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Abstract: The pulp and paper industry generates substantial amounts of solid waste and wastewater,
which contain waste fibres. The potential of using these recycled wood fibres for producing eco-friendly
composites that were bonded with a formaldehyde-free adhesive (magnesium lignosulfonate) and
their use in structural applications was evaluated in this study. Fibreboards were produced in the
laboratory with a density of 720 kg·m−3 and 15% magnesium lignosulfonate gluing content, based
on the dry fibres. The mechanical properties (bending strength, modulus of elasticity and internal
bond strength), physical properties (thickness swelling and water absorption) and formaldehyde
content were determined and compared with the European Standards requirements for wood-based
panels. In general, the laboratory-produced panels demonstrated acceptable mechanical properties,
such as bending strength (18.5 N·mm−2) and modulus of elasticity (2225 N·mm−2), which were
higher than the minimum requirements for type P2 particleboards and equal to the requirements
for MDF panels. The moisture properties, i.e., thickness swelling (24 h) and water absorption (24 h)
significantly deteriorated. The free formaldehyde content of the laboratory-produced composites
(1.1 mg/100 g) reached the super E0 grade (≤1.5 mg/100 g), which allowed for their classification
as eco-friendly, low-emission wood-based composites. The L-type corner joints, made from the
developed composites, demonstrated significantly lower bending capacity (from 2.5 to 6.5 times)
compared to the same joints made from MDF panels. Nevertheless, the new eco-friendly composites
can be efficiently utilised as a structural material in non-load-bearing applications.

Keywords: wood composites; recycled fibres; bioadhesives; magnesium lignosulfonate; corner joints;
bending strength capacity

1. Introduction

The depletion of fossil fuels and the increasing concern about the negative effects of global
warming on the environment and human health are the main driving forces for the development
of a bio-economy [1]. In this respect, the resource efficiency optimisation and the valorisation of
lignocellulosic biomass in different high-value products from renewable sources as an alternative to
their petroleum-based equivalents are one of the key objectives for implementing the circular economy
principles in the wood-based panel industry [2–4]. Significant amounts of non-hazardous solid waste
and sludge are generated annually at pulp and paper facilities worldwide, which require further
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utilisation [5–8]. This solid and liquid discharge contains residual fibres and represents a potential
feedstock that can be utilised in the production of new panels [9–12].

Traditional thermosetting adhesives that are used for the production of wood-based
composites, such as phenol-formaldehyde, urea-formaldehyde (UF), melamine-urea-formaldehyde
and melamine-formaldehyde resins, are derived from the by-products of petroleum processing [13–15].
Currently, about 95% of the total wood adhesives that are used for manufacturing engineered wood
composites are based on formaldehyde [16]. UF resins are the most predominant type, accounting
for almost 85% of the total worldwide, followed by melamine at 10% and phenolics at 5% [16–18].
These adhesives have been extensively used in the production of wood-based panels because of their
exceptional adhesion properties and water resistance, low curing temperatures, chemical versatility
and cost-effectiveness [13,15,19–24]. The main disadvantage of these adhesives is the release of
volatile organic compounds and formaldehyde from the finished engineered wood panels, especially
in indoor applications [25,26], causing adverse human health effects, such as skin and respiratory
tract irritation, skin sensitisation, nausea, genotoxicity and sinonasal cancer [27–30]. Formaldehyde
emission from engineered wood panels is dependent on endogenic factors, e.g., wood species,
the adhesive used, the resin content, the technological conditions employed and the type of hot
press [13,16,31,32], and exogenic factors, which are related to the ambient conditions, processing and
ageing of wood-based panels [32–35]. Thus, the growing social concern about hazardous formaldehyde
emissions from engineered wood panels, along with the increased environmental consciousness related
to the sustainability of the final products, have been the main factors for changing the industrial
and scientific interest from the traditional petroleum-based synthetic resins to the development of
renewable, bio-based and less toxic adhesives for manufacturing eco-friendly wood composites by
partially or completely replacing formaldehyde in their compositions [36–48]. Different biomass
sources, such as lignin [37,49,50], soy proteins [51,52], starch [53,54] and tannins [55,56], have been
used as feedstocks for the development of biobased adhesives.

