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Featured Application: Enhancing the techniques of existing empirical equations by relating
visibility to Sand/Dust mass concentration for reliable estimations and to minimize potential
biases in incorporating calculations.

Abstract: In efforts to structure an expression for wave attenuation under a sand/dust storm, most
established calculations pronounce optical visibility as an essential parameter. Although visibility
information can be retrieved from weather stations, other commonly encountered sources may
present it differently, i.e., as total suspended particles (TSP). Consequently, several empirical equations
linking visibility to TSP concentrations were evaluated to address offset tendencies in estimations.
In addition to substantiating specific equations, the results revealed that averaging a pair of equations
has a 46.09% chance of estimating visibilities with a probability of 37.27%, a relatively low error
compared to that achieved by employing single equations, which were found to have a probability of
28.93% with a lesser chance (29.58%) of a low estimation error for the same set of data. The resulting
enhancement was evaluated by considering a study on a wireless sensor network’s (WSN’s) signal
performance under vaguely labelled meteorological conditions. The meteorological conditions were
converted to visibility using the results’ suggestions and were found to be in good agreement with an
observation standard set by the China Meteorological Administration (CMA) for sand/dust storm
outbreak classifications.

Keywords: sand/dust storm (SDS); signal attenuation; visibility; total suspended particles (TSP)

1. Introduction

The effect of sand storms, among other phenomena, on signal propagation has gathered notable
attention from many studies as communication and distant sensing are being utilized by many civil
applications. As sand storms are a common meteorological phenomenon that will interfere with the
highly anticipated advantages of wireless connectivity, different authors have attempted to structure
mathematical representations of path attenuation to estimate the loss of signal energy, particularly
when under unique environments.

Chu [1] developed the first known attenuation coefficient (A) expression for propagating waves in
dust or sand storms by employing related scattering theories and assuming a monodispersive particle
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size distribution. Following a series of assumptions, derivations, and substitutions, the author arrived
at a general model containing the following parameters:

A = 2 ∗
2π
λ
α0 ∗ r ∗ =

(
ε− 1
ε+ 2

)
dB/km, (1)

where λ is the wavelength in meters (2π/λ = free space wavenumber), α0 is the optical attenuation
coefficient (dB per km), r is the particle radius in meters, and = of the parenthesized expression
corresponds to the imaginary part of the refractive index of the volume of space containing particulates;
and ε is the complex relative permittivity of the particles given by ε′ − jε′′ .

Furthermore, Chu [1] demonstrated mathematically, before obtaining the attenuation coefficient
expression, α0’s relationship to total particle density (NT), and described it as follows:

NT = 3.67 ∗ 10−5α0

r2 (# of particles/m3), (2)

The previous relationship helps solve for α0, thus Chu’s [1] attenuation coefficient expression may
alternately be expressed as:

A = 3.43 ∗ 105 NT

λ
∗ r3
∗ =

(
ε− 1
ε+ 2

)
dB/km, (3)

However, α0 and NT in (2) and (3) impose a challenge in terms of fulfilment either due to difficulties
involved with their measurements or because they are statistically very scarce [2]. Therefore, it has been
suggested that visibility should be considered as an alternative parameter as mathematical expressions
relate it to α0 and NT. Chu [1] gave the simple relation between the optical attenuation coefficient (α0)
and visibility (V) in km as:

α0 =
15
V

dB/km, (4)

where the proportionality constant of 15 dB is simply the 10-log of 0.031, which is a measured median
of the normalized difference in luminance between a mark and a reference background [1]. Patterson
and Gillette [3], on the other hand, developed an empirical relationship between the dust mass
concentration (M) in g/m3 and the visibility (V) in km:

MVγ = C, (5)

where γ and C (g m−3 km) are constants, and according to Patterson and Gillette [3], their value
depends on the dust storm’s geographical area of origin and associated climatic conditions. Essentially,
Equation (5) is the ratio of the mass concentration, M, to the extinction due to particles, σP,
which is designated by K. At the same time, the ratio can be related to Koschmieder’s visibility
law (V = |ln 0.02|/σ ) by equating σP to the total extinction σ–σ that includes gaseous as well as
particulate optical effects, which is valid for low visibility conditions (σp � extinction by the air
molecules; σp = σ) [4]. As a result, we obtain:

