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Abstract: In this study, indigenous acidophilic bacteria living in mine drainage and hot acidic spring were
collected and used for bioleaching experiments. The incubated indigenous acidophilic bacteria were
inoculated on various minerals. The changes in pH, Eh, and heavy metal concentrations were examined
with uninoculated controls to study bioleaching over time. As a result, the aspects of bioleaching
varied greatly depending on the origin of microorganisms, the type of minerals, the temperature
conditions, etc. We applied an ANN model to express and predict these complex bioleaching trends.
Through the application of an ANN model, we developed the ANN models that can predict the changes
in concentration of pH, Eh, and heavy metal ion concentrations and further evaluated predictability.
Through this, the predictability of bioleaching using the ANN models can be confirmed. However,
we also identified limitations, showing that further testing and application of the ANN models in more
diverse experimental conditions are needed to improve the predictability of the ANN models.

Keywords: artificial neural network model; bioleaching; indigenous acidophilic bacteria; heavy
metal extract

1. Introduction

Bioleaching is a way of metal extraction via biogenically produced metabolites and thus considered
as a green alternative to chemical leaching processes [1]. The application of microbial processes to
extract metals from nearly insoluble ores is commonly referred to as bioleaching, and understanding of
this bacterial leaching has been rapidly established over the past decades. The main metals extracted
include copper, cobalt, nickel, zinc, and uranium [2]. Although bioleaching is an eco-friendly technology
for the recovery of useful metals, it is difficult to predict due to various factors affecting the trend [3].
According to our previous studies, the tendency of bioleaching varied greatly depending on many
conditions such as the origin of microorganisms, the composition of minerals, and the temperature.

Artificial neural network (ANN) is a data-driven self-adaptive technique, which does not require
an understanding of the complex nature of the underlying processes [4]. The ANN architecture is
composed of input layers, hidden layers, and output layers along with neurons (perceptrons) to model
nonlinear complex systems. The neurons are non-linearly connected to the neurons at the next layer
via transfer functions, weights, and biases [5]. The ANN model produces the required response
via modification of weights and biases of neurons in the network [6]. In ANN model development,
the training process is initiated by generating output values from input values through internal
calculations. Based on the differences between calculated output values and observed (target) output
values, backpropagation is performed to reduce these differences by adjusting the weights and biases.
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This training process is called feedforward backpropagation and is the most widely used method in
ANN architecture [7]. This nature of ANN gives efficient results in the prediction of its output with
phenomena for which it is difficult to understand the interrelationship between inputs and outputs.
Therefore, ANN can be used to predict the bioleaching when it is difficult to clarify the effects of
various factors.

The prediction of metal bioleaching using ANN has been reported by several researchers. Laberge [8]
used neural network procedures to predict the metal (Cu, Zn, and Cd) solubilization percentages in
municipal sludge treated with a continuous process using Thiobacillus ferrooxidans. Pazouki [9] optimized
the amount of iron removal by bioleaching of kaolin sample with high iron impurities with Aspergillus
niger. Abdollahi [10] proposed the application of ANN to predict the effect of operating parameters
on the dissolution of Cu, Mo, and Re from molybdenite concentrates via mesoacidophilic bioleaching.
The initial pH, solid concentration, inoculation percent, and time (days) were used as input operating
parameters for prediction. Vyas [11] predicted Mo bioleaching using ANN from experimental data of
spent catalyst using Escherichia coli and predicted bioleaching using ANN.

The aim of this study was to predict the leachate’s dynamic characteristics from bioleaching in
batch conditions using ANN modeling. Bioleaching data used in this study were collected from our
previous eight studies about bioleaching [12–19]. Most of the results of the eight studies were used for
ANN learning and optimization. We also evaluated the predictability of the optimized ANN model by
adapting the selected one result for each output variable.

2. Materials and Methods

2.1. Information on Indigenous Acidophilic Bacteria Sampling and Cultivation of Reference Studies

Our previous eight studies about bioleaching were performed with indigenous acidophilic
bacteria. From the 16S rRNA sequence analysis, indigenous acidophilic bacteria were identified as
Acidithiobacillus ferroxidans, which are acidophilic iron-oxidizing bacteria. Those collected bacteria
were basically cultivated in ATCC 125 medium composed of a mineral salt medium and an energy
source. For mineral salts medium of ATCC 125, Thiobacillus medium, 0.2 g/L of (NH4)2SO4, 0.5 g/L of
MgSO4·7H2O, 0.25 g/L of CaCl2, 3.0 g/L of KH2PO4, and 5.0 mg/L of FeSO4 were dissolved in 1.0 L of
distilled water. For an energy source, 1.0 g/L of elemental sulfur was used. Growth medium before
inoculation of an indigenous acidophilic bacterium and all glassware were sterilized in an autoclave
(SW-90AV100). Several sub-culturing strategies, including temperature, sub-culture cycles, pH,
and toxic impact, were successfully used. These indigenous acidophilic bacteria were divided into two
groups, as those collected in mine drainage and those collected in acidic hot springs, depending on the
characteristics of the collected areas to simplify for ANN application. The bacterium from mine drainage
was collected from mine drainage located in Hwasun-gun (Jeollanam-do, Korea) [11], Samcheok-si
(Kangwon-do, Korea) [18], and Goseong-gun (Gyeongsangnam-do, Korea) [19]. The bacteria from acid
hot spring were collected near Hatchobaru thermal electrical plant (Oita Ken, Japan) [17].

