
applied
sciences

Article

Multi-Agent Simulation Environment for Logistics
Warehouse Design Based on Self-Contained Agents

Takumi Kato * and Ryota Kamoshida

Center for Technology Innovation—Artificial Intelligence, Hitachi, Ltd. Research & Development Group, 1-280,
Higashi-Koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan; ryota.kamoshida.vw@hitachi.com
* Correspondence: takumi.kato.uw@hitachi.com

Received: 9 August 2020; Accepted: 23 October 2020; Published: 27 October 2020
����������
�������

Abstract: We propose a multi-agent simulation environment for logistics warehouses. Simulation is a
crucial part of designing industrial systems, such as logistics warehouses. A warehouse is a multi-agent
system (MAS) that consists of various autonomous subsystems with robots, material-handling
equipment, and human workers. It is generally difficult to analyze the performance of a MAS
thus, it is important to model a warehouse and conduct simulations to design and evaluate the
possible system configurations. However, the cost of modeling warehouses and modifying the
models is high because there are various components and interactions compared to conventional
multi-agent simulations. We proposed a self-contained agent architecture and message architecture
of a multi-agent simulation environment for logistics warehouses to reduce the simulation-model
development and modification costs. We quantitatively evaluated our environment in terms of
development costs by comparing such costs of our environment and a widely used multi-agent
simulation environment.

Keywords: multi-agent simulation; multi-agent system; self-contained; logistics warehouse;
autonomous; robots; material-handling equipment; modifiability

1. Introduction

Simulation is a crucial part of designing industrial systems such as logistics warehouses. A logistics
warehouse is modeled as a multi-agent system (MAS) that consists of various autonomous subsystems
with robots and material-handling equipment. It is generally difficult to analyze the performance
of a MAS; thus, it is important to model a warehouse and conduct simulations [1–3] to design and
evaluate the system configuration. There exist several multi-agent simulation environments, of which
NetLogo [4] is one of the most widely used.

There are an increasing number of logistics warehouses that have introduced the use of several
robots and material-handling equipment. Since e-commerce is growing rapidly, the order volume
of logistics warehouses has increased [5–7] worldwide. Despite the workload increase in logistics
warehouses, there is a labor-shortage problem [8] in several countries because of the decrease in the
number of working-age people. Therefore, there is a growing demand for logistics warehouses to
introduce robots and material-handling equipment to automate processes to increase productivity
without introducing additional human workers.

The development costs of a logistics warehouse simulation model are high because it includes the
development of various entities, such as different agents (e.g., material-handling equipment, robots,
and humans), the physical space that agents operate in, and the items and boxes that are processed
and shipped by the agents. Generally, a multi-agent simulator focuses on the simple agents and an
environment for analyzing the emergent behavior of agent systems. The development of a simulation

Appl. Sci. 2020, 10, 7552; doi:10.3390/app10217552 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-4369-9865
https://orcid.org/0000-0003-3269-0192
http://www.mdpi.com/2076-3417/10/21/7552?type=check_update&version=1
http://dx.doi.org/10.3390/app10217552
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 7552 2 of 20

model of a logistics warehouse is more complicated than ordinary multi-agent simulation in terms of
variation in behavior, complexity of the environment, etc.

The simulation model of a logistics warehouse requires high modifiability. In the process
of designing a logistics warehouse, it is necessary to estimate the productivity of the various
possible designs of the warehouse and choose the appropriate equipment in a reasonable
configuration (cooperation of subsystems, location of equipment, etc.) to achieve the design goals.
Since prototyping [9] and evaluation of a system configuration is key to effective designing of logistics
warehouses, low-cost development of simulation models and their modifiability are important.

There is a tradeoff between low-cost development and modifiability [10]. It is common to create
modules of simulation models and use/reuse them to lower development costs. Using large modules
that have several functionalities can greatly reduce the development burden. However, it is difficult
to anticipate the simulation requirements because the developers of the logistics warehouses need
to try several scenarios of warehouse designs. As the modules become larger, the possibility of the
modules cannot fit into the requirements become higher. However, smaller modules have less impact
on development cost reduction.

This research aims to provide support for designing and optimizing logistics warehouses by
reducing the burden on simulating and evaluating the possible designs to choose the best design
options. To realize the objective, we set this study’s goal to achieve both low-cost development and high
modifiability for logistics warehouses. We propose a simulation modeling environment to realize the
goal. To improve the ease of developing logistics warehouse simulation models, a simulation modeling
environment is needed that provides the common functionalities for logistics warehouse modeling
cost reduction, as well as the architecture that enhances modifiability for design considerations of
logistics warehouses.

The remainder of this paper is organized as follows. Section 2 describes the related work of
this paper. Section 3 explains the design and concept of our simulation modeling environment.
Section 4 describes the prototypical implementation of the proposed simulation modeling environment.
The comparison of development and modification cost of logistics warehouse simulation model is
described in Section 5. Section 6 concludes this paper.

2. Related Work

There are multi-agent simulation modeling environments [4,11–13] for general multi-agent
simulations. These environments provide users with the functions to define the simple data structure
and behaviors of agents. The focus of general multi-agent simulation modeling environments is
analyzing relatively simple multi-agent systems with emergence characteristics that consist of several
small agents. If developers try to simulate logistics warehouses using these environments, it is
necessary for the developers to have comprehensive knowledge of logistics warehouses, because it is
difficult to abstract the system of a logistics warehouse to analyze the desired characteristics. Since the
appropriate abstraction is key to realizing effective simulation models [14], the existing environments
are not useful for the non-experts of logistics warehouses.

There are designated simulation environments [6,7,15,16] for logistics warehouses.
Some environments (e.g., [6,7]) provide users with the functions to evaluate the performance
of a particular subsystem with high accuracy to evaluate and design the configuration of these
subsystems. These environments focus on subsystems, not an inter-subsystem’s overall performance
in a logistics warehouse. There are environments for simulating logistics warehouse with high
accuracy [15], however, the modeling requires highly detailed configuration with 3D CAD. Additionally,
it is difficult to incorporate the existing API (Application Programming Interface) for particular
material-handling equipment.

There exists research [17,18] on optimizing logistics warehouse based on multi-agent simulations.
For example, in [17], they focus on optimizing logistics warehouse, especially the number of automated
guided vehicles (AGVs) used to unload items from tracks. They propose a simulation framework to

Appl. Sci. 2020, 10, 7552 3 of 20

evaluate each scenario of the unloading task with a different number of AGVs. In the experiment,
they discovered that the performance is affected by the warehouse layout, not only the number of
AGVs. As this study implies, the simulated system’s key characteristics are often unclear at the
beginning of consideration. It is typically found out later in the experiment, and it induces the new
modification requirements. Since they do not provide a technique to ensure modifiability and low-cost
development capability, there is still a need to investigate both of them. There are studies based on
logistics network simulation using multi-agent simulation technologies [19,20]. However, the system
architecture of a logistics network is different from warehouses and difficult to apply to warehouse
simulation and optimization.

Given the related work on logistics warehouse simulation, we focused on the following features:

• Prototypical and modifiable implementation of inter-subsystems: Current simulation
environments focus on individual material-handling equipment behavior, the logistics warehouse’s
inter-subsystem simulation in detail, or prototypical multi-agent simulation of partial logistics
warehouse. We focused on prototypical (low development costs) and modifiable implementation of
a simulation model with multiple subsystems and material-handling equipment by incorporating
pre-defined messages and data structure.

• Not necessary to learn new syntax and interfaces: We only used the Python programming
language’s syntax for rule and data description. In practice, developers often choose a
programming language to model the target logistics warehouse from scratch. From a survey of
simulation modeling [21], the largest portion of users choose this approach. One of the most
significant reasons is that developers do not want to learn the new programming language’s syntax.

• Third party functions (APIs, software development kits (SDKs)) can be easily integrated into
the simulation model: As long as the desired API library or SDK is usable with the Python
programming language, our simulation environment can use the library without developing a
designated wrapper.

