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Featured Application: This work aims at supporting process parameter selection for machining
thin-walled components made by additive manufacturing. Machining industries, especially the
ones performing both additive and milling, could benefit from the potential application of such
an approach.

Abstract: Additive manufacturing (AM) is an arising production process due to the possibility to
produce monolithic components with complex shapes with one single process and without the need
for special tooling. AM-produced parts still often require a machining phase, since their surface
finish is not compliant with the strict requirements of the most advanced markets, such as aerospace,
energy, and defense. Since reduced weight is a key requirement for these parts, they feature thin walls
and webs, usually characterized by low stiffness, requiring the usage of low productivity machining
parameters. The idea of this paper is to set up an approach which is able to predict the dynamics
of a thin-walled part produced using AM. The knowledge of the workpiece dynamics evolution
throughout the machining process can be used to carry out cutting parameter optimization with
different objectives (e.g., chatter avoidance, force vibrations reduction). The developed approach
exploits finite element (FE) analysis to predict the workpiece dynamics during the machining process,
updating its changing geometry. The developed solution can automatically optimize the toolpath
for the machining operation, generated by any Computer Aided Manufacturing (CAM) software
updating spindle speed in accordance with the selected optimization strategies. The developed
approach was tested using as a test case an airfoil.

Keywords: additive manufacturing; thin walled machining; dynamics; machining cycle optimization

1. Introduction

Lightweight constructions are becoming more and more important for many industries, such as
power generation, aerospace, automotive and medical technology. The functional requirements of
these parts often lead to the inclusion of thin-walled features in the design of such components. Due
to the strict strength and fatigue requirements, such structures are often machined from the bulk as
monolithic components, removing a large amount of material to create the final product. Usually this
is achieved through intensive milling operations, removing up to 95% of the stock volume, to create
the final geometry [1].

An arising trend in thin-walled parts manufacturing is the introduction of additive manufacturing
(AM) in the process chain. Indeed, AM allows one to deposit only the material needed for the
thin-walled structures, considerably reducing the material waste. This is a critical issue, especially
when high cost materials are used, such as titanium or nickel-based alloys. Nowadays, many different
AM processes are available on the market [2]: powder bed fusion processes such as electron beam
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melting or selective laser melting enable the manufacturing of extremely complex geometries, but
have strict limitations on the part size [3]; on the other hand, directed energy deposition processes
such as laser deposition [4] or wire-arc-additive-manufacturing (WAAM) [5] enable the manufacturing
of large parts with a limited features resolution. Despite the great advancements undergone by
the AM processes in terms of material quality [6] and repeatability, these technologies often do not
meet the dimensional and surface finishing requirements prescribed by the applications [7]. For this
reason, milling operations are usually carried out after AM, to correct inaccuracies and improve the
surface quality [8]. Therefore, including AM in the process chain requires carrying out machining
of thin-walled components. This is a critical operation due to the low stiffness of such workpieces,
making them prone to forced vibrations, chatter [9], and deflection issues [10], being responsible for
surface location errors [11] and poor surface finish [12,13].

The general approach used to prevent these issues is to limit the material removal rate (MRR)
by means of conservative machining parameters. This generates a reduction in the cutting forces,
hence limiting workpieces’ vibrations at the expense of reduced productivity. Counteracting process
vibrations without affecting the productivity requires the knowledge of workpiece dynamic behavior,
i.e., the frequency response functions (FRFs), at each driving point triggered during the milling
cycle [14,15]. This is hardly practicable through experimental techniques, such as impact testing, since
the workpiece FRFs change during the milling operation, due to the material removal process [16].
Moreover, in a thin-walled workpiece, the driving points’ FRFs are strongly dependent on the excitation
point, resulting in a different dynamic behavior over the component. Finite element (FE) models are a
convenient way of overcoming these issues, enabling a virtual identification of workpiece dynamic
behavior at different driving points [17].