2.2. Information on Bioleaching Experiments of Reference Studies

Bioleaching experiments were conducted to investigate the effect of the bioleaching of indigenous
acidophilic bacteria for the extract of various mine wastes such as pyrite (collected from the abandoned
coal mine in Hwasun-gun, Jeollanam-do, Korea), galena (purchased from Australia or collected from
abandoned jade mine in Gwangyang-si, Jeollanam-do, Korea), sphalerite (purchased from Australia),
pyrrhotite (collected from the abandoned mine in Samcheok-si, Kangwon-do, Korea), etc. containing
the metals Fe, Cu, Pb, Zn, etc. Batch experiments were prepared in 500-mL flasks containing 150 mL of
culture medium (140 mL fresh growth medium + 10 mL inoculation medium) amended with specific
minerals at a specific dosage. Control experiments were carried out to check the pH, Eh changes,
and heavy metals leaching in the growth medium. At regular time intervals, liquid samples were
withdrawn and filtered with 0.45-µm filter to measure pH, Eh, and heavy metals concentration. The pH
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and Eh of the solutions were measured using a pH meter (Eijelkam, multi-parameter analyzer, Belgium).
Heavy metals concentration in the bioleached solutions were measured by Inductively coupled plasma
mass spectrometry (ICP-MS) (ELAM DRCa; PerkinElmer, USA). The bioleaching using indigenous
acidophilic bacteria of mine waste leached 62–92% and 21–55% for Fe, suggesting the feasibility of
bioleaching. A comparison of the moderate thermophiles (40–60 ◦C) with mesophiles (28–37 ◦C)
showed that moderate thermophiles were more effective. It seems that the higher temperature enhances
the metal solubilization by enhancing the rate of reaction. In addition, with a toxic impact (CuSO4)
adaptation, toxic impact adapted is more effective than the unadapted ones in bioleaching. Specific
conditions are organized in Table 1.

Table 1. Information on indigenous acidophilic bacteria sampling and cultivation of reference studies.

No.(#) Reference

Indigenous
Acidophilic Bacteria Cultivation Conditions Bioleaching Conditions

Origin of Bacteria Temp. (◦C) &
Cultivation Duration Adaptation Temp. (◦C) Sulfide

Minerals

1 Park, et al.
[12]

Hwasun-gun
(Mine drainage) 32 (21 days) None adaptation 32 Pyrite

2 Park, et al.
[13]

Hatchobaru
(Hot spring water)

32 (21 days)→ 42
(21 days), 52 (21 days) or

52 (21 days)→ 62
(21 days)

None adaptation 42, 52, 62 Sphalerite

3 Park, et al.
[14]

Hatchobaru
(Hot spring water) 32 (21 days) None adaptation 32 Galena

4 Park and
Cho [15]

Hwasun-gun
(Mine drainage) 32 (21 days) None adaptation 32 Pyrite

5 Park, et al.
[16]

Hatchobaru
(Hot spring water)

32 (28 days)→ 42
(28 days), 52 (28 days) None adaptation 42, 52 Galena

6 Kim, et al.
[17]

Hatchobaru
(Hot spring water) 32 (21 days)

CuSO4 (5, 10,
25 g/L), 32 °C (21

days, 3rd)
32 Pyrite

7 Kim, et al.
[18]

Samcheok-si
(Mine drainage) 32 (21 days)

CuSO4 (1.5 g/L),
32 °C (21 days,
4th), pH 2.62

32 Pyrrhotite

8 Kim, et al.
[19]

Goseong-gun (Mine
drainage) and Younwha

(Mine drainage)
32 (21 days)

