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Abstract: This paper reviews recent deep learning-based registration methods. Registration is
the process that computes the transformation that aligns datasets, and the accuracy of the result
depends on multiple factors. The most significant factors are the size of input data; the presence
of noise, outliers and occlusions; the quality of the extracted features; real-time requirements; and
the type of transformation, especially those defined by multiple parameters, such as non-rigid
deformations. Deep Registration Networks (DRNs) are those architectures trying to solve the
alignment task using a learning algorithm. In this review, we classify these methods according
to a proposed framework based on the traditional registration pipeline. This pipeline consists of
four steps: target selection, feature extraction, feature matching, and transform computation for the
alignment. This new paradigm introduces a higher-level understanding of registration, which makes
explicit the challenging problems of traditional approaches. The main contribution of this work is
to provide a comprehensive starting point to address registration problems from a learning-based
perspective and to understand the new range of possibilities.
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1. Introduction

In the context of computer vision, registration is the process of aligning data into a common
frame of reference. In other words, it aligns datasets—captured from different sources, viewpoints,
and/or at a different time step—by means of geometric transformations. Here, we consider both 2D
and 3D data, and data in point sets, grids, and meshes. Rigid and non-rigid registration has already
been widely addressed in the computer vision literature through potential applications mostly for
data analysis such as body modeling [1] for pose analysis; computed tomography registration [2,3]
for medical diagnosis; multi-camera registration for robot guidance [4]; and applications in object
classification on assembly lines [5], among others. In the aforementioned applications, registration
represents a crucial component. It fuses a vast amount of raw data captured under different scenarios,
which greatly facilitates the analysis process.

The growing number of available consumer-grade devices, such as RGB-D cameras and LiDAR
sensors, provides quasi-unlimited and cheap data of different modalities. However, the raw data
must be previously structured, either hierarchically or semantically, to extract high-level information.
The vast amount of data has surpassed the potential of the traditional registration paradigm and
led researchers to consider learning-based approaches. Dealing with a huge amount of raw and
unstructured multidimensional data is not straightforward, yet they satisfy Deep Learning (DL)
methods that are known to be data-hungry. Learning-based approaches have proliferated in recent
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years, making great strides in different fields [6–8]. Considering this success, deep learning-based
registration approaches are poised to leap over the previous state of the art in the registration paradigm.
However, existing DL-based techniques for rigid and non-rigid registration, mostly in an n-dimensional
space, are far from accurate and reliable. Furthermore, the direct application of DL techniques to the
problem of registration is not straightforward; its lack of maturity and the rapid state of this field make
it difficult to keep up with the latest trends and track them properly.

1.1. Review Scope

This paper reviews state-of-the-art learning-based approaches to registration. The ability of deep
neural networks to generalize from training data and manage geometric properties has created a new
subfield at the intersection between learning and registration algorithms. Although some reviews of
registration have been performed [9–11], no reviews address learning-based approaches for registration
without focusing on a specific scope such as medical image registration or image localization.

The contributions of this paper are: (1) we provide a global overview of learning-based
registration methods by proposing a well-defined framework that encompasses both the traditional
and learning-based approaches; and (2) we review the recent learning-based registration approaches,
which have been classified according to a proposed taxonomy to foster discussion.

Figure 1 graphically summarizes the scope of this paper. The figure shows at the top the four
main stages of the traditional pipeline for registering two given inputs (P and Q). These stages are:
Target Selection (yellow, oblique lines), which defines the fixed input that the other input is going to be
aligned to; Feature Extraction (red, dotted pattern), which computes the set of features ω and ϕ for
each input; Feature Matching (green, squared lines) to find correspondences between the previously
extracted features; and Pose Optimization (blue, vertical lines), which is the process to minimize the
distance error between both inputs. The right end is the final result transformation ([R, t]), which is the
rotation R and translation t parameters that indicate how data should be transformed to be aligned.
These stages and terminology are further explained in Section 2.

