
applied
sciences

Article

Delayed Combination of Feature Embedding in
Bidirectional LSTM CRF for NER

Chirawan Ronran 1,2, Seungwoo Lee 1,2,* and Hong Jun Jang 2

1 Department of Big Data Science, University of Science and Technology (UST), Daejeon 34113, Korea;
chirawan@kisti.re.kr

2 Korea Institute of Science and Technology Information (KISTI), Daejeon 34113, Korea;
hongjunjang@kisti.re.kr

* Correspondence: swlee@kisti.re.kr; Tel.: +82-42-869-1784

Received: 30 July 2020; Accepted: 21 October 2020; Published: 27 October 2020
����������
�������

Abstract: Named Entity Recognition (NER) plays a vital role in natural language processing (NLP).
Currently, deep neural network models have achieved significant success in NER. Recent advances in
NER systems have introduced various feature selections to identify appropriate representations and
handle Out-Of-the-Vocabulary (OOV) words. After selecting the features, they are all concatenated
at the embedding layer before being fed into a model to label the input sequences. However,
when concatenating the features, information collisions may occur and this would cause the limitation
or degradation of the performance. To overcome the information collisions, some works tried to
directly connect some features to latter layers, which we call the delayed combination and show its
effectiveness by comparing it to the early combination. As feature encodings for input, we selected
the character-level Convolutional Neural Network (CNN) or Long Short-Term Memory (LSTM) word
encoding, the pre-trained word embedding, and the contextual word embedding and additionally
designed CNN-based sentence encoding using a dictionary. These feature encodings are combined at
early or delayed position of the bidirectional LSTM Conditional Random Field (CRF) model according
to each feature’s characteristics. We evaluated the performance of this model on the CoNLL 2003 and
OntoNotes 5.0 datasets using the F1 score and compared the delayed combination model with our own
implementation of the early combination as well as the previous works. This comparison convinces
us that our delayed combination is more effective than the early one and also highly competitive.

Keywords: delayed combination; CNN dictionary; named entity recognition; deep learning NER;
bidirectional LSTM CRF; CoNLL; OntoNotes

1. Introduction

Named entity recognition (NER) has received much attention in a wide range of natural language
processing (NLP) tasks, such as question and answering, information extraction, and machine
translation. NER techniques can be classified into four main streams: (1) a rule-based approach
based on hand-crafted rules, (2) an unsupervised learning approach that relies on an algorithm without
label data, (3) a feature-based supervised learning approach focused on a supervised learning algorithm
with feature engineering, and (4) deep learning approaches that automatically detect the result from
raw inputs [1].

Recently, along with the development of a deep learning (DL) model, a neural network model
has been successfully used for NER tasks. In general, the DL-based NER has used various input
representations (e.g., word embedding, character-level, word-level) to learn how to encode a word
and its context in input sequence and predict a word’s entity label. Most researchers have commonly

Appl. Sci. 2020, 10, 7557; doi:10.3390/app10217557 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2987-150X
http://www.mdpi.com/2076-3417/10/21/7557?type=check_update&version=1
http://dx.doi.org/10.3390/app10217557
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 7557 2 of 22

employed bidirectional Long Short-Term Memory (LSTM) Conditional Random Field (CRF) as a basic
DL architecture to encode contextual information and find the best label sequence:

• Lample et al. [2], used hierarchical bidirectional LSTM CRF set up with pre-trained word
embedding and character-level LSTM-based word encoding.

• Ma and Hovy [3], also employed the bidirectional LSTM CRF but combined the character-level
CNN-based word encoding with pre-trained word embedding to get the final result.

• Rei et al. [4] also used the bidirectional LSTM CRF but applied attention-based weighted sum,
instead of concatenation, when combining character-level LSTM-based word encoding with the
pre-trained word embedding.

• Chiu and Nichols [5] used the bidirectional LSTM and addition with Log-Sotfmax to get the output
and employed word-level pattern-based word encoding and gazetteer-based word encoding in
addition to the pre-trained word embedding and character-level Convolutional Neural Network
(CNN)-based word encoding.

These works employed various input representations and combined all the representations at the
embedding layer of their models (we call it early combination) and passed it through the main model
block, bidirectional LSTM.

In contrast, Huang et al. [6] delayed the combining position of some features’ encoding until
the output of the bidirectional LSTM is ready. They passed only the pre-trained word embedding
through the bidirectional LSTM and this output was combined with additional word encodings based
on word spelling, contexts of word, Part-Of-Speech (POS) and chunk, and gazetteer. This delayed
combination technique was used to avoid a potential feature collision, which may occur during
passing the bidirectional LSTM block. However, they did not provide any comparison between
delayed combination and early combination.

In this paper, we adapt the delayed combination approach and analyze its effectiveness by comparing
it to the existing, commonly used, early combination approach, inspired by Huang et al., 2016. We adapt
character-level CNN or LSTM-based word encoding and recent contextualized word embedding and
designed CNN-based sentence encoding using a named entity dictionary as supplementary feature
encodings, in addition to the common pre-trained word embedding. We pass the pre-trained word
embedding and the contextualized word embedding through the separate bidirectional LSTM blocks,
respectively, and then we combine the outputs with the CNN or LSTM-based word encoding and the
CNN-based sentence encoding. This combined encoding is finally fed into the CRF to find the best named
entity label sequence.

We compare the delayed combination model with the early combination model by evaluating our
own implementation of the two approaches and also compare our result to the previous works having
similar model architecture and features to show the effectiveness of the delayed combination model.
The main differences between the two models are as follows:

1. The early combination model concatenates representations at the embedding layer and then
passes them through the bidirectional LSTM CRF. During passing through the bidirectional LSTM
blocks, some useful but less-dominant encoded information may be mixed and collide with others
and, as a result, fail to be propagated to the output layer.

2. The delayed combination model is designed to preserve some feature representations until the last
layer by bypassing the bidirectional LSTM blocks, considering the characteristics of each feature
(more details are given in Section 3). The comparison result shows that the delayed combination
is able to boost the performance of the model.

The rest of the paper is organized as follows. Related works are described in Section 2. We present
the proposed model architecture in Section 3. The experimental setup is shown in Section 4. The results
are presented and discussed in Section 5. Finally, we conclude in Section 6.

Appl. Sci. 2020, 10, 7557 3 of 22

2. Related Work

Recently, deep learning has become a dominant model to achieve the state-of-the-art results
in NER task. The crucial advantage is its ability to undertake representation learning. Most deep
learning-based NER approaches have designed and utilized various features to encode input sequence,
such as (1) pre-trained word embedding, (2) contextual word embedding, (3) character-level CNN or
LSTM-based word encoding, (4) word-level pattern-based encoding, and (5) dictionary-based word
encoding. These representations were combined and passed through the bidirectional LSTM CRF
network to learn further contextual information. In this section, we explore various representations
used for encoding the input sequence and how to combine and feed them into the network.

2.1. Distributed Representations for Input

The concept of distributed representations refers to the representation of a word or a sentence
by mapping it to a numerical vector. The vector is used to capture the semantic and grammatical
properties of words. We review the following four types of distributed representations that have been
popularly used in the previous works.

2.1.1. Pre-Trained Word Embedding

Pre-trained word embedding is the main element for most NLP tasks, including NER. Typically,
embedding is trained over a large corpus, such as Wikipedia, Common Crawl, or the Reuters RCV-1
corpus. In this section, we describe different algorithms for computing word representations.

1. Word2vec: Word2vec can be implemented in two methods: a continuous bag of words (CBOW)
and a Skip-gram method [7–12]. Both are log-linear models that are very useful for discovering
the degree of word similarity [13]. In particular, CBOW provides slightly better accuracy for
frequent words, whereas Skip-gram represents rare words well.

2. GloVe: GloVe was developed at Stanford [14]. This process begins by going through the text in
a corpus, after which it counts the occurrences of word couples that are close to each other in a
given window size. The information is stored in a matrix called an occurrence matrix. This matrix
is used to build word embedding by minimizing the cosine distance between words to ensure a
high co-occurrence probability [15].

3. FastText: FastText [16] was made available by Facebook. This model suggests an NLP
improvement over the Skip-gram model, which learns by n-gram embedding. The rationale
behind this approach relies on the morphology and information encoding in a subword.
This information can be used to generate an unseen and rare word [17].

