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Abstract: The subgrade performance assessment and targeted maintenance of a highway during
operation is very important and challenging. This paper focuses on the performance of the whole
life-cycle of a highway subgrade during the operational period. Four roads with different traffic
volume and geological conditions were selected; 20 test sections of these 4 roads were examined for a
three-year distress survey, and 18 specific subgrade distresses of the 5 assessment objects were tracked
and collected. First, based on the analytic hierarchy process (AHP), the subgrade performance of the
selected section is evaluated, and the subgrade performance index (SPI) at different time periods is
obtained. Then, based on the internal and external factors which affect the subgrade, three algorithms
to determine the optimal support vector machine (SVM) model were proposed to train and predict
the SPI. The results show that the SPI predicted results based on the data time series and particle
swarm optimization–least squares SVM (PSO–LSSVM) model are better than those based on grid
search (Grid-SVM) and genetic algorithm (GA-SVM) models. Finally, this paper provides a detailed
idea for the rational layout of subgrade life-cycle assessment and decision-making by establishing a
subgrade performance assessment–prediction–maintenance–management architecture system.

Keywords: subgrade distresses; analytic hierarchy process; support vector machine; life-cycle;
subgrade maintenance

1. Introduction

By the end of 2019, the total mileage traveled on highways had reached 5.01 million kilometers in
China. With the continuous improvement and use of the road network, the planning of roads began
to transform from a large-scale construction period to a persistent maintenance stage. Due to the
wide distribution of roads, the impact of environmental factors is extremely complex, and subgrade
engineering will face severe challenges in the service process. With the increase in the service time of a
subgrade, the performance of the subgrade structure will decline. More seriously, under the influence
of rainfall, subgrade distresses will increase and cause subgrade performance to suffer.

The types of subgrade distresses vary across different regions, but generally include shoulder
distresses, slope stability, damage to drainage facilities, and damage to facilities attached to reinforced
structures [1–4]. Highway subgrade distresses in mountainous areas include subgrade subsidence,
reinforced structure damage, slope landslides, subgrade cracks, and poor drainage [5]. To address
the different types of subgrade distresses, four assessment systems are established, which include
shoulder, slope, drainage facilities, and retaining wall systems. Then, the assessment model of a
highway subgrade is obtained by a linear regression method [6].
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During the operational period, rainfall is the main factor affecting the structure and function of a
subgrade. The repeated failure of the railway embankment at a place called Malda, in the state of West
Bengal in India, occurred after continuous heavy rainfall [7]. Persistent rainfall accelerates the trend of
slope sliding and stability deterioration, producing local uplift on the leading edge and obvious tensile
deformation on the trailing edge. It can also affect the previously built retaining wall and intercepting
ditch, causing small-scale toppling, faulting, and fracturing [8]. Infiltration-induced landslides are
a recurrent threat along many highway corridors and pose a challenge to safe operation and the
maintenance of roadways [9]. In addition, time not only plays an important role in the development
of pavement cracks [10], but also causes the aging of reinforced structures and a decrease in tensile
strength [11–13].

As there are different types of subgrade distresses in many areas during the operational stage,
timely maintenance and treatment should be carried out to reduce the risk to driving safety. When there
is a large-scale subgrade distress problem in the operational stage, it not only increases the difficulty of
engineering treatment, but also increases the driving risk. Therefore, it is necessary to improve the
service level of the highway life-cycle and reduce the economic cost of the project through the accurate
evaluation and prediction of subgrade performance.

High precision prediction can provide a scientific guide for the early warning and forecasting
of geotechnical activity [14–19]. A machine learning method, the support vector machine (SVM),
was proposed by Vapnik [20]. The SVM is a machine learning method established based on statistical
learning theory for a small sample and the principle of structural risk minimization. It looks for
a non-linear relation between outputs and inputs by mapping the inputs to a high dimension
space based on a kernel function [17,21,22]. For better performance, an improved version of the
SVM, the least square support vector machine, was proposed [23]. This version runs faster and
shows more adaptability. However, since the SVM is highly sensitive to the selection of model
parameters, it is important to obtain the optimal parameters through an effective and intelligent
algorithm [24–26]. Here, intelligent algorithms such as grid search [27], genetic algorithm [28],
and particle swarm optimization [15,29] are the most widely adopted approaches. Particle swarm
optimization (PSO) is a recently developed population-based global optimization technique [30],
which has been widely used by the optimization community due to its very good performance,
wide applicability, and simplicity [15,31,32]. Considering the excellent global search ability of the PSO
algorithm, we use the PSO algorithm to obtain the model parameters.