Figure 1. Registration framework. Schematic of the registration process in the traditional pipeline on
the top part, and the learning-based approaches reviewed in this paper at the bottom. Learning-based
approaches encapsulate the traditional pipeline in a conceptual space, allowing different types of inputs
depending on the data and the number of encapsulated steps. The conceptual space is the learned
parameters during the training process, and theoretically could also be considered as an input for the
registration process.
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Vertically, the schematic is divided at the top with the traditional stages clearly defined and at
the bottom the learning-based approaches that are reviewed here, represented by a neural network,
and the possible data for inputs and outputs. Having in mind this information, the inputs for the
learning-based proposal could be in different formats, such as point clouds, voxel grids, meshes, etc.
In addition to full end-to-end approaches, some methods accept as inputs the result of the Feature
Extraction or Matching stages in the traditional pipeline. The output could be some data in a specific
format as well as the result of the stages from the traditional pipeline (feature vector, matching vector,
and transformation). Nevertheless, with the new learning-based approaches, a new conceptual kind
of space appears, containing learned properties about the object, materials, and their behavior that
can be registered with the input data (e.g., aligning input data of an inflated ball with its deflated
state restricted by the physical behavior of the object, rather than aligning with a final deflated target).
The conceptual space is modeled by a neural network and its training process, and, theoretically,
it could be considered as an input to the registration process, but it is not an input that one might
use in every registration instance since it is an internal representation. This allows the network to
encode conceptual models such as physical phenomena (e.g., force vector and symbolic/conceptual
information such as “sporty, comfy”) or mathematical rules. Besides, the neural network could
perform one or more phases from the traditional pipeline (represented by the colored rectangles
(see Figure 1) shown in the network). Considering all of this, we can see that there are multiple
possibilities, combining inputs from different stages and outputs from the learning-based approaches.

1.2. Developments Relevant to Registration

The number of works addressing registration with learning techniques has increased in recent
years. To identify them, strategic searches were performed in Scopus, Web of Science (WoS), and ArXiv.
The results obtained from Scopus and WoS come from indexed journals, which means that they have
passed a peer-review process. However, most of the recent works in this review were reached through
ArXiv, which is a preprint repository without peer review. This is a double-edged sword. ArXiv allows
disseminating the work immediately while it is being reviewed for publication in a journal. However,
as some works here studied were not yet reviewed in another place, the authors had to perform a more
in-depth evaluation.

Figure 2 shows the research papers published in the intersection of deep learning and registration
involving 3D data over the last years in each repository. It is noticeable how the number of publications
has increased over the last three years. Several search strings were employed to identify the methods
surveyed in this paper. The keywords grouped by the concept are:

• To include learning-based methods: deep learning; machine learning.
• To indicate the data type employed: 3D; point cloud; mesh.
• To gather registration proposals: registration; alignment; transformation; reconstruction.

The search strings were designed by combining the words from the previous groups by choosing
one from each.

In the following sections, an analysis of learning-based approaches for registration is performed
using a workflow extracted from traditional solutions. We gather in Table 1 the reviewed methods
showing the individual properties for each one. These approaches allow more complex inputs such as
conceptual models as well as 3D datasets. However, since each proposal uses different datasets, a fair
quantitative comparison cannot be done.
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Table 1. Summary of the reviewed methods. It shows the application, inputs, and outputs; the employed datasets; and the architecture of the network. The right
columns record the stage of the traditional registration pipeline that the network addresses (Ta, Target; Fe, Features; Ma, Matching; Tr, Transform).

Network Details Pipeline
Proposal Year Application

Inputs Outputs Datasets Architecture 1 Ta Fe Ma Tr

Yumer and Mitra [12] 2016 Shape Deformation Point Cloud / Label Flow / Voxel Grid ShapeNet [13], SemEd [14] CNN X X X X

Elbaz et al. [15] 2017 Descriptor Depth Map Reconstructed Depth Map Challenging Datasets for Point Cloud Registration
Algorithms [16] AE 7 X 7 7

Li and Fan [17] 2017 MR Image Registration (MR) Voxel Grid (x2) Registered Voxel Grid
Alzheimer’s Disease Neuroimaging Initiative

(ADNI) 2 FCN 7 X X X

Wang and Fang [18] 2017 3D Reconstruction from 2D Image 2D Image 3D Model (Voxel Grid) ShapeNet [13], PASCAL3D [19], SHREC 13 [20] GAN X X X X

Zeng et al. [21] 2017 Geometric Descriptor Voxel Grid Feature Vector
Analysis-by-Synthesis [22], 7-Scenes [23],

SUN3D [24], RGB-D Scenes v2 [25], Halber and
Funkhouser [26]

CNN 7 X 7 7

Ding and Feng [27] 2018 Multiple Point Clouds Registration
(Localization) Point Clouds Discrete Occupancy Map Active Vision Dataset [28] CNN X X X X

Groueix et al. [29] 2018 Matching Deformable Shapes Point cloud Point Cloud SMPL [30], SURREAL [31], SMAL [32], FAUST [33],
TOSCA [34], SCAPE [35] SDN 7 X X X

Gundogdu et al. [36] 2018 Garment PBS Point Cloud / Mesh Translation Vector GarNet 3, SMPL [30] PointNet 7 X X X
Hanocka et al. [37] 2018 Shape Alignment Shapes (x2) Transformed shape ShapeNet [13], COSEG [38] CNN 7 X X 7