We summarize the basic comparison among the simulation environments in the above-mentioned
investigations. The environment [4] provides basic functions to implement multi-agent simulation
models, a visualization function, visual editing of a map, and a built-in function to visualize the value
transition of variables without extra programming but with GUI configurations. The environment [11]
also provides basic functions to implement multi-agent simulation models, visualization function of
simulation space, and function to visualize the simulation model’s values with a little programming.
It allows programming models in Java. The environment [12] supports the BDI architecture of agents,
and the representation of simulation space covers multiple application domains. The environment [13]
has a rich GUI to model the multi-agent system, and the functions are mostly focusing on the
simulation of society. The designated simulation modeling environments for logistics warehouses [6,7]
simulate a mobile fulfillment system (a.k.a. picking system), which is a part of a logistics warehouse.
The environment [15] is a commercial simulator for logistics warehouses that provide a rich 3D CAD
function to model the logistics warehouse in detail. The investigation [16] uses [6] for simulating a
multi-agent system of autonomous robots. The investigation [17] uses a Jason [22] that is a logic-based
agent-oriented programming language written in Java. It also supports BDI agent architecture.

3. Proposed Multi-Agent Simulation Modeling Environment for Logistics Warehouses

3.1. Strategy of Proposed Simulation Environment

As mentioned in Section 1, we focus on reducing development costs and achieving modifiability
of a multi-agent environment in a logistics warehouse simulation. We designed the multi-agent
simulation environment with following features to achieve the above objectives. The features are
explained in detail in the following subsections.

Appl. Sci. 2020, 10, 7552 4 of 20

• Self-contained architecture of agents representing entities in a logistics warehouse:
This architecture makes it easy for the model developer to add, replace, and modify the agents
in the environment. We made each agent self-contained and individually executable without
the need of installing a specific software development kit (SDK) and sharing information only
with messages.

• Unified message architecture and message primitives for a logistics warehouse: To reduce
the development costs of a logistics warehouse simulation model, we designed a unified
architecture of agent messages and pre-defined primitives to make the description of message
easier. Our simulation environment has a template of agents that has basic functionalities to
process messages with the pre-defined primitives, which reduces the development costs.

3.2. Multi-Agent Simulation Environment Architecture

The multi-agent system architecture of the proposed simulation environment is shown in
Figure 1. There are three types of agents, i.e., simulation, spatial-temporal and logging agent.
The only communication method among these agents is exchanging messages written in the agent
communication language. These agents can be running in different computing environments that
are networked together via TCP/IP. Since the idea of a performative is effective, the format of agent
message is based on KQML (Knowledge Query and Manipulation Language) [23] to ensure ease of
description, uniformity, and extensibility. FIPA-ACL [24] can also be utilized as the basic idea of using
a performative is inherited in the protocol.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 20

of installing a specific software development kit (SDK) and sharing information only with
messages.

• Unified message architecture and message primitives for a logistics warehouse: To reduce the
development costs of a logistics warehouse simulation model, we designed a unified
architecture of agent messages and pre-defined primitives to make the description of message
easier. Our simulation environment has a template of agents that has basic functionalities to
process messages with the pre-defined primitives, which reduces the development costs.

3.2. Multi-Agent Simulation Environment Architecture

The multi-agent system architecture of the proposed simulation environment is shown in Figure
1. There are three types of agents, i.e., simulation, spatial-temporal and logging agent. The only
communication method among these agents is exchanging messages written in the agent
communication language. These agents can be running in different computing environments that are
networked together via TCP/IP. Since the idea of a performative is effective, the format of agent
message is based on KQML (Knowledge Query and Manipulation Language) [23] to ensure ease of
description, uniformity, and extensibility. FIPA-ACL [24] can also be utilized as the basic idea of
using a performative is inherited in the protocol.

Figure 1. Overview of proposed multi-agent simulation environment.

The simulated entities, such as an automated guided vehicle (AGV), material-handling
equipment, and human workers are abstracted as simulation agent. The simulated entities without
physical embodiment, such as a warehouse management system (WMS), can also be implemented as
a simulation agent. The space and time of the simulation target is represented as a spatial-temporal
agent that stores the information of logistics warehouse layouts, each area’s attributes, and the
physical location of the simulation agents mentioned above. Simulation agents send messages to the
spatial-temporal agent to simulate operations (e.g., moving an object) and move themselves.

All the messages exchanged among simulation agents and the spatial-temporal agents are
intercepted by a logging agent. Simulation agents can also log the desired information by sending a
message to the logging agent in the designated format at any given simulation time. This method of
logging simulation helps users to collect and analyze the simulation results in a distributed
environment.

The lifecycle of a simulation is as follows. A simulation starts when the agent workplace, logging
agent, simulation agents and then spatial-temporal agent are activated in that order. The simulation
ends when the simulation agents terminate themselves according to the embedded knowledge of the
simulation, and then the spatial-temporal agent, logging agent, and the agent workplace terminate
themselves in that order.

Figure 1. Overview of proposed multi-agent simulation environment.

The simulated entities, such as an automated guided vehicle (AGV), material-handling equipment,
and human workers are abstracted as simulation agent. The simulated entities without physical
embodiment, such as a warehouse management system (WMS), can also be implemented as a simulation
agent. The space and time of the simulation target is represented as a spatial-temporal agent that stores
the information of logistics warehouse layouts, each area’s attributes, and the physical location of the
simulation agents mentioned above. Simulation agents send messages to the spatial-temporal agent to
simulate operations (e.g., moving an object) and move themselves.

All the messages exchanged among simulation agents and the spatial-temporal agents are
intercepted by a logging agent. Simulation agents can also log the desired information by sending a
message to the logging agent in the designated format at any given simulation time. This method of
logging simulation helps users to collect and analyze the simulation results in a distributed environment.

Appl. Sci. 2020, 10, 7552 5 of 20

The lifecycle of a simulation is as follows. A simulation starts when the agent workplace,
logging agent, simulation agents and then spatial-temporal agent are activated in that order.
The simulation ends when the simulation agents terminate themselves according to the embedded
knowledge of the simulation, and then the spatial-temporal agent, logging agent, and the agent
workplace terminate themselves in that order.

All the agents communicate with the agent workplace to be a part of the simulation. The agent
workplace stores each agent‘s ID, IP address, port number, and TCP/IP connection for queuing and
transferring messages among the agents. This configuration allows developers to model the simulation
agents with high heterogeneity, e.g., requiring different operating systems due to an API’s restriction.
Despite this heterogeneity, agents are able to exchange information, log, and analyze the simulation
results in a unified manner by introducing a unified format of messages. This configuration establishes
the modifiability of the simulation model by achieving transparency in the runtime environment and
APIs used in each simulation agents.

3.3. Agent Architecture

We designed a self-contained agent architecture in which an agent can be executed as a single
program and the internal variables, functions and methods are not directly referred by the other
programs. In existing multi-agent platforms, some agents’ source codes are referenced by the
other agents (e.g., class inheritance and rule import). In our architecture, there is no information
shared between agents unless there are message exchanges. All agents have their entry point (e.g.,
main function) and act as separate programs. This architecture makes it easier to implement the
different data structures and processing functionalities in each agent with heterogeneous APIs and
runtime environments.

There are two parts to a simulation agent, agent head and agent body. Figure 2 shows the
self-contained agent architecture of the proposed simulation environment. The agent head carries
out rule evaluations and message exchanges based on the declarative definition of rules to define in
what situation an action should be taken. A rule is described by a conditional part and an action part.
The working memory in the agent head is a list that stores the received messages and the facts that are
derived from the rule evaluations. The rule evaluation module checks whether the conditional part of
a rule and facts in working memory are matched. If all the conditions in a rule are matched, the rule is
fired, and the action part of the fired rule will be executed (i.e., general if–then-based rules). In the
action part, the operations to facts (generation, deletion, or modification of facts, etc.) are defined.
The action part also defines commands such as sending messages to the other agents or executing
action functions in the agent body.

The agent body is a set of procedural definitions of an agent’s actions referred by the rules in the
agent head. The procedural definitions are described as a set of functions and methods. For example,
in the Python programming language, a set of functions with the action names are defined as the agent
body. The necessary APIs and corresponding descriptions are included in the agent body. With the
separation of the agent head and agent body, the description of rules (defining when to do what) is
not directly affected by the changes in the APIs and external environment of the agent, which could
potentially improve modifiability.

The spatial-temporal and logging agents are implemented in this architecture. A spatial-temporal
agent always includes the fact in the working memory representing the spatial-temporal information in
the defined format explained later. A logging agent’s working memory stores the exchanged messages
among the other agents, and the messages are exported to a logging file before the logging agent
terminates itself.

Appl. Sci. 2020, 10, 7552 6 of 20

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 20

All the agents communicate with the agent workplace to be a part of the simulation. The agent
workplace stores each agent‘s ID, IP address, port number, and TCP/IP connection for queuing and
transferring messages among the agents. This configuration allows developers to model the
simulation agents with high heterogeneity, e.g., requiring different operating systems due to an API’s
restriction. Despite this heterogeneity, agents are able to exchange information, log, and analyze the
simulation results in a unified manner by introducing a unified format of messages. This
configuration establishes the modifiability of the simulation model by achieving transparency in the
runtime environment and APIs used in each simulation agents.