V =
3.912 K

M
=

C
M

km, (6)

where 3.912K is denoted by C, leading to the relation MV = C. Assuming a consistent particle size
distribution changes with increasing or decreasing visibility, Patterson and Gillette [3] empirically
fitted the measurement data with γ, thus relating M and V as demonstrated in Equation (5).
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The relationship given by Equation (5) is often used to solve for NT, assuming a case of
polydispersive particle distribution. To illustrate, the particle size distribution term [5] is introduced
into Equation (3), which becomes:

A =
8.19 ∗ 104

λ
∗ =

(
ε− 1
ε+ 2

)
∗

∫
∞

0
n(r) r3dr dB/km, (7)

where n(r) dr is the number of sand/dust particles in the radii range of r→ r + dr . A cubic meter of all
dust particles per cubic meter of air, i.e., the total relative volume (vr), is given by

vr =
4
3
π

∫
∞

0
r3n(r)dr m3 of dust/m3 of air. (8)

At the same time, vr has the following relation to the dust mass concentration (M) and the mass
particle density (ρ) in g/m3

vr =
M
ρ

m3 of dust/m3 of air (9)

Using Equations (8) and (9), vr may alternately be expressed as

vr =
M
ρ

=
C

ρ Vγ m3 of dust/m3 of air. (10)

Considering the form of Equation (8) and the relation given in Equation (10) for the size distribution
in Equation (7), we get

A =
8.19 ∗ 104

λ
∗ =

(
ε− 1
ε+ 2

)
∗

C
ρVγ dB/km, (11)

Taking advantage of the established relationships and the equations mentioned above, the various
authors that have attempted modifying Chu’s [1] attenuation model adopted the visibility parameter,
and below are some of the known attenuation models constructed by them:

1. Dong et al.’s [6] attenuation model:

A = 2.573 ∗ 10−3 F
Vγ ∗ =

(
ε− 1
ε+ 2

)
dB/km (12)

2. Goldhirsh’s [7] attenuation model:

A = 2.317 ∗ 10−3 1
λVγ ∗ =

(
ε− 1
ε+ 2

)
dB/km, (13)

3. Ahmed et al.’s [2] attenuation model:

A = 5.670 ∗ 104 1
λV
∗ re ∗ =

(
ε− 1
ε+ 2

)
dB/km, (14)

4. Ahmed’s [8] attenuation model:

A = 0.629 ∗ 103 F
V
∗ re ∗ =

(
ε− 1
ε+ 2

)
dB/km, (15)

5. Alhaider’s [9] attenuation model:

A = 0.189 ∗
F
V
∗ r ∗ =

(
ε− 1
ε+ 2

)
dB/km, (16)
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6. Dong et al.’s [10] attenuation model:

A = 7.7 ∗ 10−3 F
Vγ ∗ =

(
ε− 1
ε+ 2

)
dB/km, (17)

where F is the frequency in GHz in (12), (15), (16), and (17), V is the visibility in km in (12) to (17),
re is the effective particle radius in µm in (14) and (15), r is the particle radius in µm in (16), and λ

is the wavelength in meters in (13) and (14).

It is evidently clear that the attempts are very persistent in designating visibility as a critical
factor in signal attenuation calculations and as indicative of sand/dust storms intensity. However,
while statistical information on dust storm visibility can be retrieved from weather stations, other
commonly encountered sources may offer visibility in different terms. For instance, Patterson and
Gillette’s [3] work, as briefly hinted at earlier, attempted to deduce visibility from dust concentration
in the air based on an empirical relationship.

In fact, several additional empirical relationships have been established (Table 1) to calculate
visibility (V) in km from a known dust concentration (M; occasionally, referred to as total suspended
particles (TSP) in µg/m3. However, there are significant accompanying uncertainties, one of which is
the tendency to over- or under-estimate visibility [11], which is this paper’s interest.