Hermoza and Sipiran [39] 2018 3D Reconstruction of Incomplete Objects Voxel Grid (incomplete shape) / Label Voxel Grid ModelNet10 [40], 3D Pottery dataset [41], Custom
Data GAN X X X X

Yew and Lee [42] 2018 Descriptor Point Clouds Local Descriptors Oxford RobotCar [43], KITTI Dataset [44], ETH
Dataset [16] Siam. CNN 7 X X 7

Kuang and Schmah [45] 2018 3D Medical Image Registration Voxel Grid (x2) Voxel Grid MindBoggle101 [46] STN 7 X X X
Lin et al. [47] 2018 Image Compositing RGBA Foreground / RGB Background 8 Dimensional Warp Parameter CelebA [48], SUNCG [49] ST-GAN 7 X X X
Litany et al. [50] 2018 Body Shape Completion Partial Mesh Completed Mesh DFAUST [51] VAE X X X X
Liu et al. [52] 2018 Point Cloud Flow Estimation Point cloud (x2) Scene flow (point level) FlyingThings3D [53] CNN 7 X X 7

Mahapatra et al. [54] 2018 Multimodal Image Registration 2D medical multimodal images (x2) Transformed Image Retinal Images [55], Sunybrook [56] GAN 7 X X X
Ofir et al. [57] 2018 Multi-spectral 2D Descriptor RGB / NIR Pair of Features CIFAR-10 [58], Brown and Susstrunk [59] Siam. CNN 7 X X 7

Yan et al. [60] 2018 MR and TRUS Registration MR Images (x2) Transformation / Quality Check Custom Data GAN 7 X X X
Wang et al. [61] 2018 Force Simulation Voxel Grid Deformed 3D Model Custom Data VAE + AT X X X X
Aoki et al. [62] 2019 Point Cloud Registration Point Clouds (x2) Transformation ModelNet40 [40] MLP + PointNet 7 X X X
Chang and Pham [63] 2019 Point Cloud Rigid Registration Features Transformation Custom Data CNN 7 7 X X
Guan et al. [64] 2019 Vascular Image Registration 3D CT / 2D DSA 3D Transformation (translation and rotation) Custom Data MCNN 7 X X X
Jack et al. [65] 2019 3D Reconstruction from Single Image 2D Image / Mesh Mesh ImageNet [66], ShapeNet [13] CNN 7 X X X
Schaffert et al. [67] 2019 Correspondence Weighting Local Features Weights Vector Custom Data CNN 7 7 X 7

Smirnov et al. [68] 2019 3D Reconstruction from 2D Sketch 2D Shape Mesh ShapeNet [13] CNN + MLPs X X X X
Yang et al. [69] 2019 Point Cloud Generation Point Cloud Point Cloud ShapeNet [13] AE X X X X
Wang and Solomon [70] 2019 Rigid Registration Point Clouds (x2) Transformation ModelNet40 [40] CNN 7 X X X
Wang et al. [71] 2019 Deformation 3D Mesh / 2D Image or Point Cloud Mesh ShapeNet [13] PointNet + MLPs 7 X X X
Wang and Fang [72] 2019 Non-rigid Registration Point Set (2D or 3D) (x2) Aligned Point Set Custom Data MLPs 7 X X X
Pais et al. [73] 2020 3D Scan Registration 3D Correspondences Vector Weights Vector / Rotation and Translation ICL-NUIM [74], SUN3D [75] PointNet + ResNet 7 7 X X
Li et al. [76] 2020 Rigid Registration Point Clouds (x2) Transformation ModelNet40 [40] PointNetLK 7 X X X
Yuan et al. [77] 2020 Rigid Registration Point Clouds GMM Correspondences ModelNet40 [40], Augmented ICL-NUIM [74,78] PointNet 7 X X 7

Zhang et al. [79] 2020 Multi-modal Deformable Registration Voxelgrid (x2) Transformation Brain Tumor Segmentation (BraTS) [80] GAN 7 X X X

1 The architectures of some proposals are variants of the family identified in this column; 2 Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu);
3 GarNet dataset https://cvlab.epfl.ch/research/garment-simulation/garnet/.

http://adni.loni.usc.edu
https://cvlab.epfl.ch/research/garment-simulation/garnet/
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Figure 2. Research works published by year addressing registration of 3D data with learning approaches
in each source (data obtained through the search engines of each source through September 2020).

2. Registration Framework

Registration aims to compute the alignment between datasets. Given two inputs P =
{ω1,ω2,ω3, ...,ωn} and Q = {ϕ1,ϕ2,ϕ3, ...,ϕm}, a registration process finds a transformation
function χ that minimizes the alignment error between P and Q, through checking the distance
error between a pair of correspondences (ϕi,ωj) of each input, as shown in Equation (1). There are
different error and distance functions (dist), e.g., perpendicular distance rather than Euclidean distance
or Huber distance, L1 error, etc.

