Craiova: Romania, Romania, 2011.

Kucera, E.; Hrtiz, B. Modelling of AS/RS using hierarchical and timed coloured Petri nets. In Proceedings of
the 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD), Smolenice, Slovakia,
3-5 September 2014; pp. 1-8. [CrossRef]

Kucera, E. Modelling of storage/manufacturing systems using coloured petri nets. In Proceedings of the
17th Conference of Doctoral Students, Bratislava, Slovak Republic, 25 May 2015; Volume 25.

Giua, A,; Seatzu, C.; Sessego, F. Simulation and analysis of hybrid Petri nets using the Matlab tool HYPENS.
In Proceedings of the 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore,
12-15 October 2008; pp. 1922-1928.

Davidrajuh, R. Modeling Discrete-Event Systems with Gpensim: An Introduction; Springer International
Publishing: New York, NY, USA, 2018.

Liu, B. Simulation of Network Intrusion Detection System with GPenSim. Master’s Thesis, University of
Stavanger, Stavanger, Norway, 2011.

Davidrajuh, R.; Skolud, B.; Krenczyk, D. Gpensim for performance evaluation of event graphs. In Advances
in Manufacturing; Springer: Cham, Switzerland, 2018; pp. 289-299.

Bonet, P,; Llad6, C.M.; Puijaner, R.; Knottenbelt, W.]. PIPE v2. 5: A Petri net tool for performance modelling.
In Proceedings of the 23rd Latin American Conference on Informatics (CLEI 2007), San Jose, Costa Rica,
9-12 October 2007.

Mostermany, PJ.; Ottery, M.; Elmqvistz, H. Modeling Petri Nets as Local Constraint Equations for Hybrid
Systems Using Modelica. 1998. Available online: http://citeseer.ist.psu.edu/359408.html (accessed on
1 August 2020).

Fabricius, S.; Badreddin, E. Modelica library for hybrid simulation of mass flow in process plants.
In Proceedings of the 2nd International Modelica Conference, Oberpfaffenhofen, Germany, 18-19 March 2002;
pp. 225-234.

Pross, S.; Bachmann, B.; Stadtholz, A. A petri net library for modeling hybrid systems in openmodelica.
In Proceedings of the Modelica Conference, Como, Italy, 20-22 September 2009.

Pross, S.; Bachmann, B. Pnlib-an advanced petri net library for hybrid process modeling. In Proceedings of
the Modelica Conference, Munich, Germany, 3-5 September 2012.

Markiewicz, M.; Gniewek, L. A Program Model of Fuzzy Interpreted Petri Net to Control Discrete Event
Systems. Appl. Sci. 2017, 7, 422. [CrossRef]

Mazéri, J.; Juhas, G.; Mladoniczky, M. Petriflow in actions: Events call actions call events. Algorithms Tools
Petri Nets 2018, 2, 21-26.

Kukera, E.; Haffner, O.; Drahos, P; Cigének,].; Leskovsky, R.; Stefanovig, J. New Software Tool for Modeling
and Control of Discrete-Event and Hybrid Systems Using Timed Interpreted Petri Nets. Appl. Sci. 2020,
10, 5027. [CrossRef]

Steiner, H.C. Firmata: Towards making microcontrollers act like extensions of the computer. In Proceedings
of the NIME, Pittsburgh, ON, Canada, 3—6 June 2009; pp. 125-130.

MIDI Association: (2016) Summary of Midi Messages. Available online: https://www.midi.org/
specifications/item/table-1-summary-of-midi-message (accessed on 1 August 2020).

http://dx.doi.org/10.1109/TASE.2015.2472956
http://dx.doi.org/10.1524/auto.2000.48.9.415
http://dx.doi.org/10.1109/RAAD.2014.7002226
http://citeseer.ist.psu.edu/359408.html
http://dx.doi.org/10.3390/app7040422
http://dx.doi.org/10.3390/app10155027
https://www.midi.org/specifications/item/table-1-summary-of-midi-message
https://www.midi.org/specifications/item/table-1-summary-of-midi-message

Appl. Sci. 2020, 10, 7662 19 0f 19

29. Hruz, B.; Zhou, M. Modeling and Control of Discrete-Event Dynamic Systems: With Petri Nets and Other Tools;
Springer Science & Business Media: New York, NY, USA, 2007.

30. Kos, T.; Huba, M.; Vranci¢, D. Parametric and Nonparametric PI Controller Tuning Method for Integrating
Processes Based on Magnitude Optimum. Appl. Sci. 2020, 10, 1443. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/app10041443
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials & Methods
	Results
	Description of Developed Software Tool: ``PetriNet editor + PetriNet engine''
	Presentation Layer—PetriNet Editor
	Application Layer—PetriNet Engine
	Transition Firing Strategy
	Memory Optimisation
	Time Policy

	Case Study: Control of Laboratory Discrete Event System

	Conclusions
	Patents
	References