CuSO4 (1.5 g/L),
32 °C (21 days,
4th), pH 2.82

32 Pyrite,
Pyrrhotite

2.3. Artificial Neural Network Modeling

Data for ANN modeling from our previous eight studies about bioleaching were collected and
organized for input variables and output variables. If all factors were used as input variables, the amount
of data required for learning the ANN model would be enormous. Therefore, factors that are considered
important were selected as input variables. Among the various characteristics of microorganisms,
the origin of bacteria was selected as an input variable because it was considered that it would have
the greatest impact. Our previous studies have confirmed that temperature and dosage between
mineral and medium have a great effect on bioleaching. Therefore, temperature and dosage were also
selected as input variables. In addition, the preference of microorganisms will vary depending on the
composition of minerals and the bioleaching tendency will vary significantly, thus the ratio of each
mineral corresponding to the formation of minerals was selected as input variables. Finally, in this study,
we selected time as an input variable because we wanted to predict the bioleaching over time through
ANN model. For those reasons, nine factors were selected as input variables: origin of microorganisms
(none = 0, mine drainage = 1, hot spring water = 2), temperature (◦C), dosage between solution
and mineral (g/L), Pb percent ratio of mineral, Fe percent ratio of mineral, S percent ratio of mineral,
Zn percent ratio of mineral, Cu percent ratio of mineral, and bioleaching time (day). When normalizing
input values, the relative effects of each factor can be examined. However, in this study, it was difficult
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to average the inputs used, such as the origin of bacteria and bioleaching time, as in other inputs.
Therefore, in this study, these values were used directly without averaging. As output variables, pH,
Eh, Cu concentration of leachate at specific bioleaching time, Pb concentration of leachate at specific
bioleaching time, Zn concentration of leachate at specific bioleaching time, and Fe concentration of
leachate at specific bioleaching time were selected. Since the observed output variables in each study
are different, the data used for ANN modeling in each study are organized in Table 2. All input and
output variables are not normalized. In the case of input variables, normalization was not carried out
due to the existence of variables that could not be normalized based on the minimum–maximum value
due to the different characteristics of each variable. In the case of output variables, a maximum value of
the concentration of heavy metal ions continuously leaking cannot be set, so it is not normalized.

MATLAB software (2019b, Mathworks, Natick, MA, USA) was used for ANN model composition
and optimization. In the ANN model, a hyperbolic tangent sigmoid transfer function (tansig) and
linear transfer function (purelin) were used for hidden and output layers, respectively:

ansig(x) =
2

1 + e−2x − 1; purelin(x) = x (1)

with tansig and purelin transfer function, general form of ANN model is presented as follow:
hk,1,1

...
hk,1,n

 = tan sig



→
wk,1,1

...
→
wk,1,n

×


x1
...

x9

 +


bk, 1,1
...

bk,1,n




fk = purelin

→w2,k ×


hk,1,1

...
hk,1,n

 + b2,k


(2)

where k is the order of output variables. fk is the predicted value of kth output variable. The schematic
structure of ANN model used in this study is illustrated in Figure 1.

Figure 1. Schematic structure of ANN model.

As an indicator of the optimal weights (w) and biases (b) and ANN topology, the mean squared
error (MSE) was chosen (Equation (3)).
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MSE =
1
n

n∑
i=1

(yi − fi) (3)

where yi is the observed output value and fi is the predicted value from ANN model.
The Levenberg–Marquardt algorithm was employed to optimize the ANN model by minimizing

the MSE value [20]. While it would be nice to develop a model that can predict all output variables
simultaneously, we developed a model separately for each output variable because we do not have all
the data for all output variables in learning. Each dataset for a specific output variable was randomly
divided into three subsets including training (60%), validating (20%), and testing (20%). Based on the
Levenberg–Marquardt algorithm, the ANN model was iterated to reduce MSE between the predicted
values and observed values of the training subset by modifying and adjusting the w and b matrices.
With adjusting the w and b matrices, MSE was calculated between the predicted and observed values
of the validating subset. In this step, the w and b matrices with the lowest MSE from validating subset
were chosen as the optimized values for the ANN model. After optimizing the ANN model, the testing
subset was used to compare the predicted values with the observed values to assess the performance
of the developed ANN model [21,22].

This optimization process is performed in a certain topology. Since the topology is also a factor
that greatly affects the predictability of ANN models, we optimized and compared ANN models for
various topologies in this study. Using nine input variables and one output variable, the number of
hidden layers and the number of hidden layer neurons were varied to determine the optimal topology.
Initially, a single hidden layer with hidden layer neurons varying from five (9:5:1) to fifteen (9:15:1)
was tested for the network topology. Based on the lowest MSE value, the best network topologies were
selected as the best topology for each output variable.

Further verification with the data not used for ANN model optimization was also performed to
test the predictability of the developed ANN model. The dataset for further verification was chosen
from our previous studies, as presented in Table 2.

Table 2. Input and Output variables comparison from previous studies.

# a

Input Variable Output Variable

Origin of
Bacteria

Temp.
(◦C)

Dosage
(g/L)

wt. % of Mineral for Energy Source
pH Eh

(mV)

Concentration at Time t (mg/L)