Table 1. Visibility empirical equations, relationship development highlights, and their in-paper references.

Author(s) Visibility, km In-Paper Ref. Relationship Development Highlights

Chepil and Woodruff [12] V = 7078

M
4
5

E1

• Technique employed: field experiments.
• Monitoring period: 2 years.
• Location: near Menno, Kansas, USA.
• Field Observations: 22 averaged measurements at

different heights.
• Distance from targeted dust source: at, or very close to,

eroding dust source.

Patterson and Gillette [3] V = 10507

M
100
107

E2

• Technique employed: field experiments exploring
soil-derived aerosols.

• Monitoring period: 2 years.
• Location: rural areas of west Texas, USA.
• Field Observations: 13 measurements at a fixed height.
• Distance from targeted dust source: at, or very close to,

eroding source.Data best fit: 100
107 (min: 25

29 , max: 50
49 )

Tews [13] V = 2032

M
1000
877

E3 • Information inaccessible.

Shao et al. [14]
V<3.5 km = 4394515.462

240.41M
25
21 E4

• Technique employed: datasets from weather stations.
• Monitoring period: March/April 2002.
• Location: China, Japan, and Korea.
• Field Observations: Synoptic records and visibility observed at

around 1200 weather stations + near-surface dust
concentrations measured at 12 monitoring sites.

• 2 likely empirical relationships were found, with respective R2

being 0.68 (V < 3.5 km) and 0.72 (V ≥ 3.5 km).
V≥3.5 km =

−100 ln(M)+762
11

Baddock et al. [15] V = 3553.405

M
125
127

E5

• Technique employed: datasets from weather stations.
• Monitoring period: records of 24 years.
• Location: rural Mildura/Buronga.
• Distance from targeted dust source: 10–100 km from the sandy

soils of the Mallee region.
• An empirical relationship with an R2 = 0.79.

With the various assumptions made during attenuation expression derivations, it is necessary to
minimize biases that may arise from the encapsulated parameters due to their associated uncertainties.
Variations in M will result in different values for V and, consequently, for attenuation (A) in Equation (3)
via Equations (2) and (4), or in Equation (11) via Equations (5) and (7)–(10).

For convenience, the equations in Table 1 will be referred in discussions and some graphs in this
paper as denoted under the third column, where each equation is assigned an alphanumeric character
(e.g., E1 corresponds to Chepil and Woodruff’s equation).
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2. Approach and Associated Methods

In this section, the first sub-section presents an overview of datasets gathered from different regions
containing measured TSP concentrations and their corresponding recorded visibilities. In addition, the
TSP values are substituted into the empirical equations in Table 1 to illustratively present variations
in estimations.

Consequently, the next sub-section elaborates on the method, with the help of measured TSP
concentrations, with the aim of finding the closet visibility value to that recorded initially based on
equations in Table 1.

2.1. TSP and Visibility Datasets

Several sets of data point measurements have been collected from different sources (Table 2).
Diversifying collected datasets provides region-independent estimations and the viability of drawing
generalized conclusions. It is worth noting that the values tabulated represent the minimums and
maximums of the collected data. The data points between the extrema are generally known to obey
the form of a power function [16].

Table 2. Measured total suspended particles (TSPs) concentration ranges and their corresponding
recorded visibilities from different sources/regions.

Area of Sampling Measured TSP Concentration
Range, µg/m3

Recorded Visibility
Range, km

Number of
Data Points

Site Type
Reported Measurement Errors

TSP, ug/m3 Visibility, km

KSA [17,18] 269.86–7639.09 0.2–10 16 a Urban ±0.1 ±10% c

USA [3,19]
50–395 4.83–56.31 14 Urban

Min b:
848.18V−0.943 Not specified

Max b:
1218.6V−0.661

2000–440,000 0.06–8 13 Rural
Min: 10507V−1.16

Not specified
Max: 10507V−0.98

North-East Asia [13,20] 43.95–1401.5 1.41–12.41 23 Rural Not specified ±10% c

101.5–3071.4 0.97–24.17 30 a Various sites Not specified ±10% c

Australia [15] 24.99–20,505.5 0.2–40.31 47 a Rural Not specified ±10% c

a data point measurements were extracted from images using the digitization [21] method (TSP: Figure 7 in
[17]/Figure 9 in [18] and visibility: Figure 8 in [18]; Figure 2 in [14]; Figure 5 in [15]). b minimum (R2 = 0.7321) and
maximum (R2 = 0.7634) errors are fitted with a trendline for conciseness. Raw data may be inspected individually in
its respective reference. c an assessment [22] found that modern visibility sensors, despite their accuracy claims,
usually operate within an accuracy of ±10%.