EP =
n,m

∑
i,j

gate(ϕi,ωj) ∗ dist(ϕi − χ(a,ωj)) (1)

Let χ transform each element of P, according to the transformation parameters a, with the goal
of minimizing the error EP between P and Q, while gate(ϕi,ωj) = 1 if the features correspond and 0
otherwise.

In the literature, the terms registration and reconstruction (or shape completion) are sometimes
employed to refer to the same process. The main difference is that reconstruction is at a higher level
than registration since the registration process is a part of reconstruction methods, but a reconstruction
method may not perform any registration. That is, registration aims to find the transformation to
align data, while the main goal of reconstruction is to obtain a virtual representation from the scene.
To this end, a reconstruction method may not include a registration process, for example, those that
only use a single view to obtain the virtual representation. Although these definitions previously had
clear differentiation, now learning-based approaches have blurred the line between them, e.g., in [50],
an algorithm designed to perform shape completion is tested by performing registration tasks.

According to Tam et al. [9], the registration process can be divided into three core components:
target selection, correspondences and constraints, and optimization. This sequence has been used often
by registration algorithms to find the alignment of 3D datasets. These stages are shown in Figure 1.
A more detailed classification was presented by Saval-Calvo et al. [81], including pre-processing and
post-processing phases:

• Pre-processing. This stage adapts the input data to meet the requirements of the algorithms.
• Target Selection. It is often necessary to differentiate between the dataset that will remain fixed

and the one that will be moved towards the fixed set to perform the alignment. In the literature,
different nomenclatures could be found for these fixed/moving terms such as model/data,
anchor/moving, or target/source.

• Feature Extraction. This stage refers to the process of finding those landmarks or salient features
that will be used to calculate the matches between sets.
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• Feature Matching. It refers to the identification of corresponding features between the target and
each moving data. The pair composed of pairs of features is called a correspondence.

• Pose Optimization. Here, the algorithm computes the transformation that minimizes a distance
between the correspondences, aligning the sets into a common reference space.

• Post-processing. This step is highly dependant on the problem itself. It could include global
optimization, such as loop-closure, data-cleaning in solid mesh estimation, surface extraction,
or outlier removal.

3. Deep Learning in the Context of Registration

Deep Learning is the subfield of Machine Learning that studies Deep Neural Networks (DNN),
which increases the number of hidden layers in a Neural Network (and potential layer-to-layer
transformations) and computes multiple levels of abstraction. It transforms the data in a non-linear
fashion by learning complex functions and transformations [82]. An extended review of the history of
deep learning and its approaches can be found in [83].

In a similar way to humans, neural networks are able to understand the input data by extracting
an abstract understanding of it [82]. Bench-Capon [84] considered the representation of knowledge
remaining in a learning system after the training process with the following definition: a set of syntactic
and semantic conventions that makes it possible to describe things. This representation of knowledge
could be understood as a conceptual model of the object. Norman [85] defined conceptual models
as an accurate, consistent, and complete representations of knowledge, coherent with the real world
and physics rules. There is a gap between an observed phenomenon and the mathematical model.
According to Nersessian [86], mental models are located in this gap, but they can be incomplete or
unscientific. A mathematical model is also a conceptual model, which is an external representation
that facilitates the comprehension of a teaching system. It is functional and coherent with scientific
knowledge [87].

This conceptual knowledge can improve alignment problems. Traditional registration approaches
have different challenges, that lead into one general limitation: the lack of generalization of these
algorithms. Usually they are highly dependent on the correspondences between the input datasets.
With the development of DL, the remaining knowledge, defined before as a set of syntactic and semantic
conventions, could be considered as a conceptual model, that, in the case of registration processes,
could be a target to align with spatial data. Theoretically, the idea of the conceptual model allows to
differentiate the input data of a registration process into defined or non-defined models. The defined
aspects are models that represent specific spatial data (commonly 2D or 3D) while a non-defined
model is a generalization of a dataset produced by a learning system, e.g., the concept of a ball,
those properties that make an object a ball, rather than the specific instance of a ball itself using
geometrical aspects.