Lignin is a polyaromatic macromolecule and the second most abundant natural biopolymer in
nature, preceded only by cellulose [57,58]. It is also generated as waste or a by-product of the pulp and
paper industry, with an annual global production of approximately 50–75 million tons [59]. The main
categories of lignin are lignosulfonates obtained from the sulfite pulping, kraft lignin from the sulfate
process (Kraft pulping) and organosolv lignin from the production of bioethanol [60,61]. Currently,
only 10% of technical lignin is further re-used at an industrial scale, while the rest is mainly burnt for
energy, used to recover chemicals or disposed of as a waste [60,62]. Thus, the valorisation of lignin
as an abundant and renewable component in the production of value-added products, including
wood adhesives [13,42,63–65], could be an efficient way to achieve sustainable resource management.
Lignin-based adhesives represent an eco-friendly alternative to the traditional petroleum-based resins
as a promising strategy for integrating bio-refineries in the wood-based panel sector. Due to its
phenolic hydroxyl groups, lignin is similar to phenol and may be used to partially replace phenol in
the composition of phenol formaldehyde adhesives [66–69]. However, further research and chemical
modification, such as methylolation and phenolation, is required to increase its lower reactivity to
formaldehyde, especially in applications where a fast curing time is needed [37,42].

The production of lignosulfonates, which are the salts of lignin sulfonic acid, dominates the global
technical lignin market, where the annual production is approximately 800,000–1.1 million tons of
solids [70,71]. They are obtained as by-products from the production of wood pulp by the sulphite
lignin processing and are characterised by a very high molecular weight (10,000–40,000 Da) and a
high content of ash and sulfur of approximately 4.0–8.0% and 3.5–8.0%, respectively [72]. The current
industrial and scientific interest in incorporating lignosulfonates in adhesive formulations for the
production of wood composites is due to their potential environmental and health advantages, i.e., the
reduction of harmful formaldehyde emissions.

The aim of this study was to evaluate the potential of using novel eco-friendly fibreboards from
recycled wood fibres that were bonded with magnesium lignosulfonate in structural applications,
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such as furniture, interior structures and claddings. For this purpose, the bending strength capacity
of L-type corner joints, constructed from the developed composites using four different connection
techniques for assembling, i.e., dowels, Confirmat, Minifix and screws, was determined.

2. Materials and Methods

The residual fibre mass, composed of the species Norway spruce (Picea abies Karst.) and Scots
pine (Pinus silvestris L.) and oven-dried to 12% moisture content, was provided by the pulp and paper
factory Mondi Stambolyiski EAD. The bulk density of the factory waste fibres was 44.86 kg·m−3.
The waste fibres had lengths from 500 to 1000 µm and 7% reduced lignin content.

Magnesium lignosulfonate at 15% gluing content (based on the dry weight of the fibres)
was used as a binder. The lignosulfonate additive had the following characteristics: total solids
content—51.2%, magnesium content—6%, reduced sugars—7% and sulfate content—2%. European
beech (Fagus sylvatica L.) veneers, made using the centric peeling process with an average thickness of
1.13 mm and a moisture content after drying and conditioning of approximately 7%, were supplied by
the factory Welde Bulgaria AD, and used for veneering the laboratory-produced fibreboards.

Under laboratory conditions, the fibreboards were produced with a 16 mm thickness and a
720 kg·m−3 target density. Residual fibres were mixed with the magnesium lignosulfonate in a
high-speed laboratory adhesive mixer at 850 min−1. The hot pressing process was carried out using a
single opening hydraulic press (PMC ST 100, Italy). The press temperature was 210 ◦C. The following
four-stage pressing regime was used: in the first stage, the pressure applied was 4.5 MPa for 1 min; in
the second stage, the pressure was steadily decreased to 2.23 MPa for 3 min; in the third stage, the
pressure was decreased to 0.74 MPa for 10 min. The fourth pressing stage was performed at a pressure
of 1.78 MPa for 2 min. The fabricated composites, after pressing, were conditioned for 10 days at
20 ± 2 ◦C and 60–70% relative humidity.