2.1.2. Contextual Embedding

One limitation of the pre-trained word embeddings is that a word is represented by a unique single
embedding regardless of its context. However, it is very common that a word could have a different
meaning in a different context. For example, each ‘bank’ has a different meaning in ‘bank account’ and
‘river bank’. To avoid fixed embedding for each word, several studies have proposed contextual word
representation techniques such as ELMO and BERT. ELMO [18] is a character-based model, while
BERT takes input as subwords and learns embeddings from the subwords. BERT has inspired many
recent NLP research and language models, for instance XLNet [19], RoBERTa [20], and DistilBERT [21].

2.1.3. Word-Level and Character-Level Representations

The pre-trained word embeddings and contextual embeddings learn the representations from the
context of a word in a sentence, but does not consider and learn the character composition of a word,
which are very important especially in the NER task because we often can infer the named entity (NE)
type of a word from its character composition. To make up for this weak point, two different word

Appl. Sci. 2020, 10, 7557 4 of 22

representation techniques have been developed: one is word-level pattern-based word encoding and
the other is character-level CNN or LSTM-based word encoding.

The former (word-level representation) classifies each word based on the following sub-criteria
and learns the encoding during training the deep learning network:

1. A case can be initialized in upper-case, all upper-case, all lower-case, and in a mixed case.
2. Punctuation
3. Digits including all digits, words with digits, cardinal and ordinal numbers
4. Characters, for instance, Greek letters
5. Morphology, e.g., prefixes and suffixes
6. Parts of speech – proper names, verbs, nouns
7. A function such as an n-gram, word, or feature pattern

This technique makes it possible to learn word representation based on patterns of a word and
encode words with different literals but same patterns with the same representation [2,3,5,6,22–24].
For example, Collobert et al. [22] used the capitalization information of a word, which was removed
before training the word embedding. The method uses a lookup table to add a capitalization feature
with the following options: AllCaps, UpperInitial, Lowercase, MixedCaps, Noinfo [5,22]. Huang et al.,
2015 also used the spelling information as a word-level feature, which includes: start with a capital
letter, all capital letter, all lower-case, mixed case, punctuation, prefixes and suffixes, has apostrophe
end (’s), has initial capital letters, letter, non-letter and word pattern.

The latter (character-level representation) is obtained by passing each character encodings within
a word through Recurrent Neural Network (RNN) or CNN blocks. CNN-based one is good at
extracting dominant character information in a word [3] while (RNN) (Gated Recurrent Unit (GRU) or
LSTM)-based one is good at capturing prefixes and suffixes in a word [2,24,25]. These character-level
representations also have an advantage in handling the Out-Of-the-Vocabulary (OOV) problem because
it is possible to learn almost all character embedding from even small or moderate corpus. In other
words, these representations are good at inferring unseen words and sharing information about
morpheme-level regularities. To improve the model performance, the pre-trained word embedding
have been actively combined with character-level CNN-based word encoding [3] or character-level
LSTM-based word encoding [2,24,25].

2.1.4. Dictionary Representation

The dictionary-based method is used to extract a set of features of a token by matching it with
entries in a dictionary. Two kinds of matching methods are commonly used. One is a full matching,
and the other is a partial matching [26,27].

1. Full matching: a dataset uses an n-gram to match an entire dictionary entry. If there are multiple
matches found in the dictionary, the longest one is preferred [28]. Using this match, the correct
word type is assigned as long as the n-gram overlaps the ground truth [1]. However, a longer
match requires more bits to classify a word type and the coverage is very low in general [29].

2. Partial matching: a dataset utilizes an n-gram to match part of a dictionary entry. The coverage could
be improved further through the application of an existing lexicon. On the other hand, some research
forgoes this partial matching dictionary because it can produce many false matches [5,28].

Both methods have their own disadvantage and it is not trivial to collect dictionary entries
having high coverage. To deal with this limitation, we design CNN-based sentence encoding using
a dictionary, which could achieve high coverage by reducing the negative effect by false matches.
(More details will be explained in Section 3.1).

2.2. Model Architecture for NER Task

The most common model architecture used for NER task in previous works is the bidirectional
LSTM CRF [2–4,6,23,30–35]. Except for the works of Huang et al., 2015 and Jie and Lu, 2019, all these

Appl. Sci. 2020, 10, 7557 5 of 22

previous works combined various feature encodings like pre-trained word embedding, contextual
word embedding, word or character-level representations and dictionary-based representation at the
embedding layer to feed them into the bidirectional LSTM CRF network. These early combination
models combined many feature encodings by just concatenating into one long embedding vector except
Rei et al., 2016 suggested a weighted sum based on attention mechanism instead of concatenation.

In contrast, Huang et al., 2015, and Jie and Lu, 2019, bypassed some feature encodings and
combined them with the output of the bidirectional LSTM blocks. We call these models delayed
combination in contrast with the early combination models. Huang et al., 2015, passed the pre-trained
word embedding through the bidirectional LSTM blocks and then concatenated the output with
additional word encodings based on word spelling, n-gram context of word, POS and chunk,
and gazetteer. Jie and Lu, 2019 first combined pre-trained word embedding with dependency encoding
at the embedding layer and then passed it through dependency-guided bidirectional LSTM blocks.
They secondly combined the output of the blocks with ELMO embedding just before the CRF layer.

When the features are combined, the feature collision may occur (Mikolov et al. [36]) and this
could cause that some important information may disappear after combination. This may limit the
performance improvement to be obtained from various feature encodings. Huang et al., 2015 also
suggested that this delayed combination could accelerate the training process with similar performance.

However, Huang et al., 2015 and Jie and Lu, 2019 did not provide and analyze any comparison
between their delayed combination approach and the common early combination approach to show
how effective the delayed combination is.

In this paper, we compare the delayed combination model with the early combination model by
evaluating our own implementation of the two approaches and also compare our result to the previous
works having similar model architecture and features to show the effectiveness of the delayed model.

3. Delayed Combination of Encoded Features

Our objective is to build a new architecture based on a deep learning technique which uses the
delayed combination model to improve the accuracy for two benchmark datasets, i.e., CoNLL 2003
and OntoNotes 5.0.

The main idea of our work is the bidirectional language model (BLM), to which is given as an input,
a sequence of tokens (t1, t2, ..., tn) that is passed through forward and backward a language model
(LM) [37]. The forward pass of the LM computes the sequence probability according to Equation (1).
The backward pass is similar to the forward pass, expect it runs over the reverse sequence to predict
the previous token according to the Equation (2).

P(t1, t2, ..., tN) =
N

∏
k=1

P(tk|t1, t2, ..., tk−1) (1)

P(t1, t2, ..., tN) =
N

∏
k=1

P(tk|tk+1, tk+2, ..., tN). (2)

The forward and backward sequence has two separate, hidden states to capture both past and
future information. Each result of forward and backward is concatenated to obtain the result vector
before being passed to the CRF layer. For the CRF computation, we denote X as the matrix of the score
output from the bidirectional LSTM to predict the tag sequence Y = y1, y2, ..., yn with the probability of
the ground truth for a tag of each word shown determined by Equation (3) [31]:

P(y|X, λ) =
1

Z(X)
exp

N

∑
i=1

∑
j

λj fi(X, i, yi−1, yi). (3)

Here, λ is the feature function weight, which is learned by the corresponding algorithm, and Z(X)
is the normalization factor according to Z(X) = ∑y∈Y ∑N

i=1 ∑j λj fi(X, i, yi−1, yi).

Appl. Sci. 2020, 10, 7557 6 of 22

The bidirectional LSTM CRF technique was used for our experiment on the NER task. We first
select the most promising features for the NER task from the previous works and also design a novel
CNN-based sentence encoding using a dictionary. Then we suggest the delayed combination of the
promising features by considering the characteristics of each feature.

3.1. Feature Encodings

1. Pre-trained word embedding: We compared GloVe 840B embedding, trained from Common
Crawl using GloVe3 [14], with FastText [16] cc.en.300 embedding, trained on Wikipedia and Common
Crawl. Chiu et al. [5] described GloVe improves significantly over available embedding in CoNLL
2003 than Word2vec.

However, GloVe poses to be a limitation with languages having unseen words which may occur
a lot in different corpora. On the other hand, FastText was build on the limitation of GloVe and
can handle OOV by extending subword information. This information allows the model to create
vectors for unseen words. So, we evaluated the performance of GloVe and FastText and then selected
FastText as word embedding which significantly increases the performance of our model (More detail
in Appendix A).