This paper proposes an innovative approach to identify the dynamic behavior of thin-walled
workpieces during milling operations. The basis of the proposed technique is the identification of the
workpiece dynamics through FE modelling using 2D shell elements [18]. This approach enables an
efficient and accurate description of thin-walled structures’ dynamics. Moreover, the generation of a
shell model could be easily automated exploiting AM deposition path, since it provides the information
concerning the workpiece skeleton surface.

The proposed technique is divided into three main stages: (i) AM stock modelling, (ii) stock
thickness updating and (iii) FRF identification. In the first step, a shell FE model of the deposed material
is created. Then, the machine tool numerical control (NC) programming language, known as G-code,
is analyzed through an automated algorithm that identifies the position of the tool–workpiece contact
point and updates the stock geometry, modifying the shell element’s thickness. This information allows
the system to generate an updated FE model of the workpiece that takes the material removal effect into
account, enabling the accurate identification of its dynamic behavior. In the final step, the workpiece
FRFs are calculated at the driving points (i.e., the tool–workpiece contact point) for every step of the
machining process. This provides all the required information to optimize the milling process.

To prove the effectiveness and accuracy of the proposed dynamics identification technique, two
specimens of a test case thin-walled component were manufactured through the WAAM process. In
this work, the WAAM process was selected because its high productivity has the drawback of low
accuracy and the need for an extensive subtractive process to realize the final product. However, the
proposed approach could be applied to other directed energy deposition processes. A five-axis milling
cycle was defined and analyzed using the proposed technique, identifying the evolution of workpiece
dynamics. Then, the machining parameters (i.e., spindle speed and feed rate) were adjusted following
two different optimization techniques. The two specimens were machined, interrupting the process to
perform modal analysis, required to verify the accuracy of the proposed modelling technique. At the
end of the milling process, both specimens were analyzed through surface measurements.
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2. Additive Production of Thin Walled Component

The selected test case is an National Advisory Committee for Aeronautics 9403 airfoil, (NACA,
USA) as shown in Figure 1. The stock to be machined was initially created using WAAM (Figure 1a) and
a subsequent 5-axis milling step was used to obtain the final shape (in Figure 1b). In WAAM, subsequent
layers of metal are selectively deposed using a gas metal arc-welding source, in which raw material in
the form of wire is molten through an electric arc. This enables one to achieve high productivity and to
manufacture very large components if compared with alternative AM processes [19].
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Figure 1. The selected test case after the deposition (a) and the milling process (b).

The airfoil was created deposing 41 layers of ER70S-6 (i.e., a standard filler metal for carbon steels)
onto a brick-shaped substrate made of AISI 1040. The deposition was carried out using the process
parameters presented in Table 1.

Table 1. Welding parameters used in the deposition.

Current (A) Voltage (V) Deposition Speed (mm/min) Wire Feed Speed (m/min)

80 20 200 4.6

Such parameters resulted in an average layer height of 1.8 mm and in a layer width of about
6.8 mm and have been selected based on previous studies [20]. The filler material was deposed
following the airfoil camber line, creating a constant cross-sectional profile. The final shape of airfoil
was achieved by the subsequent 5-axis milling process. The WAAM machine prototype developed by
the Manufacturing technologies research laboratory (MTRL) of the University of Firenze was used to
carry out the deposition [21]. The deposition process is shown in Figure 2a, while Figure 2b shows the
airfoil after the WAAM step. Figure 2b highlights that a significant surface waviness issue affects the
WAAM component, requiring a milling step, performed on Mori Seiki (Nagoya, Japan) NMV 1500
DCG milling machine, to meet the surface finishing requirement. As stated in the introduction, two
specimens of the selected test case were manufactured. After the deposition step, the geometry of the
WAAM parts was acquired through a Euro Apex C776 coordinates-measurement-machine (CMM),
(Mitutoyo, Japan). This step allowed us to check the required machining allowances for the milling
process. The CMM measurement operation is shown in Figure 3a, while Figure 3b shows the CMM
measurements results. CMM measurements highlighted that the airfoil surfaces presented an average
deviation from the reference surfaces of about 0.24 mm.
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3. Adopted Machining Cycle