The veneer sheets with dimensions of 400 × 400 mm were cut. After that, the fibreboards were
veneered using magnesium lignosulfonate at the content of 80 g·m−2 as an adhesive. A hand roller was
used to apply the binder to the veneers in order to achieve a uniform adhesive layer. The veneering
press factor used was 1 min·mm−1 of board thickness; the pressure applied was 0.6 MPa at 200 ◦C.

The physical and mechanical properties of the fabricated panels (Figure 1) were tested according
to the European Standards EN 310, EN 317, EN 322 and EN 323 [73–76]. A precision laboratory balance
Kern (Kern & Sohn GmbH, Balingen, Germany) with an accuracy of 0.01 g was used to determine the
mass of the test specimens. The dimensions of the test pieces were measured using digital callipers
with an accuracy of 0.01 mm. The physical properties (water absorption and thickness swelling) were
measured after 24 h of immersion in water. The thickness swelling was assessed using the differences
between the initial and final panel thicknesses, and the water absorption was determined using the
difference in weight. The mechanical properties of the panels were determined using a universal
testing machine Zwick/Roell Z010 (Zwick/Roell GmbH, Ulm, Germany).
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Figure 1. Eco-friendly panels from industrial waste fibres bonded with magnesium lignosulfonate and
veneered with beech veneers; 720 kg·m−3 target density, 18 mm thickness and 15% lignosulfonate content.

The formaldehyde emission of the laboratory-produced panels was tested in the laboratory of
Kronospan Bulgaria EOOD (Veliko Tarnovo, Bulgaria) on four test specimens in accordance with the
standard perforator method [77].
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For the evaluation of the bending strength of the joints made of the veneered eco-friendly
composites from recycled wood fibres, L-shape test samples were prepared with the following
dimensions: a length L1 = L2 = 106.4 mm, a width b = 100 mm and a thickness δ1 = δ2 = 18 mm,
according to the test method [78] and as given in Figure 2.
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Four types of end corner joints were selected, which are among the most used in furniture and
interior constructions, where one was fixed with an adhesive and three with dismountable joints.
Dowels with the dimensions 8 × 30 mm and glued with polyvinyl acetate emulsion adhesive (PVA)
represented the fixed joints. The following connectors were used in this study as dismountable joints:
Minifix with connecting bolts made of steel B 34 for direct screwing (Figure 3a), Confirmat one-piece
connector 7 × 50 mm for screwing in holes Ø 5 mm (Figure 3b) and mounting screws for wood
3.5 × 50 mm (Figure 3c).
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Seventeen test specimens were made using dowels, Minifix and Confirmat joints, and nine
specimens were made with screw joints. All specimens were tested under compression bending
loading according to the test scheme presented in Figure 4 [78].
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The ultimate bending moment was determined according to the formula:

Mmax = Fmax · l, (1)

where:
Fmax is the maximum value of the loading force (N).
l is arm of bending (m).
The results from a previous study [79] were used to compare the results obtained in the present

one, where the same types of joints, made from beech veneered MDF panels with a thickness of 18 mm
were tested under compression bending loading.

A statistical analysis of the results was done with XLSTAT (version 2020.2.3, Addinsoft Inc.,
New York, NY, USA). One-way ANOVA was performed on the results for the bending strength of the
L-type corner joints for the analysis of variance at a 95% confidence interval (p < 0.05). The statistical
differences between the mean values were evaluated using the post hoc Tukey HSD (honestly significant
difference) test.