2. Embeddings from Language Model (ELMO): ELMO, developed by Allen NLP, is one
of the pre-trained contextual embedding models, which is available on the TensorFlow Hub
(https://tfhub.dev/google/elmo/3). We tokenized each sentence into words for inputting to the
embedding layer of ELMO. The ELMO embedding is obtained by weighted sum and scaling of output
encodings of the three layers of ELMO [18].

There are other contextual embedding models developed recently, but we selected ELMO by
considering the limitation of available hardware and the performance. We also tested BERT-Base but it
was not better than ELMO in our preliminary experiments.

The contextual word embedding like ELMO is better than other pre-trained word embeddings in
the NER task but the pre-trained embeddings are not still replaceable because they could give further
improvement when combined with contextual embeddings. So, we used both of them in our NER
model with delayed combination.

3. Character-level CNN or LSTM-based word encoding: Several studies incorporate character
representations with pre-trained word embedding for handling the OOV problem [38]. Therefore,
we also select these representations due to the same reason as well as the importance of character
information in NER task. There are two standard architectures for learning word encoding based on
character embedding: CNN and LSTMs.

Ma and Hovy [3] fed the character embeddings into the CNN with 30 filters of size three followed by
global max pooling to get the encoding of the corresponding word. Lample et al. [2] passed the character
embeddings through forward and backward LSTMs and concatenated each outputs to get the encoding
of the corresponding word, as shown in Figure 1.

Figure 1. Character-level CNN or LSTM-based word encoding.

https://tfhub.dev/google/elmo/3

Appl. Sci. 2020, 10, 7557 7 of 22

We adapted hyper-parameter values such as the number of filters, filter size, max word length and
word encoding dimension from the previous works and the detailed values are given in Section 4.2.

4. CNN-based Dictionary Representation: We first build up two versions of the NE dictionary for
partial matching: one distinguishes the begin and inside words in a named entity and the other does not
distinguish them. The process of dictionary creation consists of four sequential steps, as follows: (1) we
gather named entities of eleven types—Person, Location, Norp, Facility, Organization, Product, Event,
Work of art, Law, Language and a geopolitical entity (GPE)—from Wikipedia, Kaggle, and Geonames.
Then, (2) we additionally generate all upper-cased names and initial upper cased names from the
collected names. As a result, we could reduce mismatches when we apply a cased match. Subsequently,
(3) we duplicate the dictionary and tokenize these entries, as follows.

• Dictionary without a Begin-Inside Tag: We tokenize each word in the vocabularies and classify
each word into an entity type based on the datasets (CoNLL 2003, OntoNotes 5.0).

• Dictionary with a Begin-Inside Tag: we tokenize each names in the list and classify each word
based on the word position as well as the entity types. The first word in an entity has ‘Begin-tag’
along with the entity type and the other words in the entity have ‘Inside-tag’ along with the
entity type.

Now, we obtain two kinds of dictionaries with tokenized words. Finally, (4) we merge entity
types along with Begin-Inside tags for each word and construct a matrix of word to possible entity
types using binary notation. That is, we set to 1 when a word occurred at least once as that type in the
list of names and set to 0 otherwise, as shown in Figure 2.

Figure 2. The process of dictionary building: (1) gather named entities from various sources,
(2) generate capitalization variants of each names, (3) tokenize and classify with types and word
positions, and (4) construct a dictionary using binary notation. The numbers 0 and 1 denote the status
of found (1) and not found (0) in each category.

Appl. Sci. 2020, 10, 7557 8 of 22

This dictionary is used for encoding each sentence by the CNN with 30 filters of size three and
followed by global max pooing. Our dictionary employs partial match strategy, which may cause many
false matches and give negative effect on the performance. To soften this problem, we applied CNN-based
sentence encoding, as shown in Figure 3, and combined this with the output of the bidirectional LSTM
blocks, instead of early combining with other feature encodings at the embedding layer.

Figure 3. CNN-based sentence encoding using dictionary

This representation also has the advantage in dealing with ungrammatical or non-contextual
short sentences, which often occur in the dataset due to incorrect sentence segmentation but could not
be correctly predicted using only context.

3.2. Delayed Combination

We selected or designed four kinds of feature encodings, which are promising for NER
task: pre-trained word embedding, contextual embedding, character-level CNN/LSTM-based word
encoding and CNN-based sentence encoding using a dictionary. These feature encodings are combined
at suitable positions of the bidirectional LSTM CRF network according to the characteristics of each
feature encoding.

The pre-trained word embedding and contextual embedding were learned from the context of
each word. That is, their major role is to maintain and propagate the contextual information of each
word to the latter layers. So we decided to pass both of them through each separate bidirectional
LSTM blocks to further learn or fine-tune the contextual information from the training data as shown
in Figure 4.

Figure 4. The pre-trained word embedding and contextual embedding passed through its own
bidirectional LSTM blocks.

On the contrary, character-level CNN/LSTM-based word encoding is better to bypass the
bidirectional LSTM blocks because this word encoding learns only the character compositions within a
word, not contextual information of a word. Passing this encoding through the bidirectional LSTM
blocks may cause loss of character composition information in that encoding. Early combination of this
encoding with other pre-trained feature encodings at the embedding layer may disturb correct learning

Appl. Sci. 2020, 10, 7557 9 of 22

of that encoding because in general dominant features (i.e., pre-trained ones) are first propagated to
the latter layers.

Our dictionary representation is also not passed through the bidirectional LSTM blocks.
The representation is obtained by employing a partial match strategy and passing through word
CNN. This partial match may cause many false matches and give a negative effect on the performance.
To soften this problem, we employed CNN-based sentence encoding. As a result, we combine
(i.e., concatenate) the above feature encodings at the fully-connected layer directly after the bidirectional
LSTM blocks. The combined encoding further passes fully-connected layer and CRF layer to find the
best chainable label sequences. A graphical illustration of our delayed combination model is given
in Figure 5.

Figure 5. The delayed combination of feature encodings.

The early combination may cause some useful information to mix or collide with other encodings
and, as a result, disappear before the output layer. The graphical difference between the early
combination and the delayed combination is depicted in Figure 6.

Figure 6. The comparison between delayed and early combinations

Both the delayed combination and early combination models are used for comparison in
experiments, as explained in the next section.

4. Experimental Setup

4.1. Datasets

The experiment begins by exploring the NER datasets. The CoNLL 2003 dataset (English language) [39],
was taken from Reuters news corpus between August 1996 and 1997. This dataset consists of four types of
named entities (i.e., person, location, organization, and miscellaneous). The number of occurrences of each
type of named entity is shown in Table 1. The dataset consisted of three parts: a training set, a development
set, and a test set. To be specific, the training and development datasets were collected from the news at the
end of August of 1996, while the test dataset was obtained from the news in December of 1996.

Appl. Sci. 2020, 10, 7557 10 of 22

OntoNotes 5.0 is made up of 300 K Arabic, 900 K Chinese, and 1745 K English text data instances
and covers six types of documents such as newswire, websites, broadcasting news, broadcasting
conversation, magazine and telephone conversation [40]. It consists of eleven types of named entity
and seven types of values and we use the English data and follow the train–validate–test split by [40].
We excluded the telephone conversation section when evaluating our model because it has quite noisy
annotations. The detailed statistics of this dataset are given in Table 2.

Table 1. Statistics of named entities in CoNLL 2003 found in the training, development, and test sets.
The highest proportion in CoNLL 2003 is location, followed by person, organization, and miscellaneous
in that order.

Named Entity Train Set Valid Set Test Set

Location 8297 2094 1925
Organization 10,025 2092 2496
Person 11,128 3149 2773
Malicious 4593 1268 918

Table 2. Statistics of named entities in OntoNotes 5.0 found in the training, development, and test
sets. In OntoNotes 5.0, the highest proportion is organization, followed by person and Geopolitical
Entity (GPE).

Named Entity Train Set Valid Set Test Set

Person 37,393 5354 3646
Norp 9956 13.45 1152
Facility 3089 363 392
Organization 56,954 8964 4705
Product 1812 471 160
Event 3096 504 250
Work of art 4513 639 516
Law 1657 239 162
Language 372 36 22
Location 4143 596 417
GPE 27,354 4555 3263

Money 15,130 2287 1103
Percentage 8989 1504 992
Ordinal 2151 333 204
Cardinal 13,813 2141 1318
Quantity 3123 522 415
Date 40,077 6527 3793
Time 3505 731 451

We selected these two datasets for benchmarking our model because they have been most actively
used for evaluating and comparing NER models until now even though they are a little old. Especially,
CoNLL 2003 is a little small and so takes less time to train a model. So, it is suitable for testing and
tuning model feasibility at the early stage.