3.3. Agent Architecture

We designed a self-contained agent architecture in which an agent can be executed as a single
program and the internal variables, functions and methods are not directly referred by the other
programs. In existing multi-agent platforms, some agents’ source codes are referenced by the other
agents (e.g., class inheritance and rule import). In our architecture, there is no information shared
between agents unless there are message exchanges. All agents have their entry point (e.g., main
function) and act as separate programs. This architecture makes it easier to implement the different
data structures and processing functionalities in each agent with heterogeneous APIs and runtime
environments.

There are two parts to a simulation agent, agent head and agent body. Figure 2 shows the self-
contained agent architecture of the proposed simulation environment. The agent head carries out
rule evaluations and message exchanges based on the declarative definition of rules to define in what
situation an action should be taken. A rule is described by a conditional part and an action part. The
working memory in the agent head is a list that stores the received messages and the facts that are
derived from the rule evaluations. The rule evaluation module checks whether the conditional part
of a rule and facts in working memory are matched. If all the conditions in a rule are matched, the
rule is fired, and the action part of the fired rule will be executed (i.e., general if–then-based rules). In
the action part, the operations to facts (generation, deletion, or modification of facts, etc.) are defined.
The action part also defines commands such as sending messages to the other agents or executing
action functions in the agent body.

Figure 2. Self-contained architecture of agent in proposed simulation environment.

The agent body is a set of procedural definitions of an agent’s actions referred by the rules in the
agent head. The procedural definitions are described as a set of functions and methods. For example,
in the Python programming language, a set of functions with the action names are defined as the
agent body. The necessary APIs and corresponding descriptions are included in the agent body. With
the separation of the agent head and agent body, the description of rules (defining when to do what)

Figure 2. Self-contained architecture of agent in proposed simulation environment.

3.4. Message and Fact Architecture

Our message architecture is shown in Figure 3. Every message has a keyword called
“performative” [23], which represents the semantics of what it means to send a message. A performative
is also called a “speech act”, meaning that sending a message is a particular action of an agent, not just
an information exchange. Each performative requires specified information as a property of the
message to represent the act of sending the performative. Table 1 lists the pre-set performatives in
the proposed simulation environment. The agent core library includes the functionalities to process
messages with these performatives to minimize the developer’s burden. For ease of explanation,
the examples are written in the syntax of a Python dictionary datatype but can be translated into JSON
and other equivalent data formats if the essential structure is kept.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 20

Figure 3. Message architecture (examples written in Python syntax).

Table 1. Performatives for logistics warehouse.

Performative. Argument Description

tick_start ‘t’:int
Spatial-temporal agent sends this performative to start an

interaction for a designated time frame.

tick_done ‘from’:<AgentID>
Simulation agent sends this performative to notify spatial-

temporal agent that there is no more messages to send
regarding the current time frame.

move_request

‘from’:<AgentID>,
‘node’:[int, int, int],

‘coordinate’:
[float, float, float]

Simulation agent sends this performative to notify spatial-
temporal agent where the simulation agent is assigned to

move in the next time frame.

move_request_accepted ‘to’:<AgentID>
Spatial-temporal agent sends this performative to notify a
simulation agent that the previously sent move_request is

accepted.

move_request_rejected ‘to’:<AgentID>
Spatial-temporal agent sends this performative to notify a
simulation agent that the previously sent move_request is

rejected and it needs to stay where it is.

handover
‘to’:<AgentID>,

‘object’:
<ObjectData>

Simulation agent 1 sends this performative to anther
simulation agent 2 to handover the object carried by agent

1 to agent 2.

order_carry_shelf
‘to’:<AgentID>,

‘content’:
<ShelfData>

Simulation agent 1 (WMS agent) sends this performative
to another simulation agent 2 that can carry a shelf to a

picking station in the AGV picking system.

ready ‘to’:<AgentID>
Simulation agent 1 (agents of AGVs) sends this

performative to another simulation agent 2 (WMS agent)
to notify that the agent 1 is waiting for some commands.

pick
‘to’:<AgentID>,

‘content’:
<OrderData>

Simulation agent 1 (WMS agent) sends this performative
to another simulation agent 2 (a human/robot for picking)

to pick the designated items from near objects.

We defined the architecture and pre-defined keywords of the facts in the working memory and
prepared the pre-defined functions to process the facts. In the previous subsection, we explained that
every agent has a working memory to store the facts used in the rule evaluations and actions. The
working memory is a list of facts as shown in Figure 4. Facts stored in the working memory include
the key “_s” and the characterizing keyword as a key. For example, almost every agent in a logistics
warehouse carries objects; therefore, the agent core library prepares a function to retrieve and update
the facts that include {“_s”:“carrying_object”}. Figure 5 shows the fact of map information stored in
the spatial-temporal agent. The fact includes {“_s”:“map_info”} and the current time frame (e.g.,
“t”:0). This data format represents the physical space of a logistics warehouse as a collection of nodes
labeled (<vertical node location>, <horizontal node location>). Each node has a type, such as wall,
floor, and some specific types like racrew_area that the Racrew AGVs (the AGVs that can carry

Figure 3. Message architecture (examples written in Python syntax).

Appl. Sci. 2020, 10, 7552 7 of 20

Table 1. Performatives for logistics warehouse.

Performative. Argument Description

tick_start ‘t’:int
Spatial-temporal agent sends this

performative to start an interaction for a
designated time frame.

tick_done ‘from’:<AgentID>

Simulation agent sends this performative
to notify spatial-temporal agent that there
is no more messages to send regarding the

current time frame.

move_request
‘from’:<AgentID>,

‘node’: [int, int, int],
‘coordinate’: [float, float, float]

Simulation agent sends this performative
to notify spatial-temporal agent where the
simulation agent is assigned to move in

the next time frame.

move_request_accepted ‘to’:<AgentID>

Spatial-temporal agent sends this
performative to notify a simulation agent
that the previously sent move_request is

accepted.

move_request_rejected ‘to’:<AgentID>

Spatial-temporal agent sends this
performative to notify a simulation agent
that the previously sent move_request is
rejected and it needs to stay where it is.

handover ‘to’:<AgentID>, ‘object’:
<ObjectData>

Simulation agent 1 sends this
performative to anther simulation agent 2
to handover the object carried by agent 1

to agent 2.

order_carry_shelf ‘to’:<AgentID>, ‘content’:
<ShelfData>

Simulation agent 1 (WMS agent) sends
this performative to another simulation

agent 2 that can carry a shelf to a picking
station in the AGV picking system.

ready ‘to’:<AgentID>

Simulation agent 1 (agents of AGVs)
sends this performative to another

simulation agent 2 (WMS agent) to notify
that the agent 1 is waiting for some

commands.

pick ‘to’:<AgentID>, ‘content’:
<OrderData>

Simulation agent 1 (WMS agent) sends
this performative to another simulation
agent 2 (a human/robot for picking) to
pick the designated items from near

objects.

The description of these example messages are as follows:

• MSG1: sent from a simulation agent of the Racrew (Racrew is a registered Japanese trademark
owned by Hitachi Industrial Products, Ltd.) AGV to iCarry AGV (Racrew and iCarry are AGVs
for logistics warehouses, explained in detail later) to transfer the data value of the “object”.
This handover primitive triggers the sender to automatically update the fact representing the
carrying object in its working memory. The primitive also triggers the receiver to update the fact
of carrying an object to add the handed over object data.

• MSG2: sent from the WMS to an agent of the Racrew AGV to order the AGV to carry the shelf
with the ID “SH11” at the node location [6, 4, 0] to one of the available picking stations.

• MSG3: sent from the spatial-temporal agent to all the simulation agents to start the interaction of
the next time frame (t = 10).

• MSG4: sent from a simulation agent of the Racrew AGV to the spatial-temporal agent to notify
the spatial-temporal agent that there is no more information to send in this time frame (t = 10).

Appl. Sci. 2020, 10, 7552 8 of 20

• MSG5: sent from a simulation agent of the iCarry AGV to the spatial-temporal agent to move to
the coordinate of the values “node” and “coordinate”.

• MSG6: sent from a simulation agent of the iCarry AGV to the spatial-temporal agent to notify the
spatial-temporal agent that the previously sent move_request is accepted. When this primitive is
sent from the spatial-temporal agent to a simulation agent, the fact representing map information
is automatically updated both in the spatial-temporal agent and simulation agent.