3. Results and Discussion

3.1. Formaldehyde Content

The free formaldehyde content of the fabricated composites, tested in accordance with the
standard EN ISO 12460-5, was determined to be 1.1 ± 0.1 mg/100 g, i.e., the super E0 emission
grade (≤1.5 mg/100 g) was achieved. This value was remarkably low and can be considered as a
zero formaldehyde content [13,77]. Taking into account the fact that natural wood releases low
but still measurable amounts of formaldehyde [80], which is formed by its main components and
extractives [81–83] at approximately 0.5 to 2 mg/100 g [13,37], our result allowed for defining the
produced panels as eco-friendly composites.
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3.2. Mechanical and Physical Properties

The results for the mechanical and physical properties of the panels, which consisted of industrial
waste fibres bonded with magnesium lignosulfonate, are presented in Table 1. The density of the
laboratory-produced panels varied from 681 to 772 kg·m−3, which was rather close to the targeted
value. The difference in this main characteristic of the panels was significantly below 5%; thus, it did
not have an effect on the mechanical and physical properties.

Table 1. Mechanical and physical properties of the composites produced (MOR: modulus of rupture).

Panel No. Density ρ,
(kg·m−3)

Water
Absorption
(24 h) A, (%)

Thickness
Swelling (24

h) Gt, (%)

Bending
Strength

(MOR) fm,
(N·mm−2)

Modulus of
Elasticity

(MOE) Em,
(N·mm−2)

Internal
Bond

Strength ft,
(N·mm−2)

1 772 ± 8.72 150.97 ± 4.87 76.74 ± 2.81 17.0 ± 0.67 1990 ± 53 0.14 ± 0.03
2 736 ± 9.71 175.52 ± 4.25 78.24 ± 2.35 18.9 ± 0.76 2260 ± 61 0.12 ± 0.01
3 681 ± 6.78 184.36 ± 5.73 83.63 ± 2.76 20.6 ± 1.32 2450 ± 72 0.14 ± 0.02
4 757 ± 10.12 144.65 ± 5.91 83.63 ± 2.95 17.0 ± 1.49 1930 ± 49 0.14 ± 0.02
5 743 ± 9.36 180.06 ± 4.74 89.08 ± 3.03 20.6 ± 0.93 2280 ± 67 0.12 ± 0.01
6 751 ± 6.92 163.36 ± 6.01 94.08 ± 3.12 16.6 ± 1.37 2180 ± 56 0.14 ± 0.02
7 737 ± 8.53 178.99 ± 5.38 75.58 ± 2.24 17.8 ± 1.52 2320 ± 42 0.15 ± 0.03

This study followed our previous research work [44], in which the mechanical and physical
properties of the fabricated panels, produced from waste fibres and magnesium lignosulfonate as a
binder, were investigated in more detail and compared with the European Standard requirements for
common engineered wood panels [84,85]. Generally, the laboratory-produced panels demonstrated
acceptable mechanical properties in terms of the bending strength (MOR) (18.5 N·mm−2) and modulus
of elasticity (MOE) (2225 N·mm−2), which were greater than the lowest requirements for type P2
particleboards and equal to the minimum requirements for MDF panels. The deteriorated dimensional
stability, i.e., water absorption (24 h) and thickness swelling (24 h), was the main drawback of the
fabricated composites.

3.3. Bending Strength of the L-type Corner Joints Made of the Fabricated Eco-friendly Composites

The results of the bending strength are given in Table 2 and the boxplot graphic in Figure 5.
The performance of the joints made of the eco-friendly composites with a Minifix connector was
unsatisfactory. In practice, they cannot be used as connecting elements due to the fact that the bolt of
Minifix reacts with a limited part of the panel and the pullout strength of this part of the connector is
significantly less. The rest of the tested joints showed sufficient bending capacity. The highest bending
capacity was demonstrated by the joints with 8 × 30 mm dowels (8.02 N·m), followed by the Confirmat
ø7 × 50 mm (6.95 N·m) and screws for wood ø3.5 × 50 mm (4.94 N·m). According to Tukey’s test,
a significant difference was observed only between the screw joints and the group of dowels and the
Confirmat joints. The low strength of the joint with wood screws was due to the inhomogeneity of
the eco-friendly panels fabricated from residual wood fibres. In contrast, the corner joints made from
MDF panels exhibited an almost equal strength to the joints with the Confirmat and screws due to the
homogeneity of the panels. This is proof that the small diameter of the screws had an adverse effect
on the strength of the joint. Dowel joints constructed from eco-friendly composites showed almost
2.5 times lower bending capacity compared with the same joints made from MDF panels, while the
joints with the Confirmat had a difference of 5 times and the joint with screws had a difference of
6.5 times.
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Table 2. Descriptive statistics for the bending strength capacity of L-type corner joints constructed from
eco-friendly composites (Eco) and MDF.