On the contrary, OntoNotes 5.0 is quite large (about five times the size of CoNLL 2003 in the
number of sentences in the training set) and has manymore types of named entities. So, it is suitable
for testing model extensibility at the latter stage.

4.2. Hyperparameter Setup

As preliminary experiments, we explored the optimal values of several major hyper-parameters
such as dropout, optimizer with learning rate, and the number of bidirectional LSTM layers and also
tested several versions of the popular pre-trained word embeddings including GloVe and FastText
(More detailed information is given in the Appendix A). The other hyper-parameter values were

Appl. Sci. 2020, 10, 7557 11 of 22

borrowed from the earlier works [2–5,33]. Table 3 shows the hyper-parameter values used in our
experiments. The hyper-parameter values are nearly identical between CoNLL 2003 and OntoNotes
5.0, except for the maximum word length and character embedding dimension, which were borrowed
from the earlier studies [2,5], respectively.

Table 3. The hyper-parameter values used in our experiments.

Layer Hyper-Parameter CoNLL 2003 OntoNotes 5.0

Character-level CNN Filter size 3 3
Number of filters 30 30
Max word length 25 30
Character embedding dimension 100 30

Character-level LSTM Max word length 60 97
Character embedding dimension 100 30
Hidden units 128 128

CNN with dictionary Filter size 3 3
Number of filters 30 30
Max sentence length 100 100
Character embedding dimension (With BI tags) 8 22
Character embedding dimension (Without BI tags) 4 11

BiLSTM with ELMo ELMO embedding (Dim) 1024 -
Number of bidirectional LSTM layers 2 2
Hidden units 128 -

BiLSTM with FastText Word embedding (Dim) 300 300
Number of bidirectional LSTM layers 3 3
Hidden units 128 128

Dropout 0.5 0.5
Optimizer Nadam Nadam
Learning rate 0.002 0.001
Mini-batch size 200 200
Epochs 200 120

4.3. Model Setup

When training our models, we used two different numbers of iterations without early stopping:
(1) 200 epochs for all model variants except the model with ELMo and (2) 120 epochs for the model
with ELMo. This is because the performance of the model with ELMo was rarely improved but the
model took quite a long time in training at each epoch when further increasing the number of epochs.

We evaluated our model after every epoch with the F1 score on the validation set and selected the
best validation F1 scored model within the number of epochs, which was used for evaluating the test
set. Due to the randomness, we did the same experiments five times and averaged them. The following
equation calculates the F1 score:

F1 score =
2× Precision× Recall
(Precision + Recall)

(4)

Here, precision refers to the ratio of correct named entities found in the NER system, and recall is
the ratio of named entities that are retrieved by the NER system. Our goal is to show the effectiveness
of the delayed combination and the CNN-based sentence encoding using the dictionary. To achieve
this goal, we organized three groups of experiments as follows:

1. The experiments for comparison between the delayed and the early combinations of FastText (FT)
and character-level CNN or LSTM word encoding (we refer to these as Delayed-BiLSTM-CRF
(FT + CNN or LSTM) and Early-BiLSTM-CRF (FT+ CNN or LSTM), respectively). The results are
given in Section 5.1.

2. The experiments with the model equipped with our dictionary representation (we refer to this
model as Delayed-BiLSTM-CRF (FT + CNN or LSTM + Dic)). The results are given in Section 5.2.

Appl. Sci. 2020, 10, 7557 12 of 22

3. The experiments with the model additionally equipped with ELMo encoding (we refer to this
model as Delayed-BiLSTM-CRF (FT + CNN or LSTM + Dic + ELMo)). The results are given in
Section 5.3.

5. Results and Discussion

5.1. Comparison between the Delayed and Early Combination Models

In this experiment, we first compared the delayed combination to the early combination by
evaluating our own implementations of both combinations on CoNLL 2003 and OntoNotes 5.0.
We used FastText for the pre-trained word embedding and character-level CNN-based word encoding.
In the early combination, both were concatenated at the embedding layer, and then fed into the
bidirectional LSTM blocks. On the contrary, in the delayed combination, only the FastText encoding
was passed through the bidirectional LSTM blocks and then the output was concatenated with the
character-level CNN-based word encoding. The results are shown in Table 4.

Table 4. Comparison between the delayed and early combination models.

Model F1 Score in CoNLL 2003 F1 Score in OntoNotes 5.0

Early-BiLSTM-CRF (FT + CNN) 88.60 84.47
Delayed-BiLSTM-CRF (FT + CNN) 90.56 (+1.96) 87.87 (+3.40)

We can see that the delayed combination (Delayed-BiLSTM-CRF (FT + CNN)) gives consistently
and significantly higher scores than the early combination (Early-BiLSTM-CRF (FT + CNN)) on both
datasets. This could convince us that the delayed combination could effectively propagate the useful
character composition information to the output layer by bypassing the bidirectional LSTM blocks.
The bidirectional LSTM blocks are very good at learning contextual information but the character
composition information may diminish or disappear when it passes through the bidirectional LSTM
blocks. Furthermore, at the early stage of the training, the pre-trained word embedding has more
dominant values than the character-level word encoding, which is randomly initialized. This means
that the early combination of feature encodings having different characteristics could hinder the model
from learning the less dominant feature encodings especially at the early stage of the training.

Reimer et al. [41] described the difference between character-level CNN-based and LSTM-based
word encoding approaches. According to this work, the CNN approach takes only the trigram value
into account but cannot distinguish the positions of trigrams, i.e., whether it is at the beginning, inside,
or at the end of a word. In contrast, the LSTM approach takes all characters of a word into account and
can distinguish between characters at the beginning and end of a word.

Referring to this work [41], we compared the two kinds of character-based word encoding
approaches in our delayed combination model. The result is given in Figure 7. On the CoNLL 2003
dataset, the LSTM approach was distinctly better (about +0.23%) than the CNN approach. However,
on the OntoNotes 5.0 dataset, the CNN approach was very slightly better (about +0.03%) than the
LSTM approach. This means that we cannot say which one is definitely better than the other. This result
coincides with the results from the previous works [30]. We also checked the computation time in the
training of each approach. The LSTM approach took about 1.75 times longer training time than the
CNN approach. This means that the CNN approach has advantage in the view of the training speed.
From these results, we decided to fix the approach for character-level word encoding to LSTM on the
CoNLL 2003 dataset and CNN on the OntoNotes 5.0 dataset, respectively.

To show the feasibility of our own model, we show in Table 5 the comparison between the
results of our models and the results of the previous works having similar model architecture and
combining features at the embedding layer. Our delayed model with LSTM-based word encoding,
Delayed-BiLSTM-CRF (LSTM), could achieve a better F1 score than the results from Rei et al., 2016,
Ghaddar and Langlais, 2018 and Le and Burtsev, 2019, but worse F1 score than the original results

Appl. Sci. 2020, 10, 7557 13 of 22

from Lample et al., 2016, Ma and Hovy, 2016 and Chiu and Nichols, 2016 on the CoNLL 2003 dataset.
However, when comparing to the re-implementation results by DeLFT [42] of the latter three works,
our results were not worse. On the OntoNotes 5.0 dataset, our model was also better than the
results from Ghaddar and Langlais, 2018 and Chiu and Nichols, 2016. We did not tune the most
hyper-parameter values and just borrowed from the previous works. We think our model is open to be
further improved by thoroughly tuning the hyper-parameter values [41].

Figure 7. The comparison between the character-level CNN-based and LSTM-based word encodings in
our delayed combination model. The result shows that the LSTM approach is better on the CoNLL2003
while the CNN approach is very slightly better on the OntoNotes5.0.

Table 5. Comparison between our work and previous early combination model with the pre-trained
word embedding and the character-level word encoding.