• MSG7: sent from a simulation agent of the iCarry AGV to the spatial-temporal agent to notify the
spatial-temporal agent that the previously sent move_request is rejected. When this primitive is
sent from the spatial-temporal agent to a simulation agent, the fact representing map information
is automatically updated both in the spatial-temporal agent and simulation agent.

The characteristics of a performative suits logistics warehouse simulation because a warehouse
generally has several agents exchanging physical objects such as items to ship. With the performative
representing the physical act of passing object from one agent to another, developers can easily represent
cooperation among the agents in the simulation.

We defined the architecture and pre-defined keywords of the facts in the working memory and
prepared the pre-defined functions to process the facts. In the previous subsection, we explained
that every agent has a working memory to store the facts used in the rule evaluations and actions.
The working memory is a list of facts as shown in Figure 4. Facts stored in the working memory
include the key “_s” and the characterizing keyword as a key. For example, almost every agent in a
logistics warehouse carries objects; therefore, the agent core library prepares a function to retrieve and
update the facts that include {“_s”:“carrying_object”}. Figure 5 shows the fact of map information
stored in the spatial-temporal agent. The fact includes {“_s”:“map_info”} and the current time frame
(e.g., “t”:0). This data format represents the physical space of a logistics warehouse as a collection of
nodes labeled (<vertical node location>, <horizontal node location>). Each node has a type, such as
wall, floor, and some specific types like racrew_area that the Racrew AGVs (the AGVs that can carry
shelves) can move around. Each node also has the key “has”, and the key value is an empty list by
default. The list can contain keywords representing the objects on the nodes, such as the IDs of AGVs,
and those of inventory shelves. The spatial-temporal agent sends the whole map to the logging agent
to log the map configuration in each time frame. The visualization program parses the “map_info”
facts to recreate the location of objects in the time series to visualize the simulated logistics warehouse.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 20

shelves) can move around. Each node also has the key “has”, and the key value is an empty list by
default. The list can contain keywords representing the objects on the nodes, such as the IDs of AGVs,
and those of inventory shelves. The spatial-temporal agent sends the whole map to the logging agent
to log the map configuration in each time frame. The visualization program parses the “map_info”
facts to recreate the location of objects in the time series to visualize the simulated logistics warehouse.

Figure 4. Fact architecture (example written in Python syntax).

Figure 5. Fact of map information stored in spatial-temporal agent (example).

The overview of the messaging sequence of agents in simulation models is shown in Figure 6.
In every time frame, the spatial-temporal agent first broadcasts the performative of tick_start to the
simulation agents. Simulation agents then make decisions at the current time frame by evaluating
rules, executing actions, and/or exchanging messages (e.g., messages with handover performative,
pick, etc.). Next, simulation agents send messages with the move_request performative (not
applicable if the simulation agent does not have a physical location) to move to the next location in
the next time frame. The spatial-temporal agent then evaluates the requests and replies to the
messages with move_request_accepted performative to grant the requests. If the move_request
messages conflict with the next physical location or the next physical location is unacceptable (e.g.,
the requested location is a wall), the spatial-temporal agent replies with move_request_rejected
performatives. The simulation agents that received the messages with move_request_rejected then
make the decisions again and sends the move_request until they are accepted. This procedure repeats
in every time frame.

Figure 4. Fact architecture (example written in Python syntax).

Appl. Sci. 2020, 10, 7552 9 of 20

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 20

shelves) can move around. Each node also has the key “has”, and the key value is an empty list by
default. The list can contain keywords representing the objects on the nodes, such as the IDs of AGVs,
and those of inventory shelves. The spatial-temporal agent sends the whole map to the logging agent
to log the map configuration in each time frame. The visualization program parses the “map_info”
facts to recreate the location of objects in the time series to visualize the simulated logistics warehouse.

Figure 4. Fact architecture (example written in Python syntax).

Figure 5. Fact of map information stored in spatial-temporal agent (example).

The overview of the messaging sequence of agents in simulation models is shown in Figure 6.
In every time frame, the spatial-temporal agent first broadcasts the performative of tick_start to the
simulation agents. Simulation agents then make decisions at the current time frame by evaluating
rules, executing actions, and/or exchanging messages (e.g., messages with handover performative,
pick, etc.). Next, simulation agents send messages with the move_request performative (not
applicable if the simulation agent does not have a physical location) to move to the next location in
the next time frame. The spatial-temporal agent then evaluates the requests and replies to the
messages with move_request_accepted performative to grant the requests. If the move_request
messages conflict with the next physical location or the next physical location is unacceptable (e.g.,
the requested location is a wall), the spatial-temporal agent replies with move_request_rejected
performatives. The simulation agents that received the messages with move_request_rejected then
make the decisions again and sends the move_request until they are accepted. This procedure repeats
in every time frame.

Figure 5. Fact of map information stored in spatial-temporal agent (example).

The overview of the messaging sequence of agents in simulation models is shown in Figure 6.
In every time frame, the spatial-temporal agent first broadcasts the performative of tick_start to the
simulation agents. Simulation agents then make decisions at the current time frame by evaluating
rules, executing actions, and/or exchanging messages (e.g., messages with handover performative,
pick, etc.). Next, simulation agents send messages with the move_request performative (not applicable
if the simulation agent does not have a physical location) to move to the next location in the next
time frame. The spatial-temporal agent then evaluates the requests and replies to the messages with
move_request_accepted performative to grant the requests. If the move_request messages conflict with
the next physical location or the next physical location is unacceptable (e.g., the requested location is a
wall), the spatial-temporal agent replies with move_request_rejected performatives. The simulation
agents that received the messages with move_request_rejected then make the decisions again and
sends the move_request until they are accepted. This procedure repeats in every time frame.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 20

Figure 6. Overview of message exchange sequence among simulation agents and spatial-temporal
agent.

Each agent is free to accept or reject a request from the other agents in the decision-making phase
of the time frame, while they are also free to request the other agents perform a certain task. The
agents make decisions on individual behavior by their states and rules. For example, when the WMS
agent (the management system of a logistics warehouse) requests the Racrew agents (the agent
representing an AGV in the picking area) to process a customer order, each Racrew agent evaluates
its state and decide whether it accepts the customer order processing task, or not. Once the Racrew
agent accepts a customer order processing task, it decides its path to go to the target shelf using a
path planning algorithm. The Racrew agent requests the spatial-temporal agent to provide the map
of the picking system area to determine the path.

4. Prototypical Implementation of Proposed Simulation Environment

We used the Python programming language for the prototypical implementation of the
proposed simulation environment. Our implementation does not include external libraries other than
the standard packages included in Python 3. Figure 7 shows the configuration of the prototyped
multi-agent simulation environment. To implement the self-contained agent architecture mentioned
earlier, we developed a template called agent core library as described earlier. This template includes
the necessary functions for messaging, connecting to the agent workplace, rule evaluation, working
memory data structures, and so on, thus developers only need to write rules and actions of each agent.
In this study, the rule evaluation module is manually developed from scratch that works as a general
production system, but it can be implemented using other inference engines. The message interface
is implemented using network socket-based communication.

Users describe the agent’s rules of behaviors and actions, then use the agent generator (compiler)
to merge the described rules and actions with the Agent Core Library into a self-contained executable
agent program (<agentID>.py). The logging and spatial-temporal agents have, as mentioned above,
the same architecture as the simulation agents. We also prepared a template for the logging and
spatial-temporal agents, which is an extension of the agent core library for simulation agents. The
basic functionality for these two agents is prepared in the templates that are independent from the
simulation targets. We prepared the agent workplace as a single Python script that is executable in
the platform where the basic Python runtime environment is available.

The developed agents are executed based on the agent workplace, and the simulation logs are
exported by the logging agent before the simulation ends. We prepared a visualization program to
import and visualize the logistics warehouse’s layout and the location of agents and objects (e.g.,
AGVs, items and shelves) in each time frame. We prepared basic visualization models, such as for

Figure 6. Overview of message exchange sequence among simulation agents and spatial-temporal agent.

Each agent is free to accept or reject a request from the other agents in the decision-making phase
of the time frame, while they are also free to request the other agents perform a certain task. The agents
make decisions on individual behavior by their states and rules. For example, when the WMS agent
(the management system of a logistics warehouse) requests the Racrew agents (the agent representing

Appl. Sci. 2020, 10, 7552 10 of 20

an AGV in the picking area) to process a customer order, each Racrew agent evaluates its state and
decide whether it accepts the customer order processing task, or not. Once the Racrew agent accepts
a customer order processing task, it decides its path to go to the target shelf using a path planning
algorithm. The Racrew agent requests the spatial-temporal agent to provide the map of the picking
system area to determine the path.