Pb Fe S Zn Cu Cu Pb Zn Fe

1 Mine
drainage 32 1 0 45.64 50.34 0.03 0.01 O O O X O O

2 Hot spring
water

42

2 3.42 0.07 9.20 87.10 0.18

O O X O 4 O

52 O O X 4 O O

62 O O X O O O

3 Hot spring
water 32 10 13.05 0.20 39.70 46.78 0.28 O O X O O O

4
Mine

drainage 42

10

0 45.64 50.34 0.03 0.01

O O, X X O X

40 O 4 X X O X

160 O O X X O X

5 Hot spring
water 32 10 13.05 0.20 39.70 46.78 0.28 O X O O O O

6 Hot spring
water 42 10 0 45.64 50.34 0.03 0.01 X X X X O O

7
Mine

drainage 32

0.75

0 61.3 0 28.51 10.16

O X O X O O

1.50 O X O X O 4

3.75 O X O X O O

8
Mine

drainage 32
1.33 14.67 44.86 0 6.55 33.82 O X 4 X X O

1.33 0 61.3 0 28.51 10.16 4 X O X X O
a the same number as Table 1, O: data exist, used for ANN model training, validating, and testing; 4: data exist,
only used for ANN model further verification; X: no data
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3. Results and Discussion

3.1. ANN Modeling for pH and Eh

Table 3 presents the MSE and R value for each topology for each output variable. Regardless of
the type of output variable, the optimal topology was when the neurons in the hidden layer were
greater than 8, probably because many neurons under the same hidden layer structure can include
small cases. However, there was no optimal case with the largest number of neurons, apparently due
to the increasing number of neurons in the model’s optimization process making it more difficult to
find the optimal w and b matrices. Table 4 presents the values of weights and biases for each layer
and neuron from the best topology for each output variable. The diagnostic plots between observed
and predicted values in the ANN model are illustrated in Figure 2, which shows a high correlation
coefficient (R) value.

Predicting the results from the data for further verification was also performed to examine the
predictability of the developed ANN models. The pH results and the prediction by ANN model are
shown in Figure 3. The X-axes are diverse depending on experimental conditions. In the case of pH,
the range of values does not vary much by studies, while, in the case of bacteria, the lower tendency is
universal. Therefore, the presence or absence of bacteria has the greatest influence. Temperature and
dosage were found to have relatively little effect on pH changes. For this reason, the prediction of the
ANN model was similar to the actual results, regardless of the experimental conditions. However,
the results from further verification were less predictable. In other words, it was predicted that the pH
would be lower if bacteria existed, but, in reality, there was no significant difference depending on
the presence or absence of bacteria in these conditions. This prediction is due to the fact that most
of the data used in ANN model optimization are cases where pH varies greatly depending on the
presence or absence of bacteria. Because there are no learning data under conditions where pH does not
change much, it is difficult to predict the results under conditions that do not change much. Therefore,
it is necessary to conduct additional experiments under conditions where the presence or absence of
bacteria does not significantly affect pH and use them for the advanced ANN model.

The Eh results and the prediction by ANN model are shown in Figure 4. The X-axes are diverse
depending on experimental conditions. Similar to the pH results, Eh also has similar levels of value,
so it can be seen that overall predictions are good. Eh also showed a big difference in trends, as with
pH, depending on the presence or absence of bacteria. The effect of temperature and dose was also
smaller, similar to the pH result. For further verification, the only difference is in the dosage compared
to Experimental Condition #4. Although the difference between the dosage is not significant in the
corresponding results, it is judged that the effect of the dosage was greater for the ANN model. In the
case of the Eh model, it is expected that the more sophisticated ANN model will be obtained by
performing additional experiments involving various dosage conditions and applying the results to
the training.
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Table 3. Comparison of network topologies with various neurons (bolded is the best topology).

Output Variable = pH Output Variable = Pb Concentration

Topology MSE
R

Topology MSE
R

Training Validating Testing All Training Validating Testing All

9:5:1 1.88 × 10−2 0.98683 0.98805 0.98824 0.98717 9:5:1 1.19 × 101 0.99161 0.99194 0.94765 0.98733
9:6:1 6.63 × 10−2 0.99253 0.97083 0.97701 0.98587 9:6:1 2.01 × 101 0.99640 0.98979 0.97322 0.99022
9:7:1 1.89 × 10−2 0.99388 0.98645 0.96680 0.98880 9:7:1 2.73 × 101 0.99643 0.98596 0.99625 0.99427
9:8:1 4.71 × 10−2 0.98945 0.97639 0.97344 0.98531 9:8:1 1.03 0.99903 0.99898 0.98709 0.99672
9:9:1 1.88 × 10−2 0.98891 0.99120 0.96851 0.98576 9:9:1 2.57 0.98908 0.99777 0.99561 0.99053

9:10:1 8.03 × 10−2 0.98984 0.96200 0.99112 0.98512 9:10:1 8.28 0.99958 0.99196 0.99664 0.99832
9:11:1 3.99 × 10−2 0.99320 0.97649 0.98098 0.98909 9:11:1 1.34 × 101 0.99976 0.99129 0.96579 0.99592
9:12:1 3.49 × 10−2 0.99434 0.97890 0.86583 0.96647 9:12:1 2.79 0.99900 0.99850 0.99460 0.99816
9:13:1 2.30 × 10−2 0.98910 0.98815 0.98318 0.98836 9:13:1 4.52 0.99983 0.99410 0.96714 0.99626
9:14:1 2.71 × 10−2 0.99408 0.98046 0.97520 0.98833 9:14:1 2.15 × 101 0.99196 0.99219 0.98890 0.99112
9:15:1 1.56 × 10−2 0.99166 0.99145 0.98043 0.98933 9:15:1 4.92 0.99953 0.99639 0.99656 0.99898