Work Model (Character-Level) F1 CoNLL 2003 F1 DeLFT’s F1 OntoNotes 5.0

Lample et al. [2] BiLSTM-CRF(CNN) 90.94 90.75 -
Ma and Hovy [3] BiLSTM-CRF (LSTM) 91.21 90.73 -
Chiu and Nichols [5] BiLSTM (CNN) 90.91 !* 89.23 86.28 !*
Rei et al. [4] BiLSTM (LSTM) 84.09 - -
Liu et al. [30] BiLSTM (LSTM) 91.71 - -
Ghaddar and Langlais [33] BiLSTM (CNN) 90.52 - 86.57
Le and Burtsev [34] BiLSTM (CNN) 90.60 - -

Ours BiLSTM-CRF (LSTM) 90.79 - 87.84 *
BiLSTM-CRF (CNN) 90.56 - 87.87 *

! Chiu and Nichols, 2016 incorporated incorporated the development set as a part of training data.
Consequently, the result cannot be directly compared with our model. * indicates that the model used
additional preprocessing on the dataset before training and testing.

5.2. The Model Equipped with Our Dictionary Representation

Before evaluating our model with dictionary representation, we first checked the coverage of the
collected list of named entities on the two target datasets to assess whether collected names are enough
or not for the datasets. The coverages by each named entity (NE) type of CoNLL 2003 and OntoNotes
5.0 are given in Tables 6 and 7, respectively.

Table 6. The coverage of the dictionary on the CoNLL2003 dataset.

CoNLL 2003 Begin-Tag Inside-Tag

Person 84.19% 94.91%
Organization 86.64% 76.56%
Location 76.45% 89.78%
Miscellaneous 6.57% 2.40%

The percentage in the tables indicates that those ratios of named entity tokens of each type were
found in the collected dictionary. On the CoNLL 2003, the dictionary covers well the first three types of
names but only a small ratio of miscellaneous typed entities is covered. On the OntoNotes 5.0 dataset,
only four types of names such as Person, Facility, Organization and GPE are well covered (i.e., over 50%).

Appl. Sci. 2020, 10, 7557 14 of 22

Table 7. The coverage of the dictionary on the OntoNotes5.0 dataset.

OntoNotes 5.0 Begin-Tag Inside-Tag

Person 61.59% 78.85%
Norp 15.35% 19.64%
Facility 69.87% 76.72%
Organization 76.32% 86.32%
Product 23.14% 48.39%
Event 42.77% 47.17%
Work of art 52.36% 71.92%
Law 28.00% 54.72%
Location 75.57% 48.59%
GPE 70.09% 77.20%
Language 46.65% 0.00 %

As explained in Section 3.1, we built up two kinds of dictionaries: one distinguishes begin and
inside tokens in a named entity while the other does not. After combining this dictionary feature
with our model at the delayed position, we evaluated our model to show the effectiveness of the
dictionary feature.

Table 8 shows the comparison of our models with and without the CNN-based dictionary
representation and also compares the two kinds of dictionaries with or without Begin-Inside (BI)
tags. On the CoNLL 2003, both of the two dictionary representations (with and without BI tags)
could improve significantly the F1 score by +0.34% and +0.45%, respectively. On the OntoNotes
5.0, the dictionary without BI tags could improve the F1 score by +0.20% although the dictionary
representation with BI tags rather lowered the F1 score by −0.30%.

Table 8. The comparison of our models with and without dictionary representation.

Dictionary
Model Dataset Without Dic With BI Tags Without BI Tags

Delayed-BiLSTM-CRF (FT + LSTM + DIC) CoNLL 2003 90.79 91.13 91.24
Delayed-BiLSTM-CRF (FT + CNN + DIC) OntoNote 5.0 87.87 87.57 88.07

From this result, we could say that the CNN-based dictionary representation could improve the
F1 score. Further analysis lets us find that our dictionary effectively classified the type of a word
especially when the context of the word is not sufficient. For example, the named entities in one-word
sentences (e.g., ‘England’), which are often found on CoNLL 2003 dataset, cannot be correctly predicted
only using the Recurrent Neural Network (RNN)-typed network because they have no contextual
information [43]. However, our CNN-based dictionary representation could predict them correctly.

Commonly on the two datasets, we can notice that the dictionary without BI tags shows a better
F1 score. We think this result might be caused by the following two reasons: tag mismatches and many
ambiguous words. First, the ‘tag mismatches’ are very often found in between the dictionary with BI
tags and the CoNLL 2003 dataset, especially for Person. We may think that a given name of a person
is generally classified with a begin tag, whereas a family name is typically assigned with an inside
tag. However, in the dataset of real text, it is very common to refer to a person by only his/her family
name without giving a given name. So, family names are assigned both begin and inside tags in the
dataset. The most collected names were in the full form of names and the dictionary made from them
often caused such tag mismatches and, as a result, degraded the performance.

Secondly, the ‘ambiguous words’ are very often found in the dictionary with BI tags for OntoNotes
5.0. For example, ‘Hong’ is a word found in various named entities, such as FACILITY: ‘Hong Kong
International Airport’, GPE: ‘Hong Kong’, EVENT: ‘Hong Kong Jewish Film Festival’, WORK_OF_ART:
‘Hong Kong Garden’, PERSON: ‘Hong Chang’, ‘Chin Hong Goh’, LOCATION: ‘Disney Hong Kong’.
When building the dictionary with BI tags up, ‘Hong’ is classified with B-FACILITY, B-GPE, B-EVENT,

Appl. Sci. 2020, 10, 7557 15 of 22

B-WORK_OF_ART, B-PERSON, I-PERSON, and I-LOCATION tags. This information is used to create a
dictionary representation of the word ‘Hong’. Like this, many ambiguous words are incorrectly encoded
into dictionary representations, among which some adjacent dictionary representations may form unseen
patterns that never occurred in the training set but that could be found in the test set. As a result,
those representations may pose a problem in that they drastically reduce the performance. This result is
similar to that in the earlier work [44].

We also compared our model to the previous similar dictionary-enabled works to show the
feasibility of our model. The comparison is given in Table 9. On the CoNLL 2003, our model could
achieve a better F1 score than that of Huang et al., 2015 and Wu et al., 2018 but was worse than that of
Chiu and Nichols, 2016 and Ghaddar and Langlais, 2018. However, Chiu and Nichols, 2016 trained
their model by merging the validation data with the training data and this could lead to improve the F1
score. Ghaddar and Langlais, 2018 used the lexical similarity (LS) embedding which was pre-trained
from fined-grained named entity list and Wikipedia text. The LS embedding was well-organized than
the existing dictionaries and could lead to improve the F1 score by +1.21%.

In contrast, the OntoNotes 5.0 dataset, our model could achieve better F1 score than those of Chiu
and Nichols, 2016 and Ghaddar and Langlais, 2018 even though Chiu and Nichols, 2016 used both
training and validation data for training their model and Ghaddar and Langlais, 2018 applied the
LS embedding.

Table 9. The comparison of our model with the previous similar dictionary-enabled works.

Work Pre-Trained
Embedding

Character
Level

Word
Level Hybrid Model F1 CoNLL 2003 F1 OntoNotes 5.0

Huang et al. [6] SENNA - Spelling,
n-gram

Gazetteers - 90.10 -

Chiu and Nichols [5] SENNA CNN CAP Lexicons Softmax 91.62 !∗ 86.36 !∗

Wu et al. [32] GloVe 6B-300D CNN POS Gazetteers Neural CRF 91.06 -
Wu et al. [32] Glove 6B-300D CNN POS,

SpaCy
(CAP)

Gazetteers Neural CRF 91.89 -

Ghaddar and
Langlais

[33] SSKIP and LS
representation

LSTM CAP Lexical
Similarity Vector

BiLSTM CRF 91.73 87.95

Ours FastText LSTM - CNN dictionary BiLSTM CRF 91.24 -
FastText CNN - CNN dictionary BiLSTM CRF - 88.07 *

! Chiu and Nichols, 2016 incorporated the development set as a part of training data. Consequently, the result
cannot be directly compared with our model. * indicates that the model used additional preprocessing on the
dataset before training and testing.

5.3. The Model Additionally Equipped with the ELMO Encoding

Our model is finally combined with the separate bidirectional LSTM network of the ELMo
embedding at the delayed position (The OntoNotes5.0 dataset couldn’t be used for training our model
with ELMo encoding because high-end GPUs like V100 were not available within a limited duration.).
On the CoNLL 2003 dataset, we checked the effect of the ELMo encoding on all variants of our model
according to all possible combinations with the two kinds of character-level word encodings and the
two kinds of dictionary representations.