In this paper, 20 test sites were selected from 4 typical national and provincial highways in
Guangdong Province, China, to collect subgrade distresses over 3 years. Through the analytic hierarchy
process, the assessment system of the Subgrade Performance Index (SPI) was established. By analyzing
the response relationship between the SPI and the factors affecting subgrade performance, the particle
swarm optimization–least squares support vector machine (PSO–LSSVM), based on the factors of time
and precipitation, was proposed to predict the SPI in the near future. Then, according to the predicted
subgrade performances, the corresponding countermeasures were carried out.

2. Investigation of Subgrade Distresses in Test Area

2.1. Description of the Test Area

In the first decade of the 20th century, an unprecedented upsurge of highway construction was
initiated in Guangdong, China, where the economy developed rapidly, and the construction of the
backbone highway network was carried out on a large scale. By 2016, most highways had been
operating for approximately ten years. The subgrade performances were relatively stable during the
first 10 years of the operational period, but after the 10-year operational period, subgrade distresses were
aggravated by typhoons and heavy rainfall activities in recent years. Therefore, it is necessary to select
typical roads for performing an effective subgrade distress investigation, evaluation, and prediction,
to reasonably plan subgrade maintenance.
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The locations of the four typical first-class highways that are crucial to the local highway network
are given in Figure 1. Two different highway classifications are included: one National Highway (G105)
and three Provincial Highways (S223, S270, and S356). (1) G105 is located in Conghua City, in the
central part of Guangdong Province. The highway is located in the transitional zone from the Pearl
River Delta to the mountain area in the north of Guangdong Province. The Quaternary weathered
layer and residual soil along the line are relatively well developed, and the regional bedrock is mainly
granite. (2) S223 is located in Meizhou City, in the northeast of Guangdong Province. This line is
mainly distributed in mountainous and some hilly terrain areas. Broken silty sandstone is widely
distributed along the route with developed joints and fissures. (3) S270 is located in the south–central
part of Guangdong Province, adjacent to the Pearl River Delta. The terrain along the line is mainly
plains, with a widely distributed soft foundation. This route is mainly located in a marine sedimentary
zone, with flat terrain and developed regional water systems. The joints and fissures of the rock mass
are developed, the joints are crisscrossed, and the degree of integration is poor. (4) S356 is located in
Huizhou City in the southeast coast of Guangdong Province. There are numerous high and steep
slopes along the line with broken weathered shale rock and soil distributed alternately. Five typical
unit sections are selected from each highway, and the length of each unit section is 1 km. In total,
twenty representative test sites from four highways are included: G105 from K2451 to K2456, S223 from
K91 to K96, S270 from K100 to K105, and S356 from K5 to K10.
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2.2. Implementation of the Subgrade Distress Investigation and Data Collection

2.2.1. Investigation of the Subgrade Distresses in the Test Section

The subgrade distress investigations of the test sections began in 2016 and were conducted twice
in March and September every year. Through the end of March 2019, a total of seven sets of survey data
were obtained. Through the systematic distress survey conducted over three years, the typical distress
forms of highway subgrade in this area are shown in Figure 2. In view of Figure 2a, there are four types
of distresses that affect the performance of the shoulder, including shoulder defects, blocked drainage,
uncleanliness, and curb defects. The performance of the shoulder will affect the flatness and solidity of
the subgrade. At the same time, the shoulder can provide lateral support for the base and cushion
of the subgrade and stabilize the structure of each layer of subgrade. Figure 2b depicts that the



Appl. Sci. 2020, 10, 7529 4 of 20

performance of drainage facilities has been affected, which results in poor subgrade drainage. There are
three types of distresses affecting the drainage facilities: blocking, damage, and inadequate drainage
facilities. When the drainage facilities are blocked, the water in the road area will not be completely
and quickly discharged. This will reduce the shear strength of the soil and affect the strength and
stability of the subgrade. Figure 2c illustrates the distresses of the reinforced structure. There are
three types of distresses that affect the performance of the reinforced structure: blockage of drainage
holes, damage to the structure, and abnormal structural stress. A reinforcement structure is used to
support a natural slope or an artificial fill slope to ensure soil stability. When the reinforced structure is
damaged, the structural function will decline and cause the soil to collapse or the slope to lose stability.
This will negatively affect the safety of road users. As shown in Figure 2d, there are three types of
distresses affecting the performance of the embankment and roadbed: uneven settlement, pumping,
and cracking and sliding. The cracking of the embankment will cause rainwater to directly enter the
embankment soil layer, thereby reducing the strength and resilience modulus of the embankment soil.
In this situation, the stability of the subgrade is negatively affected. Figure 2e displays the distresses of
the slope after rainfall. There are five types of distresses affecting the slope performance: slope erosion,
cracking, local collapse, rockfall, and landslides. A slope is an important part of subgrade. The stability
of the slope determines the overall function and structure of the subgrade.
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Figure 2. Subgrade distresses in the test sites: (a) road shoulder; (b) drainage facilities; (c) reinforced
structure; (d) embankment and roadbed; and (e) slope.