The conceptual models have also been applied in registration, for example, in the work of Yumer
and Mitra [12], in which the network learns properties of objects, being able to know what a more
sporty car looks like or a more comfortable chair is, and modifying a 3D model to fit those properties
while preserving the main features of the original data. With this approach, three combinations of input
information are possible: defined model/defined model, defined model/conceptual model, and conceptual
model/conceptual model. This taxonomy is shown in Figure 3. The classical algorithms for registration
are included in the first of the possibilities, one input is used as a target or as a reference set whilst
the other is transformed to be aligned with the first, but always with defined data. By contrast, the
use of neural networks for registration results in other combinations where conceptual models are
included. Those models need not be specifically defined, e.g., they can be synthesized by a trained
network with the learned features coming from the training data. Then, these features can be used
in the registration process afterward or even in the same network. In any case, there is no need to
understand the working space of the network. Its internal representation is alien to human knowledge.



Appl. Sci. 2020, 10, 7524 7 of 20

The combination of two conceptual models could be possible with the growth of Imagination
Machines proposed by Mahadevan [88], which aims to provide artificial intelligence systems flexibility
and connections between the learned aspects through training processes not based on labels and
classifications of the input data.

Figure 3. The taxonomy present in registration algorithms as a result of the intersection between
defined and conceptual/non-defined features.

4. Review of Learning-Based Approaches for Registration

To show the advancements of neural networks applied to registration problems, an analysis
of recent works in the intersection of these fields is performed. To establish a comparative
framework between these new approaches, we use the workflow abstracted from traditional solutions,
as introduced in Section 1. This workflow is divided into four stages: target, features, matching, and
optimization. In this section, an analysis of learning approaches that use some or all of these stages of
the workflow is performed.

The reviewed methods are shown in Table 1, classified regarding the traditional phases of a
registration workflow. The first columns are the application, inputs, outputs, employed datasets,
and architecture of each method. The final columns indicate the parts of the traditional registration
process implemented in the DN. In this way, the target column refers to the need for the method to
have anchor data as a target to perform the alignment. If there is no checkmark in a column, it means
the method requires a defined target as input, otherwise the target is a conceptual model inside the
network. This is possible if the generalization of the training data is implicit in the network knowledge,
i.e., the main properties from the inputs are learned by the network. For example, it is possible to think
of a specific instance of a chair or think of a chair as a concept, with those properties that a chair must
fulfill to be considered as such.

The feature column indicates the ability of the method to find features in the data using a neural
network, such as the work of Ofir et al. [57]. The next step in the workflow is the matching between
features. There are some proposals which train a network to be able to check the accuracy of the
correspondences; Pais et al. [73] proposed a network to align two datasets given the features and
the matching between them. The network determines if the features are correct, removing some
of them if necessary. The last column indicates the ability of the learning approach managing the
geometric operations that align datasets, such as computing the camera pose [27] or the transformation
parameters [36].

In the recent state-of-the-art methods, we find methods that carry out the whole registration, i.e.,
they cover the main parts of the traditional pipeline of registration, as well as other methods that
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implement only some stages of the pipeline. This classification of the analyzed works has been done
as a way to compare them in a common framework using a traditional perspective of the registration
methods, going into detail in the key aspects of each method according to the stage where it contributes
a novel method.

4.1. Target Level

At the target level, there are methods that generalize from the training process, exploring the idea
of the conceptual model. This enables registration using learning approaches. For instance, the work of
Yumer and Mitra [12] uses semantically deforming shapes in 3D through free-form deformation using
lattices. It does not use a target model to deform a mesh, the properties of the target are learned by the
proposed network. The network is able to perform non-rigid deformations over 3D models to fit a
given semantic property. As a result, it provides the deformed 3D model as well as the deformation
flow of the data to fit that model while preserving original details. Similarly, a key aspect of the
unsupervised learning approach proposed by Ding and Feng [27] is that there is no target for the
registration process. The network is capable of locating each input point cloud in a global space,
solving SLAM problems in which multiple point clouds have to be registered rigidly. The employed
architecture is discussed in the following sections.

Adversarial training (AT), Autoencoders (AE), and Generative Adversarial Networks (GANs)
are used in some works for extracting conceptual descriptions. For instance, Wang and Fang [18]
employed an adversarial approach with CNN networks to reconstruct a 3D model of an object from its
2D image. The key aspect of this work is the combination of a 2D autoencoder-based network with a
deconvolutional network. The first network transforms the input image to the latent space, while the
second transforms from the latent space to 3D space, acting as a 3D generator. It is an unsupervised
generative neural network that accurately predicts 3D volumetric objects from single real-world 2D
images. The network has learned multiple objects and internally performs the registration between the
image and the conceptual model. In a similar way, Hermoza and Sipiran [39] also used a GAN network
for predicting the missing geometry of damaged archaeological objects, indicating the reconstructed
object in a voxel grid format and a label designating its class. Its network architecture combines a
completion loss and an improved Wasserstein GAN loss.