The concisely listed variations in Table 2 confirm the notion of difficulty in producing a general
empirical relationship. This is observed in Figure 1, which is a visualization of quantities in Table 2,
where, for example, Chung et al.’s [20] and Almuhanna’s [17,18] rather similar visibilities correspond
to two different TSP concentrations in the air. However, despite the noted variations, the data plotted in
Figure 1 confirms an inversely-proportional relationship between the visibilities and TSP concentrations,
which generally agrees with the relationship of visibility (V) and TSP concentration (M) parameters in
the equations listed in Table 1.

Accounting for possible errors in measurements, Table 2 is supplied with additional information
in that regard. However, despite the lack of thorough documentation for some studies, it is believed
that most of the sources cited in this work hold great credibility, particularly the recent ones, given the
different techniques employed to conduct robust measurements [23].

2.2. Addressing Offsets in Empirical Equation Results

By substituting the TSP concentrations retrieved from the datasets into the equations in Table 1,
it becomes evident that the resulting visibilities (Figure 2) generally agree with the recorded values in
the distribution form, but suffer from considerable offsets. Furthermore, performing RMSE analysis
(Table 3) revealed that there was a significant performance difference among the evaluated models.



Appl. Sci. 2020, 10, 7530 6 of 15

Figure 1. Recorded visibility (linear scale) vs. recorded TSP concentration (logarithmic scale) ranges;
data point measurement ranges from 6 different sources.

Figure 2. Logarithmically plotted results of listed equations (refer to legend) in Table 1 and TSP
concentration from Australia (a), USA (b) and (e), North-East Asia (c) and (d), and KSA (f). It can be
observed that empirical formulas over- or under-estimate the originally recorded visibilities (�).
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Table 3. Performance (RMSE) of the equations in Table 1 compared against recorded visibilities using
the TSP values from sources in Table 2.

Source E1 E2 E5 E3 E4

KSA [17,18] 35.93 22.55 2.10 4.42 4.18

USA [3,19] 167.51 134.92 20.07 15.04 12.69
2.87 0.38 1.87 2.37 2.35

North-East
Asia [14,20]

101.54 82.02 18.81 3.58 11.14
58.26 40.66 7.40 9.81 5.71

Australia [15] 107.41 93.61 19.94 7.72 6.35

Average 78.92 62.36 11.70 7.16 7.07

However, the variation in performances in the form demonstrated in Figure 2 implies the tendency
to either over- or under-estimate visibilities based on given TSP concentrations. Therefore, it indicates
a chance that the closest values may reside within the average of two equations.

To develop an algorithm addressing the noted offsets in the calculated visibilities, we first defined
a layout for the retrieved data of calculated and recorded visibilities. By breaking the layout into
specific segments, the data became hospitable for transitioning into a programming environment.
Figure 3 highlights the breakdowns, with brief descriptions, of the tabulated data assigned to the
arrayed variables.

Figure 3. Breakdown of tabulated data for coding interpretability.

Three arrays were defined to hold the necessary data: namely, OriVal[Var] to store the recorded
visibilities, EqResults[Var] [5] to store the results of the equations in Table 1, and EqNum [5] to store
the alphanumeric characters to track alphanumerically the final, 2-averaged equations, with the lowest
error percentage. Additionally, the Var variable was substituted by the number of rows until Row n,
thus setting a boundary for loops and associated counters.