2.2.2. Subgrade Distress Data Collection

The collection of subgrade distress data is based on manual surveys, which are mainly conducted
through an operable visual method, supplemented by a tape measure. The basic principles of the
collection process are simple, scientific, reasonable, and easy to carry out. Subgrade distresses data
were collected and the determination of the deduction points are shown in Table 1. Two distress levels
(severe and minor) of the cracks were collected in the test sections. An average crack depth less than
or equal to 25 cm was treated as a “minor” distress level. The levels of the other subgrade distresses
follow the specification of JTG H20-2007 [33].

2.3. Evolution Process and Influencing Factors of Subgrade Distress

The climate in the investigated area is that of a subtropical monsoon, which is one of the regions
with the most rainfall in China. Figure 3 shows that the area where the four roads are located has an
annual rainfall that is greater than 1500 mm. Both G105 and S270 have reached 2200 mm of annual
rainfall. The annual rainfall distribution is extremely uneven and the precipitation from April to
September accounts for more than 80% of the whole year. Landslides, debris flow, and other geological
disasters are triggered after the annual seasonal rainfall and monsoon period [34–36].
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Figure 4 illustrates the development of two typical subgrade distresses in S223 and S270.
Figure 4a,b display the performances of the embankment and roadbed in S223. As shown in
Figure 4a, the embankment and roadbed were in good condition when the survey was started in
March 2016. However, due to the influence of the cumulative precipitation of 2206 mm from March
2016 to March 2017, there were some longitudinal and transverse cracks on the pavement. During the
follow-up of the investigation, it was found that the cracks spread faster in the period from March to
September each year. This is related to the seasonal heavy rainfall in this period. Figure 4b depicts
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the condition at the last investigation in March 2019. Due to the infiltration of rainfall along the
existing cracks, the embankment soil flowed out, resulting in the uneven settlement of the embankment.
Figure 4c,d depict the slope performances of S270. As can be seen from Figure 4c, at the beginning of
the investigation in March 2016, the slope was covered with vegetation and was in good condition.
Unfortunately, in June and August 2018, this region was frequently impacted by tropical storms.
From June 4 to 9, the region experienced continuous rainfall, with an accumulated rainfall of 807.8 mm
and a maximum daily rainfall measuring more than 500 mm. As can be seen from Figure 4d, in March
2019, the last survey found that a large number of existing slopes suffered from slope erosion and
local collapse.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 21 

 
Figure 4. Distresses development in the test sites: (a) performance of the embankment and roadbed 
of S223 in 2016; (b) performance of the embankment and roadbed of S223 in 2019; (c) performance of 
the slope of S270 in 2016; and (d) performance of the slope of S270 in 2019. 

3. Methodology 

3.1. Systematic Assessment Method of the Subgrade Performance 

3.1.1. Hierarchical Structure 

The analytic hierarchy process (AHP), developed by Thomas Saaty in the late 1970s [37], enables the 
derivation of priorities or weights, as opposed to arbitrary judgment [38]. The AHP method is widely used 
in the sensitivity analyses of geotechnical engineering applications with high performance [39–43]. 
According to the content of the subgrade performance survey and the principle of AHP, an SPI 
hierarchical structure model was established. This is shown in Figure 5a. The specific subgrade 
distresses, such as shoulder defects, uneven settlement, slope erosion, blockage of drainage holes, 
and so on, are the first-level indexes. Then, the five assessment objects of the road shoulder, 
embankment and roadbed, slope, drainage facilities, and reinforced structures are taken as the 
second-level indexes. Finally, the SPI can be established for the target layer. 

(a)

Uneven settlement; Pumping; 
Cracking and sliding

Slope erosion; Cracking; Rockfall;  
Local collapse; Landslide

Blocking; Damage; Inadequate 
drainage facilities

Blockage of drainage holes; 
Damages to the structures; 
Abnormal structural stress

Road shoulder

Embankment 
and roadbed

Slope

Drainage 
facilities

Reinforced 
structures

Subgrade 
Performance 
Index (SPI)

PSO-LSSVM

(b)
Time Total rainfall

Rainfall 
days

Maximum 
daily rainfall

Training 
samples

Randomly generating a 
group of parameters of 

PSO

Calculating of  
individual fitness 

values

Update particle 
velocity and 

position

(b)

Find out the optimal 
parameters of 

LSSVM model

Shoulder defects; Blocked drainage; 
Uncleanliness; Curb  defects

Meet the terminal 
criteria? 