Output Variable = Eh Output Variable = Zn Concentration

9:5:1 7.50 × 102 0.93668 0.89680 0.93958 0.92811 9:5:1 1.08 × 102 0.94053 0.95852 0.94239 0.94096
9:6:1 6.24 × 102 0.95502 0.90029 0.95254 0.94887 9:6:1 1.27 × 102 0.97755 0.97281 0.96433 0.97398
9:7:1 3.74 × 102 0.96718 0.94500 0.93575 0.95613 9:7:1 6.24 × 10 0.96514 0.97332 0.91208 0.95305
9:8:1 2.48 × 102 0.92950 0.97255 0.93840 0.93823 9:8:1 2.26 × 102 0.96537 0.95020 0.89522 0.95181
9:9:1 8.11 × 102 0.97031 0.88045 0.88533 0.94309 9:9:1 4.18 × 10 0.99620 0.99359 0.95409 0.99066

9:10:1 1.00 × 102 0.95346 0.86592 0.89387 0.92703 9:10:1 1.65 × 10 0.99489 0.99689 0.99471 0.99513
9:11:1 5.82 × 102 0.97261 0.90556 0.90967 0.95401 9:11:1 8.38 × 10 0.94072 0.98337 0.91270 0.94649
9:12:1 5.32 × 102 0.95631 0.91392 0.90628 0.94656 9:12:1 9.95 × 10 0.99928 0.99040 0.96825 0.99186
9:13:1 3.45 × 102 0.95039 0.96460 0.85625 0.93799 9:13:1 8.40 × 10 0.99266 0.98798 0.94571 0.98556
9:14:1 8.22 × 102 0.91444 0.85820 0.88330 0.90210 9:14:1 7.93 × 10 0.99881 0.97886 0.56795 0.83919
9:15:1 4.79 × 102 0.95758 0.93634 0.96333 0.95560 9:15:1 4.88 × 10 0.99879 0.92752 0.94511 0.98211

Output Variable = Cu Concentration Output Variable = Fe Concentration

9:5:1 3.20 × 104 0.92546 0.91962 0.91324 0.92345 9:5:1 1.54 × 103 0.98483 0.98880 0.97302 0.98450
9:6:1 6.09 × 102 0.99919 0.99769 0.99771 0.99873 9:6:1 5.12 × 102 0.99394 0.99834 0.99204 0.99393
9:7:1 4.23 × 102 0.99723 0.99840 0.99861 0.99755 9:7:1 5.91 × 102 0.99785 0.99203 0.98887 0.99469
9:8:1 2.79 × 102 0.99856 0.99898 0.99762 0.99843 9:8:1 5.21 × 102 0.99581 0.99550 0.98479 0.99254
9:9:1 4.70 × 102 0.99892 0.99933 0.99164 0.99824 9:9:1 2.06 × 102 0.99626 0.99847 0.98752 0.99529

9:10:1 5.02 × 102 0.99936 0.99881 0.96353 0.99708 9:10:1 1.61 × 103 0.99595 0.98378 0.98950 0.99237
9:11:1 3.12 × 102 0.99965 0.99783 0.99765 0.99925 9:11:1 1.08 × 102 0.99983 0.99913 0.96762 0.99441
9:12:1 4.56 × 102 0.99982 0.99870 0.99670 0.99875 9:12:1 3.87 × 103 0.99936 0.98676 0.84873 0.97653
9:13:1 6.05 × 102 0.99972 0.99861 0.99043 0.99877 9:13:1 3.01 × 102 0.99901 0.99205 0.96456 0.99562
9:14:1 1.11 × 103 0.99817 0.99797 0.99734 0.99799 9:14:1 3.09 × 102 0.99707 0.99513 0.96258 0.99359
9:15:1 4.09 × 102 0.99967 0.99847 0.99945 0.99950 9:15:1 2.18 × 102 0.99587 0.99513 0.97344 0.99304
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Table 4. w and b matrices of the best topologies for each output variable.

k n →
wk,1,n b1,n

→
wk,2,n

T b2,n

1 (pH)