As demonstrated in Figure 4, the program comprises a few sequential steps, starting with
initializing the necessary variables and data-holding arrays. The program, then, processes one row at a
time (i.e., Row 1 to Row n in Figure 3), where each row has two main parts; the first is the original
value (e.g., Value 1 in Figure 3) of the recorded visibility, and the second part is a corresponding row of
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calculated values (Value 1-1 to Value 1-5) according to each equation (E1 to E5). The steps are repeated
for the subsequent rows, and stored values are retrieved from the arrays via the included counters
(colcounter and resultsCol).

Figure 4. Flow chart of the designed computer program.

Each row is processed to locate the two most suitable (i.e., lowest percentage error with reference
to an original value) averages of the summed empirical equations. Every empirical equation value is
initially set as a constant and then summed and averaged with every other equation value in the same
row. For example, the program starts with Value 1-1 as a constant, then it is summed and averaged
with each remaining value (Value 1-2 to Value 1-5). Finally, the results are calculated for the percentage
of error against the original value (Value 1) as follows:

Percentage o f Error =

∣∣∣∣∣∣∣
(valuen−c)+(valuen−v)

2

Value n
− 1

∣∣∣∣∣∣∣ ∗ 100, (18)

where n indicates the row number to point to the values, c is the number (1 to 5) to set the program
to the corresponding value as a constant until it has been processed for percentage of error with the
other values, and v is a varied number (1 to 5) to point to values to be summed with the currently
set constant.
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3. Results and Discussions

A total of 143 measured TSP data points were retrieved and subsequently used to calculate
visibilities using the equations in Table 1. In the first sub-section, the results are presented for general
observations and analysis; these are followed by another sub-section highlighting the statistical
significance of the results by suggesting optimistic scenarios and their probabilities.

3.1. General Observations and Analysis of the Results

The outcome of the program (C programming language; Visual Studio 2019) is defined under
two terms; recurrences and averaged percentage of error, as seen in Figure 5. The recurrences refer to
the number of combinations of two equations encountered that scored the lowest percentage of error,
which is the second term, to that of the original. It is worth noting that Figure 5 demonstrates the best
scores achieved in both cases for a single equation (i.e., E2, E3, E4, and E5) and the average of two
summed equations (e.g., E3E5, E3E4, etc.). In addition, E1 is observed to have failed to achieve any
significant results on its own as opposed to others.

Figure 5. Illustrated outcome of equation recurrences scores based on the lowest expected percentage
of error in estimating visibility at a given value of TSP concentration.

Sorting the results as described earlier revealed that averaging two summed equations may
potentially lead to better estimations compared to single equations. The highest recorded recurrences
(more than one-third of the results) were achieved by averaging E3E4 and E3E5, having relatively low
average estimation errors of 10.93% and 18.72%, respectively.

Not far from expectations, the subsequent significant recurrences were scored by three single
equations (i.e., E3, E4, and E5). The three single equations managed to score an accumulation of
48 recurrences with average estimation errors as low as 7.96% to 9.16% and as high as 30.71%.

Interestingly, from Figure 5, equations E3, E4, and E5, individually and in combination with each
other, seem to be responsible for the most significant recurrences (75.5% of the results). In contrast,
equations in combination with E1 and E2 were either marginally considerable or deemed negligible
due to their meagre number of recurrences. This observation is particularly notable in three sources, as
demonstrated in Figure 6, which is considered as a promising indicator. The reason being, the other
three sources [3,14,15] were used to derive some of the empirical equations in Table 1, whereas sources
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in Figure 6 are independent of any derivation process; hence, it is safe to assume the unbiased
significance of these equations.

Figure 6. Observed dominance of E3, E4, and E5 equations, single or in-combination, compared to a
complete absence of E1 and negligible contribution of E2. The numbers mediating the pie-charts are
the number of data points retrieved from the source.

According to some studies, the relationship between visibility and dust concentration is influenced
by a few factors such as dust particle size [24], extensivity of the data set used for derivations,
measurement accuracy, and the distance of the measurement device from the source of the eroding
soils [11].