Training LSSVM 
model

New Parameters of 
PSO

Training 
samples

Randomly generating a 
group of parameters of 

PSO

Calculating of  
individual fitness 

values

Update particle 
velocity and 

position

Yes

No

PSO-LSSVM

Time Cumulative 
precipitation (b)

Rainfall 
days

Maximum 
daily 

precipitation

PSO-LSSVM
PSO-LSSVM prediction 

with test and training  
samples

(c)

 

Figure 4. Distresses development in the test sites: (a) performance of the embankment and roadbed of
S223 in 2016; (b) performance of the embankment and roadbed of S223 in 2019; (c) performance of the
slope of S270 in 2016; and (d) performance of the slope of S270 in 2019.
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Table 1. Subgrade distresses data collection and determination of the deduction points.

Object Distress Types Level Unit Deduct Points Definition

Road shoulder

Shoulder defects
Minor Place 10 Shallow rutting or potholes less than 25 mm
Severe Place 20 Shallow rutting or potholes larger than or equal to 25 mm

Blocked drainage Minor Place 10 Along the trend of subgrade, the length of blocking drainage is 5–20 m.
Severe Place 20 Along the trend of subgrade, the length of blocking drainage is more than 20 m

Uncleanliness Place 5 There are accumulated debris and weeds on the road shoulder

Curb defects Place 5 Loss, damage, or toppling of curbs

Drainage facilities

Blocking Minor Place 5 There are sundries and garbage in the drainage system. Every 10 m is one place, and less
than 10 m is maintained

Severe Place 10 The full cross-section of the drainage system is blocked, every 10 m is one place, and less
than 10 m is maintained

Damaged Place 5 The lining spalling damage and masonry body cracking occurred

Inadequate drainage
facilities Km 100 One point will be deducted for every 10 m of inadequate drainage facilities, and less than

10 m is maintained

Reinforced structures

Blockage of drainage holes Place 20 The expansion joint of the structure is used as the dividing section. When 30% or more of
the drain holes have poor drainage, it is counted as one place

Damages to the structures Minor Place 10 Partial foundation washout, wall voids, and slight cracks in supporting structures
Severe Place 20 The overall cracking, inclining, and sliding of the retaining structure appear

Abnormal structural stress Place 50 Judging by the instability of independent reinforced structures

Embankment and
roadbed

Uneven settlement
Minor Place 20 The height difference of uneven settlement is 30–50 mm
Severe Place 50 The height difference of uneven settlement is greater than 50 mm

Pumping Place 5 The mud gushing out of the roadbed is one place.

Cracking and sliding Place 50 Arc-shaped cracks along the longitudinal direction of the subgrade pose a greater threat to
the safety of the subgrade

Slope

Slope erosion Place 20 Gullies with a width and depth of 10 cm or more are counted as one place

Cracking Minor Place 20 There are some vertical cracks in the side boundary of the slope
Severe Place 50 A tensile crack at the top of the slope

Local collapse Place 50 The rock and soil mass on the slope surface is loose and broken, resulting in local slope
collapse

Rockfall Place 20 The rock mass splits and peels off, causing the gravel to roll off

Landslide Place 100 The overall slide of the slope causes traffic interruption
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3. Methodology

3.1. Systematic Assessment Method of the Subgrade Performance

3.1.1. Hierarchical Structure

The analytic hierarchy process (AHP), developed by Thomas Saaty in the late 1970s [37], enables the
derivation of priorities or weights, as opposed to arbitrary judgment [38]. The AHP method is widely
used in the sensitivity analyses of geotechnical engineering applications with high performance [39–43].
According to the content of the subgrade performance survey and the principle of AHP, an SPI
hierarchical structure model was established. This is shown in Figure 5a. The specific subgrade
distresses, such as shoulder defects, uneven settlement, slope erosion, blockage of drainage holes,
and so on, are the first-level indexes. Then, the five assessment objects of the road shoulder, embankment
and roadbed, slope, drainage facilities, and reinforced structures are taken as the second-level indexes.
Finally, the SPI can be established for the target layer.
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Figure 5. Flowchart of the subgrade performance assessment and prediction: (a) Subgrade performance
index (SPI) assessment system; (b) particle swarm optimization–least squares support vector machine
(PSO–LSSVM) model establishment; and (c) model prediction.

3.1.2. Comparison Matrix

To apply the AHP, it is necessary to decompose a complex unstructured problem into its constituent
indexes, arrange these indexes in hierarchical order, assign values to subjective judgments about the
relative importance of each index, and integrate these judgments to determine the priorities to be
assigned to these indexes [38]. Therefore, by comparing the importance of each index in the hierarchy
model, the corresponding comparison matrix A is obtained:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
...

an1 an2 . . . ann

 (1)
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Here, ai j is the importance of the comparison between index i and index j. The quantitative
method of 3-level importance is adopted, and the corresponding values are 0–2, which represents
important, unimportant, and equally important. When index i is more important than index j, ai j is
“2”; when index i is less important than index j, ai j is “0”; when i and j are equally important, ai j is “1”.