4. Prototypical Implementation of Proposed Simulation Environment

We used the Python programming language for the prototypical implementation of the proposed
simulation environment. Our implementation does not include external libraries other than the
standard packages included in Python 3. Figure 7 shows the configuration of the prototyped
multi-agent simulation environment. To implement the self-contained agent architecture mentioned
earlier, we developed a template called agent core library as described earlier. This template includes the
necessary functions for messaging, connecting to the agent workplace, rule evaluation, working memory
data structures, and so on, thus developers only need to write rules and actions of each agent. In this
study, the rule evaluation module is manually developed from scratch that works as a general
production system, but it can be implemented using other inference engines. The message interface is
implemented using network socket-based communication.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 20

shelves, AGVs in a simple rectangular shape, walls, and floors. The visualization program is
implemented using a processing programming language.

Figure 7. Composition of prototyped multi-agent modelling environment.

Figure 8 shows the runtime configuration of the simulation model using the prototype of our
simulation environment. Each agent is an independently executed Python script, and all agents are
connected to the agent workplace via TCP/IP connections to send messages.

Figure 8. Example structure of multiagent simulation model using prototyped simulation modeling
environment.

Figure 9 shows the network configuration of agents. Since agents and the workplace are
connected via TCP/IP connections, it is possible to run agents in distributed PCs to run a simulation
if the network is a properly configured local area network (LAN). Except the security settings, such
as firewall settings, agents can be moved from one PC to another without modification to the program
because each agent has an address of the workplace and can connect to the workplace even if the
running PC is changed. This characteristic helps users distribute computing loads. The modifiability
of runtime configuration (which PC to run which agent) is established based on these characteristics.

Figure 7. Composition of prototyped multi-agent modelling environment.

Users describe the agent’s rules of behaviors and actions, then use the agent generator (compiler)
to merge the described rules and actions with the Agent Core Library into a self-contained executable
agent program (<agentID>.py). The logging and spatial-temporal agents have, as mentioned above,
the same architecture as the simulation agents. We also prepared a template for the logging and
spatial-temporal agents, which is an extension of the agent core library for simulation agents. The basic
functionality for these two agents is prepared in the templates that are independent from the simulation
targets. We prepared the agent workplace as a single Python script that is executable in the platform
where the basic Python runtime environment is available.

The developed agents are executed based on the agent workplace, and the simulation logs are
exported by the logging agent before the simulation ends. We prepared a visualization program to
import and visualize the logistics warehouse’s layout and the location of agents and objects (e.g., AGVs,
items and shelves) in each time frame. We prepared basic visualization models, such as for shelves,
AGVs in a simple rectangular shape, walls, and floors. The visualization program is implemented
using a processing programming language.

Figure 8 shows the runtime configuration of the simulation model using the prototype of our
simulation environment. Each agent is an independently executed Python script, and all agents are
connected to the agent workplace via TCP/IP connections to send messages.

Appl. Sci. 2020, 10, 7552 11 of 20

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 20

shelves, AGVs in a simple rectangular shape, walls, and floors. The visualization program is
implemented using a processing programming language.

Figure 7. Composition of prototyped multi-agent modelling environment.

Figure 8 shows the runtime configuration of the simulation model using the prototype of our
simulation environment. Each agent is an independently executed Python script, and all agents are
connected to the agent workplace via TCP/IP connections to send messages.

Figure 8. Example structure of multiagent simulation model using prototyped simulation modeling
environment.

Figure 9 shows the network configuration of agents. Since agents and the workplace are
connected via TCP/IP connections, it is possible to run agents in distributed PCs to run a simulation
if the network is a properly configured local area network (LAN). Except the security settings, such
as firewall settings, agents can be moved from one PC to another without modification to the program
because each agent has an address of the workplace and can connect to the workplace even if the
running PC is changed. This characteristic helps users distribute computing loads. The modifiability
of runtime configuration (which PC to run which agent) is established based on these characteristics.

Figure 8. Example structure of multiagent simulation model using prototyped simulation
modeling environment.

Figure 9 shows the network configuration of agents. Since agents and the workplace are connected
via TCP/IP connections, it is possible to run agents in distributed PCs to run a simulation if the network
is a properly configured local area network (LAN). Except the security settings, such as firewall settings,
agents can be moved from one PC to another without modification to the program because each agent
has an address of the workplace and can connect to the workplace even if the running PC is changed.
This characteristic helps users distribute computing loads. The modifiability of runtime configuration
(which PC to run which agent) is established based on these characteristics.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 20

Figure 9. Composition of agents, agent workplaces and network environment.

5. Experiment to Compare Development Costs

5.1. Purpose of Experiment

The purpose of this experiment is to examine the features of development cost reduction and
architectural modifiability, by developing the simulation model of logistics warehouse using the
existing simulation modeling environment and the environment implemented based on the proposed
architecture. This section explains the experimental result of development cost comparison between
the proposed simulation environment and the widely used multi-agent simulator NetLogo.

We have chosen NetLogo as a compared multi-agent simulation environment. Because NetLogo
is expected to reduce the amount codes that need to be written compared to other MAS platforms, as
these features are built-in:

(i) A GUI with a simulation space visualization function. Basically, there is no need to add
visualization descriptions to the code.

(ii) Default primitives for manipulating simulation space and objects in the grid world, which is
highly compatible with warehouse simulations.

(iii) A function to output graphic charts of the simulation model’s values without additional
descriptions.

For fairness, we outsourced the development of the simulation model using NetLogo to a
software developing company. We only conveyed the simulation model’s requirements, input, and
output requirement of the simulation model. We did not specify the internal data structure or an
agent’s communication sequence. We validated the developed model and ensured the validity of
experiment in the following manner:

1. First, when we outsourced the simulation model development, we only provided a description
of the simulated system and the requirements of the simulation model, as well as the
specifications of the inputs and outputs.

2. Second, based on the requirements, we asked the software developing company to design how
to implement the agents using NetLogo, i.e., how to implement the internal states and how to
make them cooperate with each other.

3. Third, we reviewed the presented design by the software developing company and asked them
to modify the functional discrepancies to the developed model using our modeling
environment, so that the functions of the material-handling equipment can be the same. We did
not specify how to write the code. We ensured the validity of the experiment by asking them to
write the code based on their standard method so that we did not tamper with the experimental
results. In addition, we did not disclose our intention to use the outsourced model for
development cost comparison.

4. Finally, we checked the delivered source codes to see if there was any unfairness in comparing
the development cost.

Figure 9. Composition of agents, agent workplaces and network environment.

5. Experiment to Compare Development Costs

5.1. Purpose of Experiment

The purpose of this experiment is to examine the features of development cost reduction and
architectural modifiability, by developing the simulation model of logistics warehouse using the
existing simulation modeling environment and the environment implemented based on the proposed
architecture. This section explains the experimental result of development cost comparison between
the proposed simulation environment and the widely used multi-agent simulator NetLogo.

We have chosen NetLogo as a compared multi-agent simulation environment. Because NetLogo
is expected to reduce the amount codes that need to be written compared to other MAS platforms,
as these features are built-in:

(i) A GUI with a simulation space visualization function. Basically, there is no need to add
visualization descriptions to the code.

(ii) Default primitives for manipulating simulation space and objects in the grid world, which is
highly compatible with warehouse simulations.

Appl. Sci. 2020, 10, 7552 12 of 20

(iii) A function to output graphic charts of the simulation model’s values without
additional descriptions.

For fairness, we outsourced the development of the simulation model using NetLogo to a software
developing company. We only conveyed the simulation model’s requirements, input, and output
requirement of the simulation model. We did not specify the internal data structure or an agent’s
communication sequence. We validated the developed model and ensured the validity of experiment
in the following manner:

1. First, when we outsourced the simulation model development, we only provided a description of
the simulated system and the requirements of the simulation model, as well as the specifications
of the inputs and outputs.

2. Second, based on the requirements, we asked the software developing company to design how to
implement the agents using NetLogo, i.e., how to implement the internal states and how to make
them cooperate with each other.

3. Third, we reviewed the presented design by the software developing company and asked them
to modify the functional discrepancies to the developed model using our modeling environment,
so that the functions of the material-handling equipment can be the same. We did not specify
how to write the code. We ensured the validity of the experiment by asking them to write the
code based on their standard method so that we did not tamper with the experimental results.
In addition, we did not disclose our intention to use the outsourced model for development
cost comparison.