The machining cycle adopted to produce the airfoil requires 5-axis machining capabilities to ensure
the manufacturability of the part. The cycle is constituted by three phases: roughing, semi-finishing
and finishing. The tool used for all the operations is a 2-flute 10 mm carbide ball end mill produced
by cod. 207280 (Garant, Lengerich, Germany) designed for dry cutting condition on carbon steel.
A morphing strategy was applied for the roughing phase to reach an offset geometry of the airfoil
starting from the nearly constant thickness geometry produced by WAAM process. A 2 mm axial
depth of cut was set for this operation. In Figure 4, the roughing operation is presented. The following
machining parameters were selected, based on previous experiences of WAAM parts machining [22]:
cutting speed 180 m/min and feed per tooth 0.062 mm/tooth. A machining allowance of 0.5 mm was
left on the product, to be removed in the following operations. The Rotation Tool Center Point (RTCP)
function was activated for the G-code set-up and a constant 30◦ tilt angle of the tool with respect to
the airfoil surface was used. As described in Section 2, CMM measurement of the WAAM part was
used to optimize the alignment between the final part and the stock. The oriented geometry of the
airfoil was then used to create the toolpath thanks to the ESPRIT® (DP Technology, Camarillo, CA,
USA) Computer Aided Manufacturing (CAM) software. After the roughing cycle, semi-finishing and
finishing operations were carried out to complete the manufacturing of the airfoil. The two cycles used



Appl. Sci. 2020, 10, 7575 5 of 13

the same tilt angle of the roughing phase. The axial depth of cut adopted for the machining operations
was 1 mm for semi-finishing and 0.5 mm for finishing. These steps were selected considering the
expected surface finish.
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4. Thin-Walled Dynamics Prediction

Thin wall dynamics can be proficiently estimated using finite element analysis. To increase
modelling reliability and to reduce the computational effort, shell elements were considered. Moreover,
considering the application of the proposed technique to the WAAM process, the deposition path can
be used to automatically generate the shell FE mesh. Each point of the NC code generated to create the
deposition toolpath can be used to become a node of the FE model, where only the properties and
thickness of the shell elements shall be adjusted to create a realistic model. This enables a fast and
automatic mesh and model creation starting from the simple G-code of the deposition process (see
Figure 5). To take the material removal into account, the FE model must be continuously updated,
according to the tool position along to the CAM generated toolpath. For this reason, a general algorithm
was developed to modify the nodal thicknesses, according to the tool engagement obtained by a
post-processing of the G-code (Figure 6).
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Figure 6. Roughing cycle toolpath post-processing.

For each node of the FE model, the corresponding block of the G-code is determined, computed
as the minimum distance between the tooltip and the node considered. The nodal thickness is then
updated considering the intersection of the tooltip geometry (a ball nose mill for the considered
test case) with the external surface of the machined component (Figure 7). The predicted frequency
response (FR) of the machined part can thus be easily obtained, performing a numerical frequency
response analysis. For the test case considered, a modal frequency response was preferred. A unit force
was applied to the node closest to the tool-tip position (obtained by G-code), directed normal to the
surface. Linear behavior was assumed, and dynamic compliance in the other direction was neglected.
This allows for obtaining a good description of thin wall dynamics in a wide frequency range using a
limited number of excitation frequencies, notably reducing the computational effort: a FR analysis
took about 3 s on a PC using a commercial FE solver (MSC Nastran 2014.1, Swedish Hexagon AB,
Newport Beach, CA, USA). The accuracy of the FE model was tested after the roughing machining
phase, considering the FE model, updated according to the aforementioned algorithm (Figure 8). The
following mechanical characteristics were considered: elastic modulus: 200 GPa, density: 7850 kg/m3,
Poisson’s ratio: 0.31, structural damping: 0.005. According to the results in Figure 1, the proposed
approach allows for predicting the changing of workpiece dynamics along the toolpath, taking the
material removal into account at the same time.
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Simulated workpiece FRFs can be then composed, according with the orientation of the tool
(lead and tilt angle) with the tooltip FRFs (experimentally determined), to obtain the dynamics of the
system (tool + workpiece), changing with respect to the cutting point (see Figure 9). Combination of
tool–workpiece compliance was used in the optimization strategy.
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5. Optimization Strategy