Smirnov et al. [68] proposed a method to generate a 3D model from a 2D sketch. The 3D
models are defined by a set of parametric patches. They employed an encoder-style architecture
using convolutional layers and residual blocks that generates a series of 3D patches from the sketch,
then a set of MLPs carry out the intersection between patches. In this work, registration between
different spaces is performed with the provided sketch and the internal knowledge that comes from the
training procedure. Similarly, the generative model of Yang et al. [69] uses a variation of an autoencoder
architecture to generate 3D point clouds by modeling them as a distribution of distributions. Concretely,
their method learns the distribution of shapes at the first level, and the distribution of points given
a shape at the second level. As a result, the method is able to generate points as a given shape by
parameterizing the transformation of points from an initial Gaussian distribution of them. Moreover,
Variational Autoencoders (VAEs) are being used in an adversarial training framework, such as the work
of Wang et al. [61]. In this case, they are employed for predicting structural deformations produced by
forces given a single depth image and the conditions of the input, which includes properties of the
material, the strength of the force, its location, etc. The generator predicts the force over a 3D model,
and the discriminator, used for training, should determine if the applied force comes from the generator
or from the ground-truth. This approach enables the network to learn non-rigid deformations and it
can generalize the deformations to unknown objects having into account properties of the materials.
Other approaches are able to train a variational autoencoder with graph convolutional operations for
completing missing data from partial body shapes while dealing with non-rigid deformations [50].
They are able to identify the output space of the generator that best aligns with the partial input.
Partial shapes are completed by deforming a randomly generated shape to be aligned with a partial
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input. This approach is robust to non-rigid deformations and has the ability to reconstruct missing
data. It shows topology understanding by the encoder–decoder architecture.

4.2. Feature and Matching Level

Learning approaches have demonstrated successful results in performing feature extraction and
matching for registration purposes. Auto-encoders have been used for feature extraction. For instance,
Elbaz et al. [15] used in their proposal for point cloud registration a Deep Auto Encoder (DAE) for
extracting low-dimensional descriptors from large scale point clouds. The training of the DAE is
unsupervised, and it is able to extract a compact representation from depth maps that capture the
significant geometric properties of the input data. Yuan et al. [77] proposed the method DeepGMR
to perform the registration by matching points to a probability distribution whose parameters are
estimated by a neural network from the input point clouds. That network learns latent correspondences
between points and Gaussian Mixture Model (GMM) components that are pose-invariant. The network
estimates point-to-component correspondences, following two compute blocks to obtain the GMM
parameters and the transformation. Groueix et al. [29] introduced Shape Deformation Networks
(SDNs) in an encoder–decoder architecture for matching deformable shapes, where the encoder is able
to extract a global shape descriptor from a 3D model, while the decoder can transform the extracted
descriptor into another model. The SDN is able to learn to deform a template shape to be aligned to
targets with the articulated restriction. Concretely, the encoder SDN learns the deformation parameters
and degrees of freedom to deform the template. This work shows that an encoder–decoder architecture
to generate human shape correspondences can compete with state-of-the-art methods.

Convolutional Neuronal Networks have also been used for feature extraction. Hanocka et al. [37]
propose ALIGNet, an unsupervised network to align either 2D or 3D shapes with an incomplete
target. The network learns to extract the features to match both shapes and compute Free Form
Deformation (FFD) grids. It is trained with a shape alignment loss by comparing the overlap between
the source and the target for learning the FFD parameters. Ofir et al. [57] developed a learning-based
method to register multi-spectral images (visible and Near-Infra-Red images). They employed a
learning approach for extracting features of both images and matching them. For that purpose, their
proposal is based on an asymmetric (different weights) Siamese Convolutional Neural Network, one
for each spectral channel. The networks minimize the Euclidean distance between the two descriptors.
With a similar network architecture, Yew and Lee [42] proposed 3DFet-Net, which finds features and
descriptors as well as correspondences for later registration. They used coarsely annotated point
clouds with GPS/INS absolute pose. It is based on a three-branch Siamese architecture that uses
PointNet++ [89]. Each branch takes an entire point cloud as input. The network is trained with a
set of triplets containing the anchor and positive and negative point clouds. Positive point clouds
are those with a distance to the anchor below a threshold, and negative point clouds are far away
from the anchor. Each branch has a detector and descriptor network. Both networks for each branch
share the same inputs. The detector network predicts an orientation and an attention weight for each
branch. Then, the descriptor network rotates the input to a canonical configuration and computes the
features that will be aligned with the other branch through a triplet loss. That loss aims to minimize
the difference between the anchor and positive point cloud and maximize the difference between the
anchor and the negative point cloud.