Figure 8. The performance of our model when combined with the ELMo network at the delayed position.

Appl. Sci. 2020, 10, 7557 16 of 22

The result is shown in Figure 8. Our model could achieve the highest F1 score, 92.49%,
when we combined our model with LSTM-based word encoding, dictionary representation without
BI tags, and the bidirectional LSTM-based ELMo encoding. The bidirectional LSTM-based ELMo
encoding could consistently improve the F1 score of all four variants of our model by the range of
[+1.12%, +1.29%].

We also compared our model equipped with the ELMo encoding to the previous works having
contextual embedding as features of their models. This is given in Table 10. Our model could achieve
a better F1 score than all the previous works used ELMo as one of their features, such as Peter et al.,
2018, Han et al., 2019, Xia et al., 2018, and Jie and Lu, 2018. This result could convince us that our
delayed combination model is effective in NER task. Our model still shows a little higher F1 score than
the model used BERT-Base (Devlin et al., 2019) but other previous works used BERT-Large or further
tuned LM embedding still outperform our model. We think that our model can be further improved
by combining with BERT-Large or fine-tuned LM embeddings instead of ELMo.

Table 10. The comparison of our model with the previous works having contextual embeddings
(ELMO and BERT) as their features.

Work Pre-Trained
Embedding

Character
Level

Word
Level Hybrid Model F1 CoNLL 2003 F1 OntoNotes 5.0

Peter et al. [18] ELMO - - - BiLSTM CRF 92.22 -
Han et al [45] ELMO (DELTA) - - - - 92.20 -
Xia et al. [46] Word Emb,

ELMO
- POS - MGNER 92.28 -

Jie and Lu [35] GloVe 6B-100D,
ELMO

- - Dependency DGLSTM
CRF

92.40 88.52

Devlin et al. [47] BERT-BASE - - - - 92.40 -
Devlin et al. [47] BERT-LARGE - - - - 92.80 -
Luo et al. [48] BERT - - - Hierarchical 93.37 90.30
Li et al. [49] BERT - - - MRC+DSC 93.33 92.07
Baevski et al. [50] Cloze-style LM

embedding
CNN - - CNN Large

and fine-tune
93.50 -

Ours FastText, ELMO LSTM - CNN

dictionary BiLSTM CRF 92.49 -

6. Conclusions and Future Works

For the success of various deep-learning methods in NER task, most researchers have
tested various feature-encoding techniques such as pre-trained word embedding, contextual
embedding, character-level CNN or LSTM-based word encoding, word pattern-based encoding and
dictionary-based encoding, and incorporated them into the deep learning networks. When more than
one feature encoding is used, most previous works combined them at the embedding layer and then
passed through the deep neural network to find the best label sequences in the output layer. However,
when such an early combination of various feature encodings passes through the deep neural networks
like RNN, much useful information could be mixed or shrunk by other more-dominant information
and this could consequently limit the improvement in performance.

To avoid such limitations, we introduced the delayed combination model of various promising
feature encodings. This model selected FastText as the pre-trained word embedding, ELMo as the
contextual embedding and character-level CNN or LSTM word encoding, and designed CNN-based
sentence encoding using a dictionary, for feature encoding. We also selected the most common
bidirectional LSTM network for learning contextual information from the train set. Among those
feature encodings, FastText and ELMo embeddings were passed through its own separate bidirectional
LSTM blocks while the remaining feature encodings were bypassed and combined with the outputs of
the bidirectional LSTM blocks.

Through several experiments, we showed that our delayed combination model outperforms the
early combination one and also showed the feasibility of our model by comparing our results with the
corresponding previous works.

Appl. Sci. 2020, 10, 7557 17 of 22

As future work, we intend to extend this model by (1) building up a dictionary better-organized
and learned from the external resources, (2) incorporating BERT-Large or other fine-tuned LM
embeddings into our model, and applying to other non-English languages as well as other fine-grained
NER task.

Author Contributions: Conceptualization, S.L. and C.R.; methodology, C.R.; software, C.R.; validation, S.L., H.J.J.
and C.R. ; formal analysis, C.R.; investigation, H.J.J.; resources, H.J.J and C.R.; data curation, C.R.; writing—original
draft preparation, C.R; writing—review and editing, S.L. and H.J.J; visualization, C.R.; supervision, S.L.; project
administration, S.L.; funding acquisition, S.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by Government-wide R&D Fund project for infectious disease research
(GFID), Korea, under grant number HG18C0093.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Hyperparameters Tuning

Reimer et al. [41] noted that there is a high impact of hyper-parameters (dropout, optimizer,
word embedding, and a number of stacked layers) on the accuracy of the bidirectional LSTM CRF.
We used the two-stacked bidirectional LSTM CRF model to find optimal hyper-parameters of dropout,
optimizer, and word embedding. Hyper-parameter tuning is discussed in the four subsections below.

1. Dropout

Dropout is a technique that can be used to reduce over-fitting and to improve the model’s
performance [51–53]. Brownlee [54] suggested that “normally, a small dropout value of 0.2–0.5
of neurons gives a good starting point.” For our dropout experiment, dropouts were applied to
three positions: (1) inside the bidirectional LSTM layer within a recurrence loop, (2) after the last
output values of the bidirectional LSTM layer, and (3) before the outputs are passed through the
CRF layer.

The Figure A1 shows the experiment with different dropout sets. We repeat the experiment five times
with different random seeds seeds and averaged them. The dropout value 0.5 of neurons provides
our best result. The resulting rate is similar to that in the earlier work by Srivastava et al., 2014 [51],
suggesting that the 0.5 dropout is be close to the optimal value for a wide range of neural networks
and multiple tasks.

Figure A1. F1 score on NER with difference dropouts. The dropout value of 0.5 achieves the best score
in this task (CoNLL 2003).

2. Optimizer with learning Rate

The optimizer determines the impact of the gradients on the parameter that we study the
optimizers [55] (SGD, Adam, Nadam, RMSProp, and Adagrad) with variant learning rates that are
derived from default values provided by Keras (https://keras.io/api/optimizers). In particular,
we utilize the set of 0.009, 0.01, 0.02, 0.03, 0.04 for SGD and Adagrad and the set of 0.0009, 0.001, 0.002,
0.003, 0.004 for Adam, Nadam, RMSprop and Adamax. Table A1 shows the optimizers’ performance
with various learning rates on the CoNLL 2003 and OntoNotes 5.0 datasets. The dropout was fixed
at 0.5.

https://keras.io/api/optimizers

Appl. Sci. 2020, 10, 7557 18 of 22

For CoNLL 2003, the average performances of Nadam and Adagrad are first and second highest
and achieve rates 89.321% and 89.316%, respectively. In another observation, Adamax(lr = 0.001)
shows the best rate at 89.50%. However, it is only 0.01 different from Nadam(lr = 0.002). Earlier
work [41] claims that Nadam converges most rapidly. It requires only a small training epoch to
achieve better performance. Therefore, we used Nadam with a learning rate of 0.002 and a 0.5
dropout value for the next experiment on the CoNLL 2003 dataset.

Table A1. Five times F1 scores of the optimizer, in this case SGD, Adam, Nadam, RMSprop, Adagrad,
and Adamax.

Learning Rate Multiplied by Alpha (α)
Dataset Mini-Batch Optimizer (α) 0.09 0.1 0.2 0.3 0.4 Average SD *

Conll 2003 200 SGD (α =0.1) 89.40 89.18 89.34 89.12 89.12 89.232 0.13
Adam (α =0.01) 89.17 89.23 89.45 89.17 88.94 89.190 0.18
Nadam (α =0.01) 89.17 89.39 89.49 89.34 89.22 89.321 0.13
RMSprop (α =0.01) 89.09 89.11 89.30 89.30 89.06 89.172 0.12
Adagrad (α =0.1) 89.14 89.48 89.40 89.23 89.34 89.316 0.13
Adamax (α =0.01) 89.24 89.50 89.27 89.34 89.21 89.313 0.12

OntoNotes 5.0 200 Nadam (α =0.01) 86.78 87.08 86.83 86.28 86.03 86.599 0.43
* Standard deviation (SD or Std Dev) is a measure of variation between values in a set of data.

An earlier experimental result [41] related to our CoNLL 2003 experiment recommends Nadam
as an optimal hyper-parameter. For OntoNotes 5.0, we study the effect of Nadam with various
learning rates. From the result in Table A1 the 0.001 learning rate provided our best F1 score.
Accordingly, we chose Nadam(lr = 0.001) as an optimal hyper-parameter for the next experiment
on the OntoNotes 5.0 dataset.