While the geographical location of the experiment may account for some factors influencing
empirical relationship development (e.g., distance from eroding soil), others are subject to the methods
and equipment used. Previous studies exploring the relationship of visibility to TSP concentrations
(e.g., Chepil and Woodruff’s equation, E1; Patterson and Gillette’s equation, E2) were based on
field experiments. However, the relatively recent studies have become more innovative given
the vast technological advancements for data collection, validation, and monitoring techniques
(e.g., MODIS [25]).

For instance, Baddock et al.’s [15] (Equation E5) methodology employed data from a high-volume
sampler and dust monitoring devices for improved concentration estimates and to derive instantaneous
values of total suspended dust concentration from time-averaged values. Similarly, Shao et al.’s
study [14], based on an extensive set of measurements, produced two expressions to accommodate two
different dust-concentration-to-visibility relationship scenarios: one for distant dusts cases (threshold
visibility ≥3.5 km) and the other for local dust (threshold visibility <3.5 km). This, in turn, may suggest
that the combination of the prevailing equations (E3, E4, and E5) may have inherited such characteristics,
thus resulting in estimations that are comparatively more accurate.

3.2. Statistical Significance

Despite the noted variations in Figure 5, it is apparent that averaging equations for visibility
estimations exhibited noteworthy improvements, mainly if considered together with the resulting
percentage of error. These conclusions are supported by the simple statistical analysis presented in
Table 4, which describes the equation recurrences (average to maximum) with estimation percentage
of errors (minimum to average) probabilities under two cases: in combination and singly.
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Table 4. Statistical descriptions for equation recurrences in two states: singly and in combination, along
with their estimation percentage of error probabilities.

Set of Equations (Total Recurrences)
Statistical Description of Recurrences

Mean (µ) SD (σ) Min. Max. P (µ < Z <Max.)

Combination Equations
9 (91) 10.11 9.02 1 26 46.09%

Single Equation
4 (52) 13 6.22 4 18 28.93%

Statistical Description of Estimation Error
Mean (µ), % SD (σ), % Min., % Max., % P (Min. < Z < µ)

Average of Two Equations
9 (91) 11.66 9.99 0.28 36.8 37.27%

Single Equation
4 (52) 15.87 19.20 0 119.18 29.58%

The probabilities (P)—extracted based on the Z-score (Z) and normal distribution curve—of
combination equations indicate that targeted range of recurrences (10.11 to 26) scored a probability of
46.09% with a chance of a relatively low estimation error (0.28% to 11.66%) rated at 37.27%. Conversely,
single equations were found to have a probability of 28.93% for a range of 13 to 18 recurrences with a
lesser chance (29.58%) of low estimation error.

For conformation, the combination equations in Figure 5 were evaluated using the sources in
Table 2 and analyzed based on the technique used for Table 3, as shown in Table 5. In addition to
substantiating E3, E4, and E5, the tabulated values indicate a considerable reduction in estimation
error (reduced average RMSE) when in combination with each other.

Table 5. Performance (RMSE) of the algorithm-extracted combinations of equations.

Source E1E4 E1E5 E2E4 E1E3 E2E3 E2E5 E4E5 E3E4 E3E5

KSA [17,18] 19.93 18.66 13.29 15.91 9.31 12.04 3.02 1.42 2.09

USA [3,19] 84.77 93.21 68.30 77.88 61.59 76.93 13.68 11.66 8.69
0.53 0.63 1.09 0.46 1.10 0.85 2.10 2.36 2.12

North-East Asia [14,20] 56.03 59.94 46.06 51.55 41.96 50.34 14.38 6.06 10.61
30.72 30.81 22.15 25.97 17.85 22.48 6.30 6.04 7.17

Australia [15] 55.31 62.90 48.24 53.02 46.57 56.38 11.62 4.89 11.42

Average 41.22 44.36 33.19 37.46 29.73 36.50 8.52 5.40 7.02

Furthermore, despite the relatively poor performance of the other models, i.e., E1 and E2 in
Table 3, pairing them with other equations may introduce a minor enhancement to their performance.
Nonetheless, compared to E3, E4 and E5, they are deemed an unreliable estimator in our study.