Statistic Dowels
Eco

Confirmat
Eco

Screw
Eco

Minifix
MDF

Rafix
MDF

Dowels
MDF

Screw
MDF

Confirmat
MDF

No. of
observations 17 17 9 15 15 15 15 17

Mean (N·m) 8.02 6.95 4.94 9.75 6.02 19.58 32.06 33.42
Minimum (N·m) 5.45 4.31 4.12 8.13 5.00 17.19 24.06 27.19
Maximum (N·m) 10.40 11.32 6.52 11.25 6.88 21.56 39.38 39.37

Median (N·m) 8.01 6.49 4.56 9.38 6.25 19.69 30.94 33.75
Variance (N·m) 2.07 4.47 0.61 1.11 0.44 1.53 19.97 11.99
St. Dev. (N·m) 1.44 2.12 0.78 1.05 0.66 1.24 4.47 3.46

Covariance 0.18 0.30 0.16 0.11 0.11 0.06 0.14 0.10
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Figure 5. Bending strength under the compression test of L-type corner joints, which were constructed
from eco-friendly composites and MDF.

From the statistical analysis of the one-way ANOVA test and the pairwise comparison performed
with the Tukey HSD test, a significant difference of α = 0.05 at a confidence level of 95% was found in
four groups between the obtained bending strength of the L-type end corner joints constructed from
eco-friendly composites and MDF panels. The groups are presented in Table 3. All joints made of
the eco-friendly composites fell in group “D,” together with Rafix in MDF. The dowel joints in the
eco-friendly composites were in one group with Minifix in MDF.
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Table 3. Tukey honestly significant difference (HSD) analysis of the differences between the groups with
a confidence interval of 95% of the bending capacity of joints of two materials of all pairwise comparisons.

Type of Joint Groups of Homogeneities (α = 0.05)
A B C D

Confirmat MDF 33.417
Screw MDF 32.063

Dowels MDF 19.583
Minifix MDF 9.750
Dowels Eco 8.016 8.016

Confirmat Eco 6.951
Rafix MDF 6.021
Screw Eco 4.939

4. Conclusions

Eco-friendly fibreboards with satisfactory mechanical and physical properties according to EN
standards were produced from recycled fibres from the pulp and paper industry and bonded with
magnesium lignosulfonate at 15% gluing content. The MOR and MOE values of the laboratory-produced
composites were quite acceptable in comparison with the standard requirements for type P2
particleboards and almost equal to the minimum requirements for MDF panels [84,85].

The produced composites demonstrated a remarkably low formaldehyde content. The emission
values, measured in accordance with the standard perforator method, were ≈1.1 mg/100 g, i.e.,
the composites reached the super E0 emission class, which allowed for their classification as eco-friendly,
low-emission composites [77].

The main disadvantage of the laboratory-produced composites was their deteriorated dimensional
stability, i.e., water absorption and thickness swelling (24 h). Hence, future investigations should
focus on optimising the technological parameters and improving the lignosulfonate formula by adding
suitable crosslinkers or catalysts.

The eco-friendly composites produced in this work can be used as a structural material with a
limited application only, i.e., when applying minimal loads to the construction or as decorative panels.
The Minifix connector was not suitable for joining the eco-friendly laboratory-produced composites.
The tested L-type corner joints made of the fabricated eco-friendly composites demonstrated 2.5 to
6.5 times lower bending capacity compared to the same type of joints made of MDF panels with the
same connectors. A higher bending capacity of the joints was achieved by improving the homogeneity
of the composites and edgebanding of the structural elements.
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