To address the problem of inaccurate correspondences, Schaffert et al. [67] employed a modified
PointNet [90] architecture for weighting individual correspondences in a 2D/3D rigid registration
process on X-ray images. They employed a modified PointNet to process points individually to obtain
global information. The authors included a second MLP which processes correspondences containing
global and local information. This modified network is able to weight individual correspondences
based on their geometrical properties and similarity as well as global properties.

Chang and Pham [63] presented a 3D point set registration framework with two stages to cover
the problem of coarse-to-fine registration. Two descriptors are proposed, one for rough and one for fine
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orientation extraction, SSPD and 8CBCP, respectively. SSPD that is a normalized voxel grid and 8CBCP
describes the orientation using an 8dx3 matrix obtained from the data in the eight sub-quadrants of
the bounding box around the 3D points. They used two consecutive CNNs using those descriptors.
The first CNN receives as input the SSPD descriptor and is meant to estimate the coarse alignment.
Then, the 8CBCP descriptor is computed over the output and introduced in a second CCN that
performs a more accurate alignment. In this proposal, the CNNs only estimate the rotation, and the
translation is afterward obtained.

Convolutions used in most of the deep learning networks operate over a neighborhood of the data;
thus, structured inputs are required. 3D point clouds are unorganized datasets that are challenging
to operate by convolution-based networks, a problem that led to much research on this topic. Some
state-of-the-art proposals tackle this problem by voxeling the point cloud [91] but these approaches
are not efficient since points are sparse and a large percentage of voxels are empty and details can
be lost. Others try to extract geometric features from point clouds, e.g., Xu et al. [92] used so-called
SpiderConv filters that are parameterized functions of specific radius applied over the point cloud. The
ELF-Nets of Lee et al. [93] proposed the Extended Laplacian Filter that is a combination of a two-state
filter, one for the center point and one for neighbors, with a scalar weighting function that represents
the relative importance of the points. This last approach uses fewer parameters than SpiderConvs.
For managing 3D data, Zeng et al. [21] employed a reduced set of voxels of TDF (truncate distance
function) containing an interest point of a point cloud. The TDF is the distance from the center of
the voxel to the nearest point. This is used as input of a convolutional network which extracts a
512-dimensional feature representation. The result is a geometric descriptor in which the network is
able to generalize to other tasks and resolutions. However, according to Liu et al. [52], the CNN does
not provide good results when working with point clouds due to their irregular structure. For this
purpose, they employed a modified version of the PointNet++ [89] architecture, a network that learns
hierarchical features. With that network, they propose a network architecture that learns to predict
scene flow as translational motion vectors for each point. The proposed architecture has three modules:
point feature learning, point mixture, and flow refinement. It includes a flow embedding layer that learns
to aggregate geometric similarities and spatial relations of points for motion encoding. Pais et al. [73]
presented a network architecture with two main blocks, the classification block fed with pairs of
corresponding 3D points and giving as a result features for each correspondence using 12 ResNets [94],
which remove outlier correspondences. The registration block gets the resulting features from the
previous stage and produces a six-variable output for rotation and translation obtained with a context
normalization layer along with convolutional one and two fully connected layers. This method works
on point correspondences. It is efficient and outperforms traditional approaches.

4.3. Transformation Level

Some works have been successfully employed neural networks for learning and applying
geometric transformations. Some of these achievements have been done using GAN architectures
or variants of them. For instance, Lin et al. [47] demonstrated good results using neural networks
for finding realistic geometric transformations for 2D image compositing. Image compositing refers
to overlap images coming from different scenes; thus, achieving a good realism implies a good
transformation to minimize the appearance and geometric differences. For this purpose, they propose
a GAN architecture using Spatial Transform Networks (STNs) [95], named ST-GAN. According to
the authors of ST-GAN, this idea could be extended to other image alignment tasks. STNs have
shown good results resolving geometric variations; thus, with this architecture, the network learns to
perform realistic geometric warps, demonstrating potential 3D capabilities. Yan et al. [60] also used
GANs to carry out the registration of magnetic resonance (MR) and transrectal ultrasound (TRUS)
images as well as evaluate the provided result. The generator network provides the transformation
parameters to align both inputs, while the discriminator performs a quality evaluation of that alignment.
Mahapatra et al. [54] used GANs for deformable multimodal medical image registration in 2D.
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The network outputs a transformed image and also a deformation field. Similarly, in three-dimensional
space, Hermoza and Sipiran [39], as referenced above, performed the reconstruction of incomplete
archaeological models also using GANs, in which the generator network provides a reconstructed
model. Zhang et al. [79] also proposed a registration method based on a GAN architecture with a
gradient loss which can manage local structure information across modalities. This makes it more
robust against large deformations, noise, and blur.