3.1.3. Building the Judgment Matrix

According to the comparison matrix A, the corresponding judgment matrix C is constructed
as follows:

ri =
n∑

l=1

ail (2)

bi j =


ri − r j, ri > r j

1, ri = r j

(r j − ri)
−1, ri < r j

(3)

ci j =

n
√

Πn
l=1bil

n
√

Πn
l=1bl j

(4)

C = (ci j)n×n (5)

where ri is the ranking element of importance, bij is the result of comparing the ranking elements with
each other, cij is the elements of the judgment matrix C, and i, j = 1, 2, . . . , n.

3.1.4. Calculation of the Index Weights

According to the judgment matrix C, the weighted values of each index are calculated as follows:

ωi = n

√√√ n∏
j=1

ci j →

normalization
processing

ωi =
ωi∑n

j=1 ω j
(6)

where ωi is the final weight value.

3.1.5. Application of the Weight Value

According to the deduction standard in Table 1, one must first obtain the distress deduction point
(DP), then the SPIi of each index in the second level, and the target of the SPI can be constructed
according to the following formula:

SPIi= 100−
m∑

j=1

(DPi j ×ωi j) →
integration

SPI =
5∑

i=1

(SPIi ×ωi) (7)

where DPij is an accumulated deduction point of distress j of index i in the second level, ωi j is the
weight value of distress, j, of index i in the second level, and ωi is the weight value of index i in the
second level.

3.2. Principles of the PSO–LSSVM Model

3.2.1. Least Squares Support Vector Machine (LSSVM)

The LSSVM is a supervised learning method that is not only used to analyze data and identify
patterns, but is also used for classification and regression analyses. The LSSVM applies equality
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constraints to inequality constraints of the SVM, thereby converting the quadratic optimization problem
into a system of linear equations that is based on the least squares criterion.

(xi, yi)
l
i=1 is a dataset of l samples where the input data, xi, are a D-dimensional input vector and

yi denotes the target data. The regression estimation function of the LSSVM is as follows:

f (x) = wTϕ(x) + b (8)

where f (x) denotes the predictive values, ϕ(x) is the nonlinear mapping from the input space to the
output space, and w and b are the coefficients to be adjusted.

Transforming the regression estimation function into a function minimization problem using the
slack variable e is performed by the following:

Minimize J(w, e) =
1
2
‖w‖2 +

1
2
γ

l∑
i=1

e2
i (9)

Subject to yi = wTϕ(xi) + b + ei, i = 1, . . . , l (10)

where γ is a regularization parameter.
To solve the optimization problem of the LSSVM, the Lagrangian function is constructed as follows:

L(w, b, e,α) = J(w, e) −
l∑

i=1

αi
(
wTϕ(xi) + b + ei − yi

)
(11)

where αi is the Lagrange multiplier. The conditions for optimality are given by:

∂L
∂w = 0→ w =

l∑
i=1

αiϕ(xi)

∂L
∂b = 0→

l∑
i=1

αi = 0

∂L
∂ei

= 0→ αi = γei
∂L
∂αi

= 0→ wTϕ(xi) + b + ei = yi

(12)

According to the Karush–Kuhn–Tucker optimum condition, the following linear equation set
is obtained: [

0 IT
l

Il K + γ−1Il

][
b
α

]
=

[
0
y

]
(13)

where Il = [1, 1, . . . , 1]T, α = [α1,α2, . . . ,αl]
T,y = [y1, y2, . . . , yl]

T, Il is an l × l identity matrix, K is a
kernel function with l× l symmetric matrix, and Ki j = ϕ(xi)

Tϕ(xi) = K(xi, x j).
There are three commonly used kernel functions available: the linear kernel, polynomial kernel,

and radial basis kernel function (RBF). In this paper, the radial basic function (RBF) is used as the
kernel function of the LSSVM model because of its wide convergence domain and excellent nonlinear
mapping performance [44]. Finally, the regression function of the LSSVM prediction model can be
obtained by:

f (x) = wTϕ(x) + b =
l∑

i=1

αiK(x, xi) + b (14)

3.2.2. Parameter Selection of the LSSVM Using PSO

When the kernel function of the LSSVM is RBF, there are two parameters that need to be
determined by users in order to determine the efficiency and generalization performance of the
LSSVM: the regularization parameter, γ; and the kernel function width, σ. Inspired by the social
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interaction model of birds foraging, PSO uses swarm intelligence to achieve the goal of optimization.
A particle is used to simulate the individual birds. Particles have only two attributes: speed and
position. Speed represents the speed of movement, and position represents the direction of movement.
The optimal solution where each particle searches individually is called individual extremum, and the
optimal individual extremum in this particle swarm is the current global optimal solution. The speed
and position are updated through constant iterations. Finally, the optimal solution that satisfies the
termination condition is obtained. Therefore, the PSO is chosen to search for the optimal parameters in
this paper.