3. Pre-trained Word Embedding

We compared the GloVe 840B embedding and FastText–cc.en.300.vec and cc.en.300.bin. For FastText,
the experiment used two options: (1) cc.en.300.vec (without subwords), (2) cc.en.300.bin (with subwords).

In this experiment, each pre-trained embedding was used to convert any word from the target
dataset for representation and to pass it through the two-stacked bidirectional LSTM CRF model
for predicting the named entity tags. Table A2 shows the experimental results of CoNLL 2003 and
OntoNotes 5.0.

Table A2. Five times F1 scores of the pre-trained word embedding with two-stacked bidirectional
LSTM. From the result, we achieve the best F1 score when using FastText with subwords.

Five Times Validation
Dataset Mini-Batch Embedding 1 2 3 4 5 Average SD

Conll 2003 200 GloVe 89.96 89.90 89.94 90.26 90.24 90.06 0.18
FastText Vec 89.44 89.70 89.79 89.44 89.93 89.66 0.22
FastText Bin 90.05 90.30 90.20 89.97 90.17 90.14 0.13

OntoNotes 5.0 200 GloVe 87.12 87.44 87.42 87.42 87.61 87.40 0.18
FastText Vec 87.49 87.49 87.44 87.52 87.40 87.47 0.05
FastText Bin 87.68 87.43 87.74 87.58 87.58 87.60 0.12

The results from the CoNLL 2003 dataset show that the average F1 score of FastText (90.14%)
with subwords higher than that of the GloVe (90.06%) experiment. For OntoNotes 5.0 experiment,
the result is similar to that of CoNLL 2003. The F1 score (at 87.60%) is increased when using
FastText with subwords.

Owing to the similar result on the two datasets, we assume that the model performance is
improved when (1) the vocabulary in word embedding matches the word in the dataset, and (2)
the subword (n-gram) of FastText is used to generate embeddings for rare words.

Appl. Sci. 2020, 10, 7557 19 of 22

4. Number of bidirectional LSTM layers

Currently, the stacked LSTMs are used as a standard technique for challenging sequence
predictions [56]. Some previous works [57–59] present the multiple stacked bidirectional LSTMs
in a neural network. They show that the classification performance can be improved when using
this technique. Furthermore, there is some related theoretical support: a deep hierarchical model
is more effective at representing than a shallow model [30,60]. Due to the stacked processes,
when the first bidirectional LSTM layer provides an output vector, this output vector provides
more complex patterns for the next layer, enabling us to capture information on a different scale.

Cai et al. [57] suggests the appropriate amount of multi-layer bidirectional LSTM help to
understand the relationship between words and words at a deep level. However, when the
representation flows through stacked layers, the risk arises that the representation information
will be lost [61], and it may also reduce the model performance. Hence, we examined two
or three-stacked bidirectional LSTM to find the number of layers most suitable for our model.
The comparative of F1 score results are shown in Figure A2 the model shows higher performance
when using the three-stacked bidirectional LSTM. Consequently, we assume that three stacks are
able to capture more information for our model.

In contrast, two-stacked bidirectional LSTMs are applied in earlier experiments [2,23,35]. However,
these experiments used different batch sizes, optimizers and lower dimensional word embedding
compared to our model. Accordingly, we assume that the number of bidirectional layers depends
on the hyper-parameters, especially the input size, batch size, optimization and hidden unit [62]
of each model.

Figure A2. Comparison between two and three stacked bidirectional LSTM CRFs. The results show
that three stacked bidirectional LSTM CRFs perform well on both CoNLL 2003 and OntoNotes 5.0.

References

1. Li, J.; Sun, A.; Han, J.; Li, C. A Survey on Deep Learning for Named Entity Recognition. arXiv 2018, arXiv:1812.09449.
2. Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural architectures for named entity

recognition. arXiv 2016, arXiv:1603.01360.
3. Ma, X.; Hovy, E. End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv 2016, arXiv:1603.01354.
4. Rei, M.; Crichton, G.K.; Pyysalo, S. Attending to characters in neural sequence labeling models. arXiv 2016,

arXiv:1611.04361.
5. Chiu, J.P.; Nichols, E. Named entity recognition with bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist.

2016, 4, 357–370. [CrossRef]
6. Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF models for sequence tagging. arXiv 2015, arXiv:1508.01991.
7. Khattak, F.K.; Jeblee, S.; Pou-Prom, C.; Abdalla, M.; Meaney, C.; Rudzicz, F. A survey of word embeddings

for clinical text. J. Biomed. Inform. X 2019, 4, 100057. [CrossRef]
8. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.

arXiv 2013, arXiv:1301.3781.
9. Le, Q.; Mikolov, T. Distributed representations of sentences and documents. arXiv 2014, arXiv:1405.4053.
10. Levy, O.; Goldberg, Y. Linguistic regularities in sparse and explicit word representations. In Proceedings

of the Eighteenth Conference on Computational Natural Language Learning, Baltimore, MD, USA,
26–27 June 2014; pp. 171–180.

http://dx.doi.org/10.1162/tacl_a_00104
http://dx.doi.org/10.1016/j.yjbinx.2019.100057

Appl. Sci. 2020, 10, 7557 20 of 22

11. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases
and their compositionality. arXiv 2013, arXiv:1310.4546.

12. Mikolov, T.; Yih, W.t.; Zweig, G. Linguistic regularities in continuous space word representations.
In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Atlanta, Georgia, 9–14 June 2013; pp. 746–751.

13. Sugawara, H.; Takamura, H.; Sasano, R.; Okumura, M. Context representation with word embeddings
for wsd. In Proceedings of the Conference of the Pacific Association for Computational Linguistics, Bali,
Indonesia, 19–21 May 2015; pp. 108–119.

14. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar,
25–29 October 2014, pp. 1532–1543.

15. Du, M.; Vidal, J.; Al-Ibadi, Z. Using Pre-trained Embeddings to Detect the Intent of an Email. In Proceedings
of the ACIT 2019: Proceedings of the 7th ACIS International Conference on Applied Computing and
Information Technology, Honolulu, HI, USA, 29–31 May 2020; doi:10.1145/3325291.3325357. [CrossRef]

16. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information.
Trans. Assoc. Comput. Linguist. 2017, 5, 135–146. [CrossRef]

17. Almeida, F.; Xexéo, G. Word embeddings: A survey. arXiv 2019, arXiv:1901.09069.
18. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized

word representations. arXiv 2018, arXiv:1802.05365.
19. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining

for language understanding. arXiv 2019, arXiv:1906.08237.
20. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V.

Roberta: A robustly optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
21. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper

and lighter. arXiv 2019, arXiv:1910.01108.
22. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing

(almost) from scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537.
23. Zhai, Z.; Nguyen, D.Q.; Verspoor, K. Comparing CNN and LSTM character-level embeddings in

BiLSTM-CRF models for chemical and disease named entity recognition. arXiv 2018, arXiv:1808.08450.
24. Yang, Z.; Salakhutdinov, R.; Cohen, W. Multi-task cross-lingual sequence tagging from scratch. arXiv 2016,

arXiv:1603.06270.
25. Liu, L.; Shang, J.; Ren, X.; Xu, F.F.; Gui, H.; Peng, J.; Han, J. Empower sequence labeling with task-aware

neural language model. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
New Orleans, LA, USA, 2–7 February 2018.

26. Eftimov, T.; Koroušić Seljak, B.; Korošec, P. A rule-based named-entity recognition method for knowledge
extraction of evidence-based dietary recommendations. PLoS ONE 2017, 12, e0179488. [CrossRef]

27. Jonnagaddala, J.; Jue, T.R.; Chang, N.W.; Dai, H.J. Improving the dictionary lookup approach for disease
normalization using enhanced dictionary and query expansion. Database 2016, 2016, baw112. [CrossRef]
[PubMed]

28. Song, C.H.; Lawrie, D.; Finin, T.; Mayfield, J. Gazetteer generation for neural named entity recognition.
In Proceedings of the Thirty-Third International Flairs Conference, North Miami Beach, FL, USA, 17–20 May 2020.