4. Finally, we checked the delivered source codes to see if there was any unfairness in comparing
the development cost.

5.2. Developed Simulation Model of Logistics Warehouse with Various Robots and
Material-Handling Equipment

The modeling target was an area of a logistics warehouse where several cooperating robots and
material-handling equipment were introduced. The area is in charge of the shipping process of picking,
sorting, and carrying items from inventory shelves to the shipping area based on the customer’s orders.
The model includes the function to calculate the productivity of the shipping process. The shipping
process consists of the following subsystems:

• Racrew AGV Picking System: At the beginning of the shipping process, it is necessary to pick
items specified by the customer orders from the inventory shelves. The classic configuration to
pick items is that people carry a cart with them, walk to the shelf storing the desired items, pick the
items from the shelf, then put the items into the sorting bucket in the cart. Finally, the cart goes
through the rest of the shipping process, such as item inspection and packing. However, this way
of picking is not efficient because people need to walk long distances to finish their picking tasks.
Therefore, a novel automated logistics warehouse uses an AGV picking system. Instead of people
walking to the shelves, AGVs carry the shelves to the people, and the people pick items from the
shelves then put the items into the sorting bucket near them.

• iCarry AGV Transport System: In a logistics warehouse, it is necessary to carry items from area to
area to process the logistics tasks. This AGV transport system can carry objects by having AGVs
move in a pre-defined path.

• Automatic Storage System: In a logistics warehouse, storing items in a buffer is sometimes efficient
because the picking task does not always finish right before the shipping time. This system stores
items so that the items can be retrieved when the rest of the shipping process is ready.

• WMS: In a logistics warehouse, there is almost always a WMS that has the information of
customer’s orders and record of inventory. It is also in charge of controlling the picking system
regarding which items to pick, when to pick, etc.

Appl. Sci. 2020, 10, 7552 13 of 20

Figure 10 shows an overview of the target logistics warehouse of our simulation modeling.
The blue lower-right area represents the Auto Storage System, green box represents the AGV Transport
System’s AGV, white box represents the AGV Picking System’s AGV, yellow transparent box represents
an inventory shelf, and light blue box close to the inventory selves represents a human picker. The target
simulation model was developed and tested using a single computer with Intel Core i7-7800X (3.5 GHz,
12 CPU), 16GB RAM, Windows 10 Pro (64 bit). The authors prepared the order data and parameters
of robots and material-handling equipment based on the actual orders of logistics warehouse and
machine’s specifications. Statistical variation of agent’s behaviors is implemented in each agent’s
action. In the action that simulates statistical variation, the time taken by the behavior is calculated by
multiplying average task processing time and a random value generated from Gaussian distribution
using Python’s default library. The calculated time is passed onto the agent head.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 20

agent’s communication sequence but specified the actual agents’ behaviors, e.g., conditions to trigger
actions, where to take certain actions, etc.

Figure 10. Overview of target distribution warehouse for modeling experiment (a snapshot of
simulation result visualization interface).

5.3. Comparison of Development Costs

Compared to using the existing simulation modeling environment (NetLogo), our simulation
environment can reduce the development cost by 31.5 %. Figure 11 shows the experimental results
regarding the development costs using the proposed simulation environment and NetLogo. These
development costs are calculated by counting the number of lines of codes except the comments and
blank lines.

Figure 11. Cost of modeling distribution warehouse with NetLogo and prototyped simulation
environments.

We evaluated the modifiability of the developed simulation models. We used the architectural
modifiability analysis (ALMA) [10] concept to examine the modifiability of developed multi-agent
model. We designed the evaluation in reference to the existing work [25] that applied the ALMA
concept to evaluate the modifiability of multi-agent systems. The ALMA allows the developers to
elicit multiple cases of modification on the developed software and evaluate the ease of the
modification in each case. In the process of designing logistics warehouses, most cases involve
reconfiguration and/or replacement of material-handling equipment to assess the productivity. We
elicited the practical cases by interviewing a company’s employees designing and operating logistics

Figure 10. Overview of target distribution warehouse for modeling experiment (a snapshot of simulation
result visualization interface).

The developed agents are:

• Racrew Agent: represents an AGV in the Racrew AGV Picking System.
• iCarry Agent: represents an AGV in the iCarry AGV Transport System.
• Picker Agent: represents a human picker in the Racrew AGV Picking System.
• AutoStorage Agent: represents an auto storage system in the simulated logistics warehouse.
• WMS Agent: represents a WMS in the simulated logistics warehouse.

Using NetLogo, we defined the same agents with the identical rules of behaviors and map
information. For fairness, we outsourced the development of the simulation model using NetLogo to
a software development company. We only conveyed the simulation model’s requirements, input,
and output requirement of the simulation model so as not interfere with the design policy of the
model that changes the development costs. We did not specify the internal data structure or an agent’s
communication sequence but specified the actual agents’ behaviors, e.g., conditions to trigger actions,
where to take certain actions, etc.

5.3. Comparison of Development Costs

Compared to using the existing simulation modeling environment (NetLogo), our simulation
environment can reduce the development cost by 31.5 %. Figure 11 shows the experimental

Appl. Sci. 2020, 10, 7552 14 of 20

results regarding the development costs using the proposed simulation environment and NetLogo.
These development costs are calculated by counting the number of lines of codes except the comments
and blank lines.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 20

agent’s communication sequence but specified the actual agents’ behaviors, e.g., conditions to trigger
actions, where to take certain actions, etc.

Figure 10. Overview of target distribution warehouse for modeling experiment (a snapshot of
simulation result visualization interface).

5.3. Comparison of Development Costs

Compared to using the existing simulation modeling environment (NetLogo), our simulation
environment can reduce the development cost by 31.5 %. Figure 11 shows the experimental results
regarding the development costs using the proposed simulation environment and NetLogo. These
development costs are calculated by counting the number of lines of codes except the comments and
blank lines.

Figure 11. Cost of modeling distribution warehouse with NetLogo and prototyped simulation
environments.

We evaluated the modifiability of the developed simulation models. We used the architectural
modifiability analysis (ALMA) [10] concept to examine the modifiability of developed multi-agent
model. We designed the evaluation in reference to the existing work [25] that applied the ALMA
concept to evaluate the modifiability of multi-agent systems. The ALMA allows the developers to
elicit multiple cases of modification on the developed software and evaluate the ease of the
modification in each case. In the process of designing logistics warehouses, most cases involve
reconfiguration and/or replacement of material-handling equipment to assess the productivity. We
elicited the practical cases by interviewing a company’s employees designing and operating logistics

Figure 11. Cost of modeling distribution warehouse with NetLogo and prototyped
simulation environments.

We evaluated the modifiability of the developed simulation models. We used the architectural
modifiability analysis (ALMA) [10] concept to examine the modifiability of developed multi-agent
model. We designed the evaluation in reference to the existing work [25] that applied the ALMA
concept to evaluate the modifiability of multi-agent systems. The ALMA allows the developers to elicit
multiple cases of modification on the developed software and evaluate the ease of the modification in
each case. In the process of designing logistics warehouses, most cases involve reconfiguration and/or
replacement of material-handling equipment to assess the productivity. We elicited the practical cases
by interviewing a company’s employees designing and operating logistics warehouses. Table 2 shows
an essential part of the result of modification cost evaluation. LoC (Line of Codes) is the affected part
of the source codes in the modified programs. The rest of the result is explained in the Appendix A.

Case 1 (C1) is a modification case of replacing the iCarry transport system with another transport
system. In the case of NetLogo, developers first need to review the procedures and global variables,
then delete the procedures for iCarry transport system, modify the map information and finally develop
the codes for new transport system. In the case of our environment, developers first delete the iCarry
agents, then modify the map information in spatial-temporal agent, and finally develop and add the
agents of the new transport system using the agent core library. Developing simulation model of
the new transport system is necessary in both NetLogo and our environment, but since the previous
experimental result shows that the model development costs is relatively low in our environment,
overall, using our environment is easier cope with case 1.

Case 2 (C2) is a modification case of replacing the Racrew picking system with another picking
system. In the case of NetLogo, developers first need to review the procedures and global variables,
then delete the procedures for Racrew picking system, modify the WMS simulation part, modify the
map information using a designated editor, and finally develop and add the procedures for the new
picking system. In the case of our environment, developers first need to delete the Racrew agents,
review and modify the WMS agent and spatial-temporal agent, and finally develop and add the
agents of the new picking system using the agent core library. Developing simulation model of the
new transport system is necessary in both NetLogo and our environment, but since the previous
experimental result shows that the model development costs is relatively low in our environment,
overall, using our environment is easier cope with case 2.