The subgrade is a multidimensional dynamic system affected by multiple factors, such as rainfall
and time during operation. The test section is located in the coastal area of Southeast China, with an
obvious subtropical monsoon climate. Impacted by long-term rainfall and short-term rainstorms
from June to August every year, the subgrade distresses easily accumulate and form mutations.
However, in the months with less rainfall, the subgrade maintains a relatively stable state. Therefore,
the influencing factors of rainfall and time are considered to be the keys to predicting the SPI.
The implementation procedure of the overall PSO–LSSVM model is shown in Figure 5. In order to
verify the prediction accuracy of the model, the Mean Square Error (MSE) is employed to obtain the
fitness value, which is shown as:

MSE =
1
N

N∑
i=1

(yi − ŷi)
2 (15)

where yi and ŷi are the actual and predicted value, respectively. N is the number of samples for training.

4. SPI Prediction and Application

4.1. Analysis of the SPI

According to the AHP method, we issued an electronic questionnaire to 10 experts and scholars
of highway maintenance management, aiming to quantitatively rank and analyze the importance of
each index. Since the importance of index judgment given by individual respondents is different, it is
necessary to calculate all the values of each index separately and take the weighted average value as the
element in the initial judgment matrix to obtain a reasonable judgment matrix after multiple consistency
tests and adjustments [43]. The weights of the five assessment objects in the second-level indexes are
first obtained by establishing a judgment matrix. Then, the first-level judgment matrix is established
for the specific subgrade distresses, which appear in the second-level objects. Finally, the assessment
system of the subgrade distress is shown in Table 2. A landslide not only interrupts traffic for a long
time, but also directly causes casualties and property losses. Therefore, “landslide” is the distress
type with the highest weighting value among all the distress types. Through the assessment system,
the SPI results of twenty sites spread over four highways from March 2016 to March 2019 are obtained
(Figure 6). As shown in Figure 6, subgrade distress is an irreversible process that, like the evolution
of a landslide, exhibits an open state [45], and the development of cracks ranges from small-scale
local cracks to large-scale regional cracks [46]. Therefore, the subgrade distress of the twenty test sites
accumulated on top of the previous ones, resulting in the decrease in the SPI. Additionally, the rate of
SPI decline was generally the highest from March to September, which was the most concentrated and
abundant period of rainfall. From October to February of the following year, the SPI of most test sites
remained stable, which indicated that the change in the SPI was highly correlated with rainfall.
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Table 2. The assessment system of the subgrade distress.

Second-Level Indexes Index Weight First-Level Indexes Index Weight Second-Level
Indexes

Index
Weight

First-Level
Indexes Index Weight

Embankment and
roadbed

0.27
Uneven settlement 0.376

Road shoulder 0.08

Shoulder defects 0.255
Pumping 0.221 Blocked drainage 0.413

Cracking and sliding 0.403 Uncleanliness 0.235

Drainage facilities 0.10
Blocking 0.441 Curb defects 0.097

Damage 0.347

Slope 0.36

Slope erosion 0.135
Inadequate drainage facilities 0.212 Cracking 0.065

Reinforced structures 0.19
Blockage of drainage holes 0.153 Local collapse 0.078
Damages to the structures 0.505 Rockfall 0.283
Abnormal structural stress 0.342 Landslide 0.439
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Figure 6. Accumulated precipitation, time, and SPI from the test sites: (a) K2451–K2456 of G105; (b) 
K91–K96 of S223; (c) K100–K105 of S270; and (d) K5–K10 of S356. 

Figure 6. Accumulated precipitation, time, and SPI from the test sites: (a) K2451–K2456 of G105;
(b) K91–K96 of S223; (c) K100–K105 of S270; and (d) K5–K10 of S356.

The five test sites selected from the same highway have a similar investigation duration and
frequency. Additionally, different test sites on the same highway exhibit similar rates of SPI
decline (Figure 6). Therefore, a typical section is selected to represent each highway in this study.
The relationship between the extracted changes of the SPI and accumulated precipitation, maximum
daily precipitation, and rainfall days over the past 6-month period are provided (Figure 7). Using the
Pearson Correlations (r) analysis method to evaluate the strength of a linear relationship between two
variables [47], the Pearson Correlation, r, between the SPI changes and the impact factors is shown in
Table 3. Generally, r ≤ 0.39 represents weak correlations, r between 0.40 and 0.69 represents moderate
correlations, and r between 0.70 and 1 represents strong or high correlations [48].