29. Tsuruoka, Y.; Tsujii, J. Improving the performance of dictionary-based approaches in protein name
recognition. J. Biomed. Inform. 2004, 37, 461–470. [CrossRef] [PubMed]

30. Liu, Z.; Yang, M.; Wang, X.; Chen, Q.; Tang, B.; Wang, Z.; Xu, H. Entity recognition from clinical texts via
recurrent neural network. BMC Med. Inform. Decis. Mak. 2017, 17, 67. [CrossRef] [PubMed]

31. Gridach, M. Character-level neural network for biomedical named entity recognition. J. Biomed. Inform.
2017, 70, 85–91. [CrossRef] [PubMed]

32. Wu, M.; Liu, F.; Cohn, T. Evaluating the utility of hand-crafted features in sequence labelling. arXiv 2018,
arXiv:1808.09075.

33. Ghaddar, A.; Langlais, P. Robust lexical features for improved neural network named-entity recognition.
arXiv 2018, arXiv:1806.03489.

34. Le, T.; Burtsev, M. A deep neural network model for the task of Named Entity Recognition. Int. J. Mach.
Learn. Comput. 2019, 9, 8–13.

https://doi.org/10.1145/3325291.3325357
http://dx.doi.org/10.1145/3325291.3325357
http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.1371/journal.pone.0179488
http://dx.doi.org/10.1093/database/baw112
http://www.ncbi.nlm.nih.gov/pubmed/27504009
http://dx.doi.org/10.1016/j.jbi.2004.08.003
http://www.ncbi.nlm.nih.gov/pubmed/15542019
http://dx.doi.org/10.1186/s12911-017-0468-7
http://www.ncbi.nlm.nih.gov/pubmed/28699566
http://dx.doi.org/10.1016/j.jbi.2017.05.002
http://www.ncbi.nlm.nih.gov/pubmed/28502909

Appl. Sci. 2020, 10, 7557 21 of 22

35. Jie, Z.; Lu, W. Dependency-guided LSTM-CRF for named entity recognition. arXiv 2019, arXiv:1909.10148.
36. Mikolov, T.; Deoras, A.; Povey, D.; Burget, L.; Černockỳ, J. Strategies for training large scale neural

network language models. In Proceedings of the 2011 IEEE Workshop on Automatic Speech Recognition &
Understanding, Waikoloa, HI, USA, 11–15 December 2011; pp. 196–201.

37. Ilić, S.; Marrese-Taylor, E.; Balazs, J.A.; Matsuo, Y. Deep contextualized word representations for detecting
sarcasm and irony. arXiv 2018, arXiv:1809.09795.

38. Dong, G.; Liu, H. Feature Engineering for Machine Learning and Data Analytics; CRC Press: New York, NY,
USA, 2018.

39. Sang, E.F.; De Meulder, F. Introduction to the CoNLL-2003 shared task: Language-independent named entity
recognition. arXiv 2003, arXiv:cs/0306050.

40. Pradhan, S.; Moschitti, A.; Xue, N.; Ng, H.T.; Björkelund, A.; Uryupina, O.; Zhang, Y.; Zhong, Z.
Towards Robust Linguistic Analysis using OntoNotes. In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, Sofia, Bulgaria, 8–9 August 2013; Association for Computational
Linguistics: Sofia, Bulgaria, 2013; pp. 143–152.

41. Reimers, N.; Gurevych, I. Optimal hyperparameters for deep lstm-networks for sequence labeling tasks.
arXiv 2017, arXiv:1707.06799.

42. DeLFT. 2018–2020. Available online: https://github.com/kermitt2/delft (accessed on 30 July 2020).
43. Frank, S.L. Strong systematicity in sentence processing by an echo state network. In Proceedings of the

International Conference on Artificial Neural Networks; Berlin/Heidelberg, Germany, 10–14 September
2006; pp. 505–514.

44. Ponomareva, N.; Thelwall, M. Biographies or blenders: Which resource is best for cross-domain sentiment
analysis? In Proceedings of the International Conference on Intelligent Text Processing and Computational
Linguistics, New Delhi, India, 11–17 March 2012; pp. 488–499.

45. Han, K.; Chen, J.; Zhang, H.; Xu, H.; Peng, Y.; Wang, Y.; Ding, N.; Deng, H.; Gao, Y.; Guo, T.; et al. DELTA:
A DEep learning based Language Technology plAtform. arXiv 2019, arXiv:1908.01853.

46. Xia, C.; Zhang, C.; Yang, T.; Li, Y.; Du, N.; Wu, X.; Fan, W.; Ma, F.; Yu, P. Multi-grained named entity
recognition. arXiv 2019, arXiv:1906.08449.

47. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv 2018, arXiv:1810.04805.

48. Luo, Y.; Xiao, F.; Zhao, H. Hierarchical Contextualized Representation for Named Entity Recognition. arXiv
2019, arXiv:1911.02257.

49. Li, X.; Sun, X.; Meng, Y.; Liang, J.; Wu, F.; Li, J. Dice Loss for Data-imbalanced NLP Tasks. arXiv 2019,
arXiv:1911.02855.

50. Baevski, A.; Edunov, S.; Liu, Y.; Zettlemoyer, L.; Auli, M. Cloze-driven pretraining of self-attention networks.
arXiv 2019, arXiv:1903.07785.

51. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

52. Gal, Y.; Ghahramani, Z. A theoretically grounded application of dropout in recurrent neural networks. arXiv
2016, arXiv:1512.05287.

53. Brownlee, J. Machine Learning Mastery with Python: Understand Your Data, Create Accurate Models and
Work Projects End-To-End. 2016. Available online: https://machinelearningmastery.com/machine-learning-
with-python (accessed on 30 July 2020).

54. Brownlee, J. Deep Learning for Natural Language Processing: Develop Deep Learning Models for Your
Natural Language in Python. 2017. Available online: https://machinelearningmastery.com/deep-learning-
for-nlp (accessed on 30 July 2020).

55. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
56. Brownlee, J. Long Short-Term Memory Networks with Python: Develop Sequence Prediction Models with

Deep Learning. 2017. Available online: https://https://machinelearningmastery.com/lstms-with-python
(accessed on 30 July 2020).

57. Cai, L.; Zhou, S.; Yan, X.; Yuan, R. A stacked BiLSTM neural network based on coattention mechanism for
question answering. Comput. Intell. Neurosci. 2019, 2019, 9543490. [CrossRef] [PubMed]

58. Wang, C.; Yang, H.; Meinel, C. Image captioning with deep bidirectional LSTMs and multi-task learning.
ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2018, 14, 1–20. [CrossRef]

https://github.com/kermitt2/delft
https://machinelearningmastery.com/machine-learning-with-python
https://machinelearningmastery.com/machine-learning-with-python
https://machinelearningmastery.com/deep-learning-for-nlp
https://machinelearningmastery.com/deep-learning-for-nlp
https://https://machinelearningmastery.com/lstms-with-python
http://dx.doi.org/10.1155/2019/9543490
http://www.ncbi.nlm.nih.gov/pubmed/31531011
http://dx.doi.org/10.1145/3115432

Appl. Sci. 2020, 10, 7557 22 of 22

59. Liu, T.; Yu, S.; Xu, B.; Yin, H. Recurrent networks with attention and convolutional networks for sentence
representation and classification. Appl. Intell. 2018, 48, 3797–3806. [CrossRef]

60. Bengio, Y. Learning Deep Architectures for AI; Now Publishers Inc.: Boston, MA, USA, 2009.
61. Godin, F.; Dambre, J.; De Neve, W. Improving language modeling using densely connected recurrent neural

networks. arXiv 2017, arXiv:1707.06130.
62. Ding, Z.; Xia, R.; Yu, J.; Li, X.; Yang, J. Densely connected bidirectional lstm with applications to sentence

classification. arXiv 2017, arXiv:1802.00889.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10489-018-1176-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Distributed Representations for Input
	Pre-Trained Word Embedding
	Contextual Embedding
	Word-Level and Character-Level Representations
	Dictionary Representation

	Model Architecture for NER Task

	Delayed Combination of Encoded Features
	Feature Encodings
	Delayed Combination

	Experimental Setup
	Datasets
	Hyperparameter Setup
	Model Setup

	Results and Discussion
	Comparison between the Delayed and Early Combination Models
	The Model Equipped with Our Dictionary Representation
	The Model Additionally Equipped with the ELMO Encoding

	Conclusions and Future Works
	The Hyperparameters Tuning
	References