1 −1.8359 −0.5773 3.4467 1.0643 −0.7742 0.7384 −0.8203 −0.5840 0.2123 2.7846 1.8333 −1.1425
2 0.3029 0.2556 0.3794 0.0757 −0.4440 0.2724 0.6289 1.6562 −3.2499 −2.6776 −1.7529
3 −0.2106 −2.2416 −0.3753 −0.4279 −0.7237 0.6220 0.8634 −0.7955 1.4372 −1.8043 1.2452
4 −1.6023 −1.3785 0.1525 −0.6959 0.8721 0.0333 −0.8607 −0.7272 1.7346 0.7969 −2.5483
5 0.5131 0.5832 0.3681 0.2395 1.1243 −0.2981 1.0503 −0.2049 0.7778 −1.1648 1.8170
6 −1.1223 −0.2776 −1.2889 −0.6451 0.1844 −0.3471 −0.0171 −1.0049 1.0948 0.7656 −1.3975
7 1.2056 0.9698 0.9130 1.7092 0.4436 −1.1965 0.5614 1.5884 −3.6822 −0.1087 −1.6515
8 −0.9594 0.2545 −0.1163 0.1377 1.7136 −0.8193 −0.1626 0.5510 −1.6255 −0.5661 1.5122
9 0.9223 −0.3562 −1.2603 0.9949 −0.9743 −0.3424 −0.6378 0.2993 −0.3386 −0.0620 0.8411
10 0.5076 1.1594 −0.0768 −0.7581 −0.0491 −1.4832 −0.7576 0.2185 1.1602 1.0459 2.5572
11 −0.1621 −0.9027 0.6510 −0.2241 −0.8159 −0.5190 −0.8368 1.0646 1.4966 0.7881 0.6699
12 −0.5456 −0.1667 −0.1017 0.2104 −0.9777 2.1356 −1.5266 −1.5692 −3.2310 −1.3250 1.9112
13 1.0487 −1.2557 −0.0252 −0.7996 −0.1858 0.4946 −0.8953 −1.2913 2.6020 −0.4344 −1.8458
14 −1.2542 −0.3957 0.0578 −1.0711 1.4680 −0.6518 −0.4544 −0.9984 −2.3014 −2.7818 1.6115
15 1.6246 −0.9454 1.3698 1.1486 −0.4306 −0.2314 −1.3949 −1.2071 1.1530 3.2805 2.4357

2 (Eh)

1 −0.9730 0.5749 −0.2938 −1.2768 0.7010 0.3428 1.1183 −0.0231 2.0385 −1.1703 −0.8224 0.1266
2 1.8509 −0.2876 −0.9761 −0.1650 1.1311 0.8280 −0.3102 −0.3759 −0.8201 −0.6398 −0.8152
3 1.1120 −1.4866 1.3797 0.2836 0.2823 −0.3141 0.2487 1.0354 0.3582 −0.6048 0.7924
4 0.5821 0.4108 0.3837 −0.5084 −1.2461 −1.2081 0.2052 −0.2378 −0.4940 −0.1794 −0.8758
5 0.8928 −0.4696 0.6497 0.2056 0.2616 1.4350 −1.1186 0.1729 −0.1506 −0.1554 0.3355
6 0.0936 1.5361 −0.5888 −0.1959 −0.8125 0.2033 −0.4386 −0.3422 0.5656 0.8764 1.9108
7 0.8116 1.6128 −0.1522 0.5207 0.8100 −0.6573 −0.3160 −0.4010 0.4634 −1.2549 0.8500
8 0.7202 −1.4825 1.6523 −0.2463 1.3328 −0.2157 −0.4352 −1.3829 −2.9691 0.6193 1.0877

3 (Cu)

1 0.0546 2.6183 −18.433 1.6934 −3.2747 4.0627 −0.8585 3.1137 0.1861 −3.4469 −6.8753 1.8638
2 3.0039 −1.2864 −6.0271 −1.2267 2.1558 1.2980 −3.0894 −1.0908 −0.3851 −2.3052 −1.5445
3 0.0089 −0.5823 0.1791 1.5796 −0.0264 2.1980 1.0153 −3.3129 1.3685 0.9331 6.0830
4 −0.5762 0.2071 1.0337 −0.9460 0.9208 0.4682 −2.8878 1.4491 0.9999 1.6439 2.4794
5 1.2818 −0.6953 −0.6416 −1.4989 0.9187 0.5235 −1.6576 0.6967 0.0258 −0.4306 3.9065
6 −0.0027 −1.2121 −2.1805 −1.1456 0.7809 −1.2875 −0.4126 −1.1862 0.0953 −0.6178 2.2103
7 −1.4457 1.3171 −2.3990 1.5757 −0.9899 −0.4368 2.6398 −1.2554 −5.7235 −2.5273 0.1680
8 0.0627 3.0300 −10.925 2.4852 −1.4151 −1.3314 0.5520 1.3984 −0.2883 −4.3651 8.9419

4 (Pb)