The r between the SPI changes of G105 and the cumulative precipitation and maximum daily
precipitation is above 0.8, demonstrating a strong correlation (Figure 7a and Table 3). During the
investigation period, the maximum accumulated precipitation of G105 in half a year reaches 1694 mm.
This occurs from March to September 2016. The maximum daily precipitation occurs in June 2017,
reaching 146 mm. The rain intensity level is heavy rain (http://www.cma.gov.cn/). Normally, the rainy
season is from March to August every year and annual rainfall is mainly concentrated in this period.
The accumulated precipitation in the rainy season is generally about twice as high as it is in other
months. In addition, this highway is built along the mountainous area, where the integrated granite
stratum is widely distributed, so that the decrease in SPI is small.

As can be seen from Figure 7b,c and Table 3, the r between the SPI changes of S223 and S270
and the cumulative precipitation is above 0.8. The two highways are built along the river. Under the
condition of extreme rainfall, the embankment along the river is prone to erosion, resulting in the
overall sliding of the embankment [49,50]. Additionally, the cracks caused by the uneven settlement of

http://www.cma.gov.cn/
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the embankment and the shrinkage cracks during the summer months allow the formation of positive
pore water pressure at a shallow depth and trigger embankment failure [51].

Figure 7d and Table 3 show that the correlation between the SPI changes of S356 and the cumulative
precipitation and rainfall days is strong. Along the line of S356, there are many double-decked slopes,
the surface layer is weathered residual soil, and the residual soil slopes are very sensitive to short-term
heavy rainfall [52].

Moreover, this line is located in the coastal area, and there are typhoons throughout the year.
Typhoons are often accompanied by short-term heavy rains, causing a large number of slope erosion
and local collapse disasters.

Again, the evolution of subgrade distress is not only affected by external rainfall factors, but also
by internal time factors that affect subgrade ancillary structures (such as retaining walls, anchor cables,
anti-slide piles, etc.). The same is true for the multi-stage characteristic evolution process shown by
landslide disasters [19]. The response process of the subgrade distress evolution to the same external
factors may be different. When the ancillary structures of the subgrade are in a stable stage, even a
strong influence from external factors can hardly cause subgrade distress. In contrast, when the
ancillary structures begin to age after a certain period of time, which leads to a decline in anti-sliding
ability, even slight disturbances may cause subgrade damage. Therefore, the time factor is considered
as the internal factor of the SPI.
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Figure 7. Relationship between the SPI changes and the impact factors: (a) K2452–K2453 of G105; (b) 
K95–K96 of S223; (c) K103–K104 of S270; and (d) K9–K10 of S356. 
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Table 3. Pearson Correlations between the SPI changes and impact factors.

Sites Cumulative Precipitation Rainfall Days Maximum Daily Precipitation

K2452–K2453 of G105 0.826 0.232 0.890
K95–K96 of S223 0.935 0.411 0.375

K103–K104 of S270 0.802 0.550 0.159
K9–K10 of S356 0.874 0.815 0.603
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4.2. Building the PSO–LSSVM Model

Based on the previous study, the time series of four influencing factors, including the three external
triggers (accumulated precipitation, maximum daily precipitation and rainfall days over the past
6-month period) and one internal factor (time), are taken as the input parameters. The SPI is regarded
as the output parameter to establish the PSO–LSSVM model. The SPI values from March 2016 to
March 2018 (71% of the database) are chosen as the training samples and SPI dates from September
2018 to March 2019 (29% of the database) are chosen as the test samples to verify model reliability.
During the sample data preprocessing, all the factors and the SPI are converted to a [0,1] format. Then,
the following values of the parameters to be optimized in LSSVM into the solution of PSO are encoded:
the regularization parameter is γ = [0.1, 1.0 × 106] and the kernel function width is σ = [0.1, 100].
The maximum number of evolutionary iterations is 300, the population of the particle swarm is 30,
and the inertia weight is decreased linearly from about 1.0 to 0.4. The optimized parameters, γ and σ,
for the PSO–LSSVM model are shown in Table 4. To evaluate the predictive performance of the model,
the conventional models, including Grid-SVM [25] and GA-SVM [22,53,54], are compared with the
PSO–LSSVM model. The comparison and accuracy of the prediction values are shown in Figure 8.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 21 
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Table 4. Optimized parameters of the PSO–LSSVM model for the four test sites.

Parameters K2452–K2453 of G105 K95–K96 of S223 K103–K104 of S270 K9–K10 of S356

γ 14.743 0.1 1.0 × 106 11.455
σ 1.922 7.672 57.009 1.313

As shown in Figure 8, three models (PSO–LSSVM, Grid-SVM, and GA-SVM) have achieved
good SPI prediction results for the four test sites, with the PSO–LSSVM model demonstrating the
highest level of accuracy. It was especially accurate in predicting the SPI of the three Provincial
Highways, likely because there is more traffic flow on the National Highway than on the Provincial
Highways, which increased the difficulty of building the SPI prediction model. In K95–K96 of S223,
the SPI declined sharply, and the rate of SPI decline was greater than that of the other three test sites.
In relation to the controlling factors, the PSO–LSSVM still showed a good prediction with the MSE of
0.47. Therefore, the PSO–LSSVM model can better reflect the relationship between the impact factors
and the SPI, and it is capable of predicting both ’gently decreasing type and rapid decreasing type SPIs.