The proposed approach allows for identifying the dynamics of the tool–workpiece system during
the whole machining cycle and could be coupled with any optimization strategy to achieve different
goals, computing an optimized machining cycle.

Two main dynamic phenomena could arise in machining thin-walled components: forced
vibrations and chatter vibrations. Both the effects are minimized by increasing the stiffness of the
system or reducing the MRR (i.e., depth of cut). The first approach is hard to follow since workpiece
shape and tooling system are generally fixed. The second one affects the productivity of the process.

Therefore, optimization strategies are generally based on the selection of spindle speed [23], which
governs the frequency content of the cutting forces and thus could reduce vibration levels, without
affecting productivity or altering system layout. However, the selection of spindle speed has conflicting
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requirements for forced and chatter vibrations. Indeed, to reduce forced vibrations, the spindle speed
should be far from the resonance frequencies of the system, hence reducing the relative tool–workpiece
displacements during the cycle. On the contrary, for chatter avoidance, the optimal spindle speeds
excite the resonance frequency of the dominant mode [24].

According to these considerations, the machining cycle optimization strategy should be tailored
for the specific application. In this work, two simple optimization strategies were applied, with the
aim of showing the potential applications of the proposed approach.

• Strategy A: ensuring chatter-free machining by selecting a spindle speed, exciting the resonance
of the dominant mode

• Strategy B: minimizing forced vibrations by selecting spindle speeds far from the resonances of
the systems

Both the strategies were applied to the test case, starting from the dynamic behavior of the system
at the cutting point computed by the proposed technique, presented in the previous section.

For strategy A, the dominant mode of the system was identified in the different steps of the
machining cycle and a single optimized spindle speed was selected, ensuring the excitation of the
dominant mode with one of the tooth pass frequency (ftp) harmonics. The procedure is exemplified in
Figure 10, where FRFs of system during the machining cycle at the trailing edge are presented. The
figure shows the dominant mode of the system around 1300 Hz. A single spindle speed equal to 5580
rpm (ftp = 186 Hz) was selected to ensure the system to work close to the dominant mode resonance
frequency with one of the ftp harmonics (7th).
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For strategy B, machining parameters were selected to minimize the relative displacement of the
tool–workpiece under the effect of cutting force (i.e., force vibrations). These vibrations were assessed
by computing the system compliance at the ftp and harmonics (till 12th).

The harmonics were weighted based on the results of a preliminary analysis in which cutting
forces were simulated in the finishing cutting conditions (i.e., radial depth of cut (ae) 0.2 mm, axial
depth of cut (ap) 0.5 mm).Fast Fourier Transform (FFTs) of the cutting force and weights adopted are
presented in Figure 11. This approach allows for identifying the relative displacement of the tool and
workpiece in the case of stable cutting (i.e., without chatter) and, based on this information, selecting
the optimal speed in a defined range (in this case, 140 to 235 m/min). The interesting advantage of
such approach is not considering a cutting force model and the consequently need of cutting force
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coefficients [25]—this allows us to perform the proposed optimization but not to predict the actual
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Figure 11. Harmonics weights for optimization strategy B.

To effectively minimize the forced vibrations, this procedure was repeated for each step of the
cycle, and with respect to the previous strategy, the spindle speed was changed continuously during the
machining cycle. Feed rate was changed accordingly to keep feed per tooth constant (0.062 mm/tooth).
The optimal cutting speeds trend for the finishing of the airfoil, using strategy B, is presented in
Figure 12.
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Figure 12. Optimal spindle speeds for optimization strategy B.