Appl. Sci. 2020, 10, 7552 15 of 20

Table 2. Modification cost evaluations on essential modification cases.

Case
ID

Modification
Case Description

Conventional Simulation Environment Proposed Simulation Environment

Required Modification Procedures Reviewed and Modified Parts LoC Required Modification Procedures Reviewed and Modified Parts LoC

C1
Replacing iCarry

with another
transport system

1. Reviewing the global/shared
variables and procedures

2. Deleting procedures for iCarry
transport system

3. Modifying the map information
with a designated editor

4. Developing and adding the
procedures for the new
transport system

• Global/shared variables
• All procedures, focusing

on the ones operating the
agents of iCarry AGVs

501

1. Deleting the iCarry agents
2. Modifying the map information in

spatial-temporal agent
3. Developing and adding agents of

the new transport system using the
agent core library

• Spatial-temporal agent 351

C2
Replacing Racrew

with another
picking system

1. Reviewing global/shared
variables and procedures

2. Deleting procedures for Racrew
picking system

3. Modifying the procedures
simulating WMS

4. Modifying the map information
with a designated editor

5. Developing and adding the
procedures for the new
picking system

• Global/shared variables
• All procedures, focusing

on the ones operating the
Racrew AGVs and WMS

630

1. Deleting the Racrew agents
2. Reviewing and modifying the

related interaction in WMS agent
3. Reviewing and modifying the map

information in
spatial-temporal agent

4. Developing and adding agents of
the new picking system using the
agent core library

• Spatial-temporal agent
• WMS agent 421

C3

Replacing
automatic storage

with another
storage system

1. Reviewing the global/shared
variables and procedures

2. Deleting procedures for
automatic storage system

3. Modifying the procedures
simulating WMS

4. Modifying the map information
with designated editor

5. Developing and adding the
procedures for the new
storage system

• Global/shared variables
• All procedures, focusing

on the ones operating the
automatic storage
and WMS

358

1. Deleting the AutoStorage agent
2. Reviewing and modifying the

related interaction in WMS agent
3. Reviewing and modifying the map

information in
spatial-temporal agent

4. Developing and adding agents of
the new storage system using the
agent core library

• Spatial-temporal agent
• WMS agent 241

Appl. Sci. 2020, 10, 7552 16 of 20

Table 2. Cont.

Case
ID

Modification
Case Description

Conventional Simulation Environment Proposed Simulation Environment

Required Modification Procedures Reviewed and Modified Parts LoC Required Modification Procedures Reviewed and Modified Parts LoC

C4

Introducing a
picking system in
addition to Racrew

picking system

1. Reviewing the global/shared
variables and procedures

2. Reviewing and modifying the
iCarry agents

3. Reviewing and modifying the
procedures simulating WMS

4. Modifying the map information
with designated editor

5. Developing and adding the
procedures for the new
picking system

• Global/shared variables
• All procedures, focusing

on the ones operating
iCarry AGVs and WMS

681

1. Reviewing and modifying the
iCarry agents

2. Reviewing and modifying the
WMS agent

3. Modifying the map information in
spatial-temporal agent

4. Developing and adding agents of
the new picking system

• Spatial-temporal agent
• WMS agent
• iCarry agent

486

Appl. Sci. 2020, 10, 7552 17 of 20

Case 3 (C3) is a modification case of replacing the automatic storage system with another storage
system. In the case of NetLogo, developers first need to review the procedures and global variables,
then delete the procedures for automatic storage system, modify the procedures for simulating WMS,
modify the map information, and finally develop and add the procedures for the new storage system.
In the case of our environment, developers first need to delete the AutoStorage agent, then review
and modify the WMS and spatial-temporal agents, and finally develop and add the agents of the new
storage system using the agent core library. Developing simulation model of the new storage system is
necessary in both NetLogo and our environment, but since the previous experimental result shows
that the model development costs is relatively low in our environment, overall, using our environment
makes it easier cope with case 3.

Case 4 (C4) is a modification case of introducing the picking system that concurrently works
together with the Racrew picking system. In the case of NetLogo, developers first need to review the
procedures and global variables, then modify the procedures for iCarry, WMS and the map information,
and finally develop the procedures for the new picking system. In the case of our environment,
developers first need to review and modify the iCarry and WMS agents, then modify the map
information, and finally develop the agents for the new picking system. Developing simulation model
of the new storage system is necessary in both NetLogo and our environment, but since the previous
experimental result shows that the model development costs is relatively low in our environment,
overall, using our environment makes it easier to cope with case 4.

Based on these analysis results, our environment has better architectural modifiability compared
to NetLogo. Since every agent in our environment is implemented as a single program file, it is
intuitive to understand what to delete. In addition, the process of reviewing the shared variables is
not necessary in our environment. Although NetLogo has better support functions such as graphical
editor of map, our environment requires less model development costs to create a simulation model,
and also requires less burden on elicited modification cases.

We have confirmed the following features of our proposal: (i) our proposed environment
can reduce the model development cost of a logistics warehouse, (ii) our proposed environment
enables the self-contained architecture of simulation models that realize the architectural modifiability.
As mentioned in Section 1, our goal was to realize both low-cost development and high modifiability
for logistics warehouses. With the features (i) and (ii), we confirmed that we achieved the goal of
this study. We confirmed that we had contributed to designing industrial systems such as a logistics
warehouse by reducing the burden on simulating and evaluating the possible designs to choose the
best design options.

6. Conclusions

We proposed a multi-agent simulation environment for logistics warehouses. This research aims
to provide support for designing industrial systems such as a logistics warehouse by reducing the
burden on simulating and evaluating the possible designs to choose the best design options. To achieve
the objective, we made the following contributions: To realize the objective, we set this study’s goal to
achieve both low-cost development and high modifiability for logistics warehouses. To simultaneously
reduce the model development costs and achieve architectural modifiability, we made the following
contributions:

(i) Designed self-contained architecture of agents representing entities in a logistics warehouse.
(ii) Designed unified message architecture and message primitives for logistics warehouses.
(iii) Empirically compared the model development costs of logistics warehouses with a current

multi-agent simulation environment and confirmed that the proposed environment reduces such
costs while maintaining architectural modifiability.

For future work, we will further investigate our modeling environment’s architectural flexibility
based on the simulation model modification and update the scenarios in actual logistics warehouse

Appl. Sci. 2020, 10, 7552 18 of 20

development. In the current experiment, the unit of development cost is LoC. Since the characteristics
of a programming language and the respective programming style are difficult to consider using LoC,
the method of evaluating development costs can be further investigated and improved.

Author Contributions: Conceptualization, T.K.; methodology, T.K.; software, T.K.; validation, T.K.; formal analysis,
T.K.; investigation, T.K. and R.K.; resources, T.K.; data curation, T.K.; writing—original draft preparation, T.K.;
writing—review and editing, T.K. and R.K.; visualization, T.K.; supervision, R.K.; project administration, R.K.;
funding acquisition, R.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We elicited the practical modification cases by interviewing a company’s employees responsible
for designing and operating logistics warehouses. Table A1 shows the modification cases on the agent
environment and the cost evaluations. Since the change of environment is generally anticipated at
the design phase of the simulation model, NetLogo and our simulation environment mostly do not
need the modification of codes. Table A2 shows the modification cases on agent behaviors and cost
evaluations. Since the change of the agent behaviors is also generally anticipated in the design phase
of the simulation model, NetLogo and our simulation environment do not need the modification of
codes. In these modification cases, the cost of modification is almost the same in both environments.

Table A1. Modification cost evaluations on modification cases of agent environment.

Case
ID

Modification
Case Description

Conventional Simulation Environment Proposed Simulation Environment

Required Modification
Procedures

Reviewed and
Modified Parts

Required Modification
Procedures

Reviewed and
Modified Parts

C5 Changing the route of
iCarry AGVs

• Editing the values
in route
configuration files

N/A
• Editing the values in

route configuration files N/A

C6 Changing the route of
Racrew AGVs

• Editing the values
in route
configuration files

N/A
• Editing the values in

route configuration files N/A

C7 Changing the area of
Racrew picking system

1. Editing map using
map editor built
in NetLogo

2. Editing the values
in route
configuration files

N/A

1. Editing the values in the
fact of map in
spatial-temporal agent

2. Editing the values in
route configuration files

Spatial-temporal
agent

C8 Changing the items
stored in shelves

• Editing the item
inventory values in
configuration files

N/A
• Editing the item

inventory values in
configuration files

N/A

C9
Changing the area of

iCarry transport
system

1. Editing map using
map editor built
in NetLogo

2. Editing the values
in route
configuration files

N/A

1. Editing the values in the
fact of map in
spatial-temporal agent.

2. Editing the values in
route configuration files

Spatial-temporal
agent

Appl. Sci. 2020, 10, 7552 19 of 20

Table A2. Modification cost evaluations on modification cases of agent behaviors.