In order to validate the importance of our findings, we can consider a case—provided in the
next section—where a reported work of signal attenuation measurements in a dust storm lacked
visibility information. Consequently, visibility estimation is needed with reasonable accuracy, thereby
making the reported measurements benchmarkable for further investigations using any of the provided
attenuation equations, i.e., Equations (12)–(17).

4. Employability Scenario: Assessing the Significance of the Enhanced Visibility
Estimation Process

Mujlid [26], in her study on path losses of wireless sensor networks (WSNs) during sand/dust
storms (SDS), measured signal attenuation under four environment conditions. These conditions were
ambiguously labelled clear sky, dusty sky, sand storm, and heavy sand storm to indicate the severity of
dust concentration at the experimental site.

However, the study set wind speed as an alternative meteorological representative of the
environmental conditions, which may be used to derive particle concentrations (TSP). Therefore, before
identifying visibilities, a preceding step is introduced to convert the meteorological condition into its
particle-concentration equivalent, through which visibility calculation becomes possible.
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4.1. Particle-Concentration Equivalent of a Dynamic Meteorological Condition (Wind Velocity)

As briefly stated earlier, Mujlid’s [26] study demonstrated a correlation of path loss to the wind
speed, which conversely can be understood as a link to the severity of the SDS. The reported wind
speeds were 0.6 m/s, 3.6 m/s, 3.8 m/s, and 7.3 m/s, respectively, for the environmental conditions of
clear sky, dusty sky, sand storm, and heavy sand storm. Although the specifications of the instrument
used for wind speed measurements are not reported in [26], it is believed that it is of a similar make
(JL-FS2 anemometer) to the one reported in this source [27] with an error of ±3%. Therefore, the
recorded speeds are expected to have reading errors of ±0.018 m/s, ±0.108 m/s, ±0.114 m/s, and
±0.219 m/s, respectively.

Since wind is the dynamic condition of dust storms [28], and dust storms are fundamentally a
concentration of particles in the air, it is plausible to establish a relationship between the number of
particle concentrations and corresponding wind speeds, as has been demonstrated by the authors
of [29] using the following expression:

M = 29.66e0.7u µg/m3, (19)

where M is the dust concentration in µg/m3 and u is the wind speed in m/s. By substituting the
reported wind speeds (and estimated errors) in the order mentioned in the earlier paragraphs into
Equation (13), we get the following values: 45.14 (±0.57) µg/m3, 316.2 (−26.84, +28.95) µg/m3, 424.03
(−32.52, +35.22) µg/m3, and 4913.78 (−698.38, +814.09) µg/m3, respectively.

Equation (19) provided by K. Kandler et al. [29] was superficially mentioned without elaborating
on its employability restrictions. However, assuming the same study environment as in [29], a recently
published work [30] indicated that variation in SDS particle concentrations are not only limited to
changing wind speeds but can be observed in their vertical distribution as well. Wei et al.’s [30] real-time
measurements revealed that during the SDS period for heights less than 100 m, the concentrations
ranged between 1220 µg/m3 and 42,146 µg/m3. Meanwhile, the lowest measured concentration in
the same event at its initial meteorological conditions leading up to the storm was an average of
31.62 µg/m3 at heights less than 200 m.

Wei et al.’s [30] results confer greater credibility on the results obtained from Equation (13).
Therefore, for evaluation purposes, the values may be adopted conveniently, considering that the
observation height for Mujlid’s [26] environment conditions could not have exceeded 1.7 m, which is
the average human height [31].

4.2. Evaluating the Proposed Visibility Calculation Method

With the dust concentrations (M) obtained from Equation (19), visibilities (V) can be calculated
using any combination of visibility equations adhering to our findings. Having the lowest average
RMSE, the averaged sum of E3 and E5 is taken as an example for evaluation, and the results
are presented in Table 6 in addition to the calculated dust concentrations and wind speeds with
corresponding inaccuracies.

Table 6. Corresponding dust concentrations and visibilities for the reported wind speeds in [26].