1 −2.8729 1.8970 0.5522 1.4257 −0.1611 1.0143 −0.4128 0.2646 0.7227 3.0619 −7.0309 −3.7447
2 1.0373 −0.1714 0.4947 −0.3538 −0.5877 −1.1983 0.2156 0.5431 −0.7291 −1.9596 −10.438
3 0.5603 0.0473 1.4111 −0.3935 −0.2161 0.5175 −0.8509 0.6196 −1.9838 1.0440 5.8604
4 0.4424 −0.0247 0.8086 0.4762 0.9451 0.6344 −0.8062 −0.6208 −2.4237 0.8742 −3.6743
5 −0.3870 −3.4634 0.0360 1.7278 0.3679 −0.0531 −1.0728 −0.1192 −0.0635 −0.2032 −3.1189
6 −0.2611 1.6090 1.1576 0.0830 0.8327 0.2223 −1.1289 1.4603 −0.3974 −3.0246 −2.4565
7 5.2021 −10.355 0.4791 −0.6917 −0.4875 −0.5713 −0.1012 0.0531 −0.9278 −0.7996 0.4196
8 −0.1958 7.7520 1.8898 0.8233 2.1443 1.2497 −2.4947 2.1704 −0.2556 −2.8649 3.0570
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Table 4. Cont.

k n →
wk,1,n b1,n

→
wk,2,n

T b2,n

5 (Zn)

1 −10.287 0.4657 −9.3634 −2.9736 5.9524 3.8516 −3.2304 1.2372 6.6546 −9.7660 4.1320 0.2988
2 −4.1040 0.0291 −1.8231 −0.8244 2.1629 4.1125 −4.7009 −0.3972 −7.0186 3.2698 −7.7731
3 3.1161 −0.0494 −15.468 3.6355 1.1733 2.0903 2.3595 3.4897 −3.3373 −16.765 21.9734
4 −9.2985 −1.8445 −8.5123 −2.6284 −5.6654 1.4913 4.3116 −8.4520 6.2033 −5.9068 −2.8550
5 −20.219 0.3632 −16.453 −6.9686 6.4366 7.3022 −1.9315 0.5264 7.8346 −19.280 −1.2829
6 4.3078 0.2772 −47.308 5.3583 −1.7586 1.9018 6.7815 5.8244 4.3305 −37.925 3.0210
7 5.9236 −6.6622 11.736 5.8043 −1.7915 −6.5833 4.2585 6.7263 3.9652 1.1064 −3.4844
8 −3.7780 1.9959 1.3472 1.9934 −4.0865 −1.6993 3.0945 0.6467 −6.5578 −4.4887 −2.6997
9 −3.2367 0.0535 17.982 −2.8123 −1.0770 −1.5942 −2.2231 −2.8243 1.5725 18.393 27.7257
10 −0.0006 2.2508 0.0008 −0.2874 2.3572 0.3727 −1.4831 1.9732 −0.0018 1.2361 −8.1480

6 (Fe)

1 −2.0472 −1.2388 0.1890 −2.9874 0.0253 1.5880 −1.5456 −2.5311 −11.111 3.5008 −3.6381 2.6446
2 11.0687 −0.6581 5.6492 −0.1175 1.5025 −2.8188 1.2293 0.4918 −4.9601 −1.2841 −1.7426
3 2.3606 −0.3783 7.0444 0.7734 1.5013 −0.1337 −1.2103 0.6122 −1.0504 0.9746 −1.9904
4 2.0302 −0.0790 0.9703 0.9390 0.1281 0.4920 −0.0376 0.3373 −0.5258 −1.2436 −0.1028
5 1.2617 −0.0452 −3.3536 −0.1879 1.6096 0.3745 1.8760 1.3136 0.8371 −3.2707 5.5881
6 −1.6305 0.0070 −0.6385 −0.2182 −1.4218 −0.2961 2.4693 −0.6171 0.0455 −1.1830 −2.3856
7 −4.9773 0.0535 13.271 0.1907 −0.3242 −1.7288 −1.6067 −1.7647 −8.7920 5.4787 0.4033
8 −4.1815 0.0695 −3.7940 −2.4388 −0.8110 −2.6524 3.7656 −0.8399 4.3613 −3.3659 0.6112
9 −4.8301 −0.0001 −2.9382 1.1483 2.3878 0.1167 −0.9756 −1.4167 0.0036 −4.2760 −3.9266
10 2.0727 −0.1165 −2.1945 −0.5926 2.0109 −0.5462 0.3940 1.7223 1.9980 −3.4825 −3.7974
11 1.7264 −0.0061 −1.5267 −1.2276 0.4093 −0.4586 0.5924 0.0399 −0.0771 2.0835 −0.4942
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Figure 2. Diagnostic plots between observed and predicted values in the ANN model with each output
variable’s best topology: (a) pH; (b) Eh; (c) Cu concentration; (d) Pb concentration; (e) Zn concentration;
and (f) Fe concentration.
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Figure 3. Observed and ANN-predicted pH changes with a topology of 9:15:1. The numbers are from
Table 1, while red number is the result from the data for further verification.

Figure 4. Observed and ANN-predicted Eh changes with a topology of 9:8:1. The numbers are from
Table 1, while the red number is the result from the data for further verification.