6. Results and Discussion

The two strategies were tested on the finishing phase of the test-case to assess their performances.
During strategy B machining, chatter occurred, as was clear from the sound during cutting and the
surface quality of the product. Strategy B was defined to minimize forced vibrations assuming a
chatter-free condition; however, adopting such a solution leads to the selection of spindle speeds more
prone to chatter vibrations, as explained in the previous section. On the contrary, no chatter was
detected during the strategy A machining cycle: the selection of the suitable spindle speed avoided the
occurrence of the phenomenon.

To further investigate the results, airfoils surfaces were acquiring by the CMM and analyzed. Both
pressure and suction sides were scanned using a 2 mm spatial step along length and height. First, form
errors of the surfaces respect to the nominal NACA 9403 were studied. Mid-surfaces were computed
and compared with the reference camber line and results are shown at three heights (Figure 13): Tip is
close to the upper part of the airfoil, Mid is in the middle and Base is close to the fixed root part but
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higher because of measurement limits. Both strategies could accurately reproduce the camber line
with very small deviations with respect to the reference (less than 0.1 mm). Indeed, this behavior is
in line with the model results: almost the same level of vibrations in the same point of the camber
line on the two sides of the airfoil (pressure and suction) was predicted, and therefore no significant
modifications of the airfoil camber line were expected.
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Figure 13. Camber line at different Z-level (a) camber line (b) camber line error.

On the contrary, significant thickness differences are expected along the camber line, caused by
static deflection and forced vibrations. To assess this effect, the thickness of the product was computed
at the different levels and compared to the desired one Figure 14. The results show a higher thickness at
the borders, especially at the trailing edge, increasing from the base to the tip. This is due to compliance
of the system, causing workpiece deflection under the cutting force effect. This deflection increases
where tool–workpiece relative displacements are higher, i.e., at the trailing and leading edges and at
the tip, producing an increased thickness. Moreover, in Figure 14 on the right, errors on both sides are
shown, highlighting similar errors between the two strategies and the same level of error on both sides,
as predicted.
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The thickness error along the entire surface is presented in Figures 15 and 16. The results present
the thickness error trend, higher at the two edges and increasing the height. It is interesting to point
out that the thickness error is very similar between the two strategies. This could be explained by the
fact that strategy A allowed us to avoid chatter vibrations at the price of working at the resonance of
the system, thus increasing forced vibrations and causing thickness errors. Strategy B was selected to
reduce forced vibrations, but chatter vibration occurred, leading to a significant increase in cutting
forces, which cancelled the optimized speed selection benefits. Moreover, static deflection is not
affected by the two strategies and could be the main factor responsible for the deviations that increase
at the leading and trailing edge because of structural stiffness reduction. The main difference between
the two thickness error maps is roughness: strategy A produced a smoother surface, while strategy B
presents higher waviness and roughness caused by the occurrence of chatter.
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Figure 15. Airfoil thickness error for strategy A.
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7. Conclusions

In this paper, a novel integrated approach to predict the changing dynamic behavior of a thin
walled component is presented. The thin-walled test case, a NACA 9403 airfoil, was initially created
using WAAM, an arising technology to produce low buy-to-fly ratio components. The developed
system was able to correctly simulate both the material removal process on an initial stock and its
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dynamic behavior during the machining cycle. The results show that the proposed method can be
proficiently applied for AM products thanks to the automatic FE mesh generation and updating.

Based on the simulation results, two different optimization strategies were applied, confirming
the importance of the right spindle speed selection. In this work, milling of an additive manufactured
component has been optimized based only on the dynamic behavior of the thin-walled part. In the
future, a more comprehensive approach, including cutting force and tool wear, could be implemented.
In that case, the process parameters of the additive manufacturing step should be taken into account
since they affect the proprieties of the part [26]. The idea underpinning this work is investigating
hybrid additive-subtractive manufacturing; in this work, the approach was applied using to two
separated machines, and in the future the combination of milling and WAAM on the same machine
will be investigated.
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