Wind Speed, m/s Calculated Dust Concentration, µg/m3 Calculated Visibility, km

0.6 (±3%) 45.14 (±0.57) 30.51 (−0.24, +0.25)
3.6 (±3%) 316.2 (−26.84, +28.95) 9.9 (−0.53, +0.55)
3.8 (±3%) 424.03 (−32.52, +35.22) 8.16 (−0.45, +0.46)
7.3 (±3%) 4913.78 (−698.38, +814.09) 0.43 (−0.046, +0.087)

In addition to scattered evidence [32], the visibilities in Table 6 and the environmental conditions
in [26] can be further supported by considering a meteorological standard that was set for reporting
purposes. In 1979, the China Meteorological Administration (CMA) [33–35] established a standard
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for dividing SDS outbreak sequences into four levels. Each level is a description of a meteorological
process associated with a projected range of horizontal visibility, and they are as follows: (1) floating
dust (V < 10 km); (2) blowing dust (1 km ≤ V ≤ 10 km); (3) sand/dust storm (0.5 km ≤ V ≤ 1 km);
and (4) severe sand/dust storm (V < 0.5 km).

In comparison, of the four environment conditions defined by [26], three conditions, along with
the calculated visibilities, despite the associated errors, exhibit a high degree of range-compliance in
accord with the CMA’s levels (Table 7). It is worth noting that the clear sky condition was not included
since it corresponds to unobstructed horizontal visibility that extends beyond 10 km.

Table 7. Environment conditions labelled by [26] with the corresponding calculated visibilities and
their similarities to the China Meteorological Administration’s standards.

Environment Classification and Wind Speed Measurements by [26] Standards Defined by the China Meteorological
Administration (CMA)

Environment condition Wind speed, m/s Calculated visibility, km Environment condition Expected horizontal visibility, km
Dusty sky 3.6 (±3%) 9.9 (−0.53, +0.55) Floating dust <10

Sand storm 3.8 (±3%) 8.16 (−0.45, +0.46) Blowing sand 1–10

Heavy sand storm 7.3 (±3%) 0.43 (-0.046, +0.087) Dust/sand storm 0.5–1
Severe dust/sand storm <0.5

Furthermore, it has been statistically inferred that for a span of two decades, the lowest
storm-erupting wind speed was 5 m/s [36], which validates the 4th tabulated environment condition
since the reported wind velocity was 7.3 m/s. Besides, with visibility of 0.56 km, it shows exceptional
conformity to the CMA’s specified visibility projections (0 ≤ visibility ≤ 1 km) for SDS events.

As for the remaining conditions with wind velocities below 5 m/s, it is still considered within an
acceptable CMA classification range given the overlapping projections of horizontal visibility ranges,
which are generally below 10 km.

5. Conclusions

This paper aimed to address the claims of visibility over- and under-estimation tendencies
resulting from existing empirical equations. To that end, an algorithm was developed to assist in
processing various data sets of TSPs and recorded visibilities, and output the best fitting results in terms
of equation recurrences accompanied by their estimation percentage of error. The sources consisted of
variations in terms of data collection techniques, sites of interest (urban, rural, or regional level) with
particulate concentrations as low 25 ug/m3 and as high as 440 mg/m3 and corresponding visibilities as
high as 56 km and as low as 0.06 km.

While the results did not yield a decisive conclusion, they did partially substantiate the Tews [13]
(average RMSE of 7.16), Shao et al. [14] (average RMSE of 7.07), and Baddock et al. [15] (average
RMSE of 11.7) equations, which emerged as reliable estimators of visibility with reasonable accuracy
compared to other empirical models (average RMSE > 29). Furthermore, by using our technique,
we found that by averaging Tews [13] and Shao et al. [14], Tews [13] and Baddock et al. [15],
and Shao et al. [14] and Baddock et al.’s [15] equations, average RMSE could be further reduced to 5.4,
7.02, and 8.52, respectively.

Finally, to evaluate the proposed approach, we provided a demonstration of employability, where
a study provided signal attenuation measurements at an experimental site with vaguely defined
meteorological conditions. Consequently, the conditions were converted into visibility using our
findings and found to be in a good agreement with projected ranges of horizontal visibility standards
set by the China Meteorological Administration (CMA).
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