3.2. ANN Modeling for Heavy Metals’ Concentration

Unlike pH and Eh, heavy metals have a diverse range of concentrations. Therefore, the X- and
Y-axes are diverse depending on experimental conditions. Since the model’s optimization process
is based on MSE, it was shown to be more predictable for high concentrations of results that have a
significant impact on MSE.
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The Cu concentration results and the prediction by ANN model are shown in Figure 5. Table 2
shows that, under Conditions #7 and #8, copper content was higher than other conditions, resulting
in relatively high leaching of copper under both conditions. Unlike pH and Eh, the results change
relatively significantly with changes in temperature and dosage. Overall, the higher is the temperature
and the higher is the dosage, the greater is the amount of heavy metals being leached. For additional
experimental conditions, the trend is similar to the Pyrite in Condition #8. However, this ANN model,
which reflects the mineral composition, was able to confirm that the predictability was significantly
different. To overcome these limitations, experiments were conducted in more diverse compositions of
minerals, reflecting these results to ANN training.

Figure 5. Observed and ANN-predicted Cu concentration changes with a topology of 9:8:1. The numbers
are from Table 1, while the red number is the result from the data for further verification.

The Pb concentration results and the prediction by ANN model are shown in Figure 6. Unlike the
results in copper, Pb does not increase leaching as the content of Pb increases. Compared to Condition
#2, the amount of elution was lower despite the high Pb content of Condition #3. We could also confirm
that the minerals of Conditions #5 and #3 are the same, but the leaching of Condition #5 is much
greater. For the Pb concentration data, the degree of value varies, but there are few data, so it seems to
fit well regardless of the conditions. The results of Condition #2 suggest that elution increases as the
temperature rises from 42 to 62 ◦C. For this reason, under the additional experimental conditions of
52 ◦C conditions, similar to those of Condition #2, the ANN model was determined to have leaching
between 42 and 62 ◦C. However, the actual results are similar to those at 42 ◦C. In other words, the effect
of temperature is not linear, so it is necessary to look further at the effect of temperature.

The Zn concentration results and the prediction by ANN model are shown in Figure 7. In the
case of Zn, the higher is the content of Zn in the mineral, the more likely it is to be leached. However,
while Condition #2 had the highest Zn content and the highest leaching, Condition #7 tended to have
higher leaching, even though Conditions #3 and 5 had less Zn content. The effects of temperature and
dosage showed a tendency similar to other heavy metals. Similar to Cu concentration, the higher is the
concentration, the more accurate is the prediction. In addition, ANN predictions tend to fluctuate at
low concentrations, which seems to be the result of minimizing MSE since ANN is not a gradually
enhanced model. To overcome these shortcomings, it is necessary to optimize the model by utilizing
the structure of the ANN model in the form of Recurrent Neural Network (RNN) or by taking logs at
the concentration of Zn. The forecast for the additional experiment was much lower than the actual
value, which appears to be similar to Pb because it does not reflect actual measurements that are not
linearly affected by temperature.
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Figure 6. Observed and ANN-predicted Pb concentration changes with a topology of 9:8:1. The numbers
are from Table 1, while the red number is the result from the data for further verification.

Figure 7. Observed and ANN-predicted Zn concentration changes with a topology of 9:10:1.
The numbers are from Table 1, while the red number is the result from the data for further verification.
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The Fe concentration results and the prediction by ANN model are shown in Figure 8. In the
case of Fe, the largest leaching occurred in Conditions #7 and #8, which had the highest Fe content of
minerals, and the tendency to increase leaching as temperature and dosage increased. ANN results
in Fe also showed high predictability at high concentrations and fluctuations at low concentrations.
Condition #7 and the additional experiments changed the dosage, and the difference between these
changes is not linear, so the ANN model’s predictions appear to have been significantly misplaced.

Figure 8. Observed and ANN-predicted Fe concentration changes with a topology of 9:11:1.
The numbers are from Table 1, while the red number is the result from the data for further verification.

4. Conclusions

The ANN model generated predictions that were accurate for pH or Eh overall. However,
the predictions of heavy metal ions were only accurate at high concentrations. In addition, for temperature
or dosage, bioleaching tends to nonlinearly increase as temperatures and dosages increase. There were
conditions in which the leaching tendency varied greatly depending on different experimental conditions
when the content of certain minerals was similar. These differences were also confirmed to be expressible
and predictable through the ANN model. Therefore, we confirmed that the pH, Eh, and leaching of heavy
metals by bioleaching can be expressed and predicted through ANN.

However, in this study, the characteristics of the input factors were different, and normalization
was not carried out, thus the order of the factors’ effects and the correlations between the factors were
not clear. Therefore, in the future, it is necessary to conduct experiments under conditions where
each factor can be normalized and apply these results to ANN. Furthermore, it is also necessary to
select the experimental conditions based on the experimental design so that the effects of each factor
can be fully examined. In addition, the data were organized differently for each output, forcing the
model to be developed individually. If all outputs were identified in the same condition through
experimental design, an ANN model could be developed that can predict all outputs simultaneously.
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Considering the above-mentioned limitations, adopting the recommendations is expected to result in
more sophisticated bioleaching prediction models than the ANN models obtained from this study.
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