Case
ID

Modification
Case Description

Conventional Simulation Environment Proposed Simulation Environment

Required Modification
Procedures

Reviewed and
Modified Parts

Required Modification
Procedures

Reviewed and
Modified Parts

C10
Changing the number
of AGVs in the iCarry

transport system

• Editing the
parameters of the
number of agents
and their locations
in
configuration files

N/A

1. Copying/deleting the
iCarry agents

2. Editing the parameters
of the agent locations in
configuration files

N/A

C11 Changing the speed of
iCarry AGVs

• Editing the
parameters in
configuration files

N/A
• Editing the parameters in

configuration files N/A

C12
Changing the number
of AGVs in the Racrew

picking system

• Editing the
parameters of the
number of agents
and their locations
in
configuration files

N/A

1. Copying/deleting the
Racrew agents

2. Editing the parameters
of the agent locations in
configuration files

N/A

C13

Changing the battery
charging threshold of
the AGVs in Racrew

picking system

• Editing the
parameters in
configuration files

N/A
• Editing the parameters in

configuration files N/A

C14
Changing the speed of

AGVs in Racrew
picking system.

• Editing the
parameters in
configuration files

N/A
• Editing the parameters in

configuration files N/A

C15
Changing the box

import speed of Auto
Storage System.

• Editing the
parameters in
configuration files

N/A
• Editing the parameters in

configuration files N/A

References

1. Hofmann, E.; Rusch, M. Industry 4.0 and the Current Status as well as Future Prospects on Logistics.
Comput. Ind. 2017, 89, 23–34. [CrossRef]

2. Pokahr, A.; Braubach, L.; Sudeikat, J.; Renz, W.; Lamersdorf, W. Simulation and Implementation of Logistics
Systems based on Agent Technology. In Proceedings of the Hamburg International Conference on Logistics
2008: Logistics Networks and Nodes, Hamburg, Germany, 4–5 September 2008; pp. 1–18.

3. Barbosa, J.; Leitão, P. Simulation of Multi-agent Manufacturing Systems using Agent-Based Modelling
Platforms. In Proceedings of the 9th IEEE International Conference on Industrial Informatics, Lisbon,
Portugal, 26–29 July 2011; pp. 477–482.

4. NetLogo. Available online: https://ccl.northwestern.edu/netlogo/references.shtml (accessed on 1 April 2020).
5. Boyes, H.; Hallaq, B.; Cunningham, J.; Watson, T. The Industrial Internet of Things (IIoT): An Analysis

Framework. Comput. Ind. 2018, 101, 1–12. [CrossRef]
6. Merschformann, M.; Xie, L.; Li, H. RAWSim-O: A Simulation Framework for Robotic Mobile Fulfillment

Systems. Logist. Res. 2018, 11, 1–11.
7. Hazard, C.J.; Wurman, P.R.; D’Andrea, R. Alphabet Soup: A Testbed for Studying Resource Allocation in

Multi-vehicle Systems. In Proceedings of the AAAI Workshop on Auction Mechanism for Robot Coordination,
Boston, MA, USA, 16–17 July 2006; pp. 1–8.

8. World Population Prospects 2019, United Nations. Available online: https://population.un.org/wpp/

(accessed on 24 July 2020).
9. Ståhl, I. Simulation prototyping. In Proceedings of the Winter Simulation Conference, San Diego, CA, USA,

8–11 December 2002; pp. 572–579.
10. Bengtsson, P.; Lassing, N.; Bosch, J.; Vliet, H. Architecture-level modifiability analysis (ALMA). J. Syst. Softw.

2004, 69, 129–147. [CrossRef]
11. Luke, S.; Cioffi-Revilla, C.; Panait, L.; Sullivan, K.; Balan, G. MASON: A Multi-Agent Simulation Environment.

Simul. Trans. Soc. Modeling Simul. Int. 2005, 81, 517–527. [CrossRef]

http://dx.doi.org/10.1016/j.compind.2017.04.002
https://ccl.northwestern.edu/netlogo/references.shtml
http://dx.doi.org/10.1016/j.compind.2018.04.015
https://population.un.org/wpp/
http://dx.doi.org/10.1016/S0164-1212(03)00080-3
http://dx.doi.org/10.1177/0037549705058073

Appl. Sci. 2020, 10, 7552 20 of 20

12. GAMA Platform. Available online: https://www.media.mit.edu/tools/gama-platform/ (accessed on 1
July 2020).

13. Artisoc4. Available online: https://mas.kke.co.jp/en/ (accessed on 1 July 2020).
14. Brooks, R.J.; Tobias, A.M. Choosing the best model: Level of detail, complexity, and model performance.

Math. Comput. Model. 1996, 24, 1–14. [CrossRef]
15. RaLC. Available online: http://ralc.cec-ltd.co.jp/ (accessed on 1 April 2020).
16. Xie, L.; Li, H.; Thieme, N. From Simulation to Real-World Robotic Mobile Fulfillment Systems. Logist. Res.

2019, 12, 9.
17. Cossentino, M.; Lodato, C.; Lopes, S.; Ribino, P. Multi Agent Simulation for Decision Making in Warehouse

Management. In Proceedings of the Federated Conference on Computer Science and Information Systems,
Szczecin, Poland, 18–21 September 2011; pp. 611–618.

18. Maka, A.; Cupek, R.; Wierzchanowski, M. Agent-based Modeling for Warehouse Logistics Systems.
In Proceedings of the UKSim 13th International Conference on Modelling and Simulation, Cambridge, UK,
30 March–1 April 2011; pp. 151–155.

19. Wang, Y.; Ye, S.; Yan, G. Multi-agent System Developed for the Logistics Supply Chain Coordination and Risk
Management. In Proceedings of the International Conference on E-Business and E-Government, Guangzhou,
China, 7–9 May 2010; pp. 3243–3246.

20. Wang, Y. Flexible and Responsive Multi-agent Based Logistics Coordination Management. In Proceedings
of the 2nd IEEE International Conference on Information Management and Engineering, Chengdu, China,
16–18 April 2010; pp. 43–47.

21. Heath, B.; Hill, R.; Ciarallo, F. A Survey of Agent-Based Modeling Practices (January 1998 to July 2008).
J. Artif. Soc. Soc. Simul. 2009, 12, 1–9.

22. Bordini, R.; Hubner, J.; Wooldridge, M. Programming Multi-Agent Systems in AgentSpeak Using Jason; John Wiley
& Sons, Inc.: West Sussex, UK, 2 October 2007; pp. 1–294.

23. Finin, T.; Fritzson, R.; McKay, D.; McEntire, R. KQML as an Agent Communication Language. In Proceedings
of the Third International Conference on Information and Knowledge Management, Gaithersburg, MD, USA,
29 November–2 December 1994; pp. 456–463.

24. FIPA ACL Message Structure Specification. Available online: http://www.fipa.org/specs/fipa00061/SC00061G.
html (accessed on 23 September 2020).

25. Kato, T.; Takahashi, H.; Kinoshita, T. Multiagent-based Autonomic and Resilient Service Provisioning
Architecture for the Internet of Things. Int. J. Comput. Sci. Netw. Secur. 2017, 17, 36–58.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.media.mit.edu/tools/gama-platform/
https://mas.kke.co.jp/en/
http://dx.doi.org/10.1016/0895-7177(96)00103-3
http://ralc.cec-ltd.co.jp/
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Multi-Agent Simulation Modeling Environment for Logistics Warehouses
	Strategy of Proposed Simulation Environment
	Multi-Agent Simulation Environment Architecture
	Agent Architecture
	Message and Fact Architecture

	Prototypical Implementation of Proposed Simulation Environment
	Experiment to Compare Development Costs
	Purpose of Experiment
	Developed Simulation Model of Logistics Warehouse with Various Robots and Material-Handling Equipment
	Comparison of Development Costs

	Conclusions
	
	References