4.3. Application for the Date of the SPI

The following method was used to predict the SPI values in the near future. Based on the
PSO–LSSVM model, the time series of four influencing factors and the SPI from March 2016 to March
2019 are chosen as the training samples. The SPI from September 2019 is predicted by taking the
cumulative precipitation, maximum daily precipitation, and rainfall days from March to September
2019 as input parameters. The predicted results are given in Table 5 for the different test sites.
The relevant national standards of China can be referenced to meet the actual requirements of subgrade
maintenance [33]. Four subgrade classification levels (excellent, good, medium, poor) are collected
in the SPI test sites. The values range from 0 (poor) to 100 (excellent). For a SPI between 90 and 100,
the subgrade is classified as excellent; a SPI of 80–89 is classified as good; a SPI of 70–79 is classified as
medium; a SPI less than 60 is considered poor.

Table 5. Predicted SPI results for September 2019.

Sites
Cumulative
Precipitation

(mm)
Rainfall Days

Maximum Daily
Precipitation

(mm)

Predictive Values
for September

2019

K2452–K2453 of G105 1720 114 108 76.82
K95–K96 of S223 1333 109 76 70.16

K103–K104 of S270 1914 116 123 81.70
K9–K10 of S356 1363 90 63 78.96

As can be seen from Table 5, the SPI of the K95–K96 section of S223 is the smallest. S223 was opened
to traffic in May 2007. After twelve years of operation, a large number of subsidence, cracks, and other
distresses have appeared in the subgrade. In addition, by predicting the subgrade performances of
other sections of this highway, most of the SPI values will be in the middle or below the classification
value in September 2019, which poses a great risk to driving safety. Therefore, it is necessary to
take corresponding maintenance measures based on the different SPI values. Figure 9 shows the
impact of reasonable treatment measures taken on subgrades with various SPI values. The preventive
maintenance treatment is applied before the SPI drops below 70. Preventive maintenance is a
proactive approach that systematically looks for opportunities to eliminate small problems before
they become serious. This concept was first utilized for pavement, and has been widely used [55–57].
Although preventive maintenance treatments do not significantly improve the load-carrying capacity of
subgrade, they do improve the level of service and extend the service life [58]. When the SPI is less than
70 and greater than or equal to 60, the subgrade requires maintenance and rehabilitation. When the SPI
is less than 60, there is a large-scale disease or landslide on the subgrade. In this situation, overhaul or
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emergency disposal measures should be taken. In order to guide and verify the applicability of this
definition, in the first half of 2019, technical personnel within the research institute of the Ministry
of Highway Transport carried out a comprehensive inspection on the road section, and formulated a
comprehensive maintenance plan for the whole section.
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The other three highways were newly built or reconstructed between 2008 and 2010, and as
such, they have not yet reached the critical point for preventive maintenance. However, the life-cycle
decision-making for preventive maintenance of a subgrade needs to be carried out and included in the
annual management cycle. This process includes budgeting, planning, and implementation activities.
Figure 10 shows the life-cycle decision-making framework for preventive maintenance. Through the
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5. Conclusions

This study focused on the performance of highway subgrades over their whole life-cycle during
the operation period. It selected 20 test sites across 4 typical highways to carry out distress surveys for
up to 3 years. Moreover, the assessment and prediction of subgrade performances were carried out.
The following conclusions were obtained:

(1) The development trend of subgrade distress is affected by internal factors. External factors,
such as rainfall, directly cause the formation of subgrade distresses. Therefore, the relationships
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between the internal and external factors are important when analyzing the evolution mechanism
of subgrade distress.

(2) The results of the SPI calculations show that the prediction accuracy of the SPI prediction model
based on PSO–LSSVM is better than the prediction accuracy of the other two models, which are
based on Grid-SVM and GA-SVM. In addition, the PSO–LSSVM model accurately predicts both
the gently decreasing type and rapidly decreasing type of SPI.

(3) The prediction accuracy of provincial highways is higher than that of the national highway. This is
mainly due to the large traffic volume on the national highway and the frequent occurrence
of overloaded trucks, which result in redundant damage to the subgrade, thus increasing the
difficulty of SPI prediction.

(4) According to the SPI, the subgrade is divided into four levels. Corresponding maintenance and
treatment measures are taken for different levels. Preventive maintenance is applied before the
SPI drops below 70.

(5) The establishment of a subgrade performance assessment–prediction–maintenance–management
architecture framework provides a clear method for road maintenance managers to reasonably
lay out the subgrade life-cycle assessment decision system.
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