Ding and Feng [27] managed multiple point clouds registration using DNNs. They approached
this problem by including two networks, a localization network named L-Net, and an occupancy
map network, M-Net. The L-Net estimates the sensor pose for a given point cloud, sharing some
optimization parameters between the input point clouds. The goal of this network is to estimate
the sensor pose in a global frame. To do that, the L-Net network is divided into a feature extraction
module followed by an MLP that outputs the sensor pose. The feature extraction module employed
depends on the input format of the point cloud. If it is an organized point cloud, a CNN is employed
for that purpose. If not, the features are extracted using PointNet [90]. Later, the M-Net receives
those location coordinates in the global space and retrieves the discrete occupancy map. Besides, the
L-Net network locates each input point cloud in a global space; there is no target for the alignment.
With a similar architecture, Wang et al. [71] presented 3DN, a combination of PointNet and MLPs
that deforms 3D meshes to resemble a target, given in the form of a 2D image or point cloud, as
close as possible preserving the properties of the source. The proposal extracts global features from
both source and target inputs using CNN/PointNet. Next, those features are used to estimate the
per-vertex displacement with an ‘offset decoder’. To overcome the problem of tessellation differences,
an intermediate sampled point cloud is calculated from both source and target. They employed a
combination of four different loss functions, measuring the similarity between the deformed source and
the target, symmetry, local geometric details, and self-intersections. This work proposes an end-to-end
network architecture for mesh deformation.

Using autoencoders, Groueix et al. [29], with their SDNs introduced before, replicated the shape
of a body previously encoded in a given template. For 3D medical image non-rigid registration, Kuang
and Schmah [45] employed an architecture inspired by STNs extending the works of Shan et al. [96]
and Balakrishnan et al. [97]. The network takes a pair of volumes and predicts the displacement
fields needed to register source to target. According to the authors, it improves the results compared
to U-net [98] and VoxelMorph [97]. This method produces deformations with fewer regions of
non-invertibility where the surface folds over itself. To achieve this, they employed an explicit
anti-folding regularization to penalize foldings, which are the spatial locations where the deformation
is non-invertible and is indicated by a negative determinant of the Jacobian matrix.

With convolutional networks, Jack et al. [65] performed the 3D reconstruction from a single 2D
image by learning to apply large deformations and compelling mesh reconstructions by inferring Free
Form Deformation (FFD) parameters. They employed a lightweight CNN based on the MobileNet
architecture [99] to infer FDD parameters to deform a template and infer a 3D mesh of the given image.
As a result, the network learns how to deform a given template to match features present in a 2D
image with finer geometry than other methods working with voxel grids and point clouds, because
there is no discretization.

Guan et al. [64] proposed a multi-channel CNN (MCNN) for deformable registration of CT scans
with digital subtraction angiography (DSA) images of the cardiovascular system. The network is
composed of several sub-networks that converge before the fully connected layers. They named
this architecture as a multi-channel convolutional neural network. They employed a CNN model
based on the VGG network combined with a vascular diameter variation model to directly regress
and predict transformation parameters. With this architecture, each channel of the MCNN process
a different phase of the vascular deformation cycle, comparing the results of each to choose the best
result. Li and Fan [17] employed Fully Convolutional Networks (FCNs) to optimize and learn spatial
transformations between pairs of images to be non-rigidly registered. Their method works with
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medical images at the voxel level and, according to the authors, it improves the results of STNs, which
cannot manage small transformations. The spatial transformation between pairs of images is obtained
directly by maximizing an image-wise similarity metric, similar to traditional approaches. The use of
FCNs facilitates the voxel-to-voxel prediction of deformation fields, which also allows learning small
transformations.

Gundogdu et al. [36] proposed a method for 3D garment fitting on bodies. To extract global
features of the body model, they employed a PointNet [90] but with leaky ReLUs with a slope of 0.1.
After that, a second stream, composed by six residual blocks, is used to extract features from the garment
mesh and also take as input the previous global body features. Thirdly, the features provided by both
networks are merged employing four Multi Layer Perceptron (MLP) blocks shared by all points. The
final MLP block outputs a vector with the 3D translation information. With this method, the authors
achieved results nearly as accurate as a Physics-Based Simulation (PBS), but less time-consuming.

Similarly, PointNetLK [62] is a method for 3D rigid registration which modifies the Lucas and
Kanade (LK) [100] algorithm integrated with PointNet. The process is mainly divided into two
steps: initially, two 3D point sets are passed through a shared Multi Layer Perceptron of the two
inputs and a symmetric pooling function. Second, the transformation is obtained and applied to the
moving point cloud. The whole procedure is iteratively repeated until a minimum quality threshold is
reached. According to the authors, this method exhibits remarkable generalization of unseen objects
and shape variation due to the encoding of the alignment process in the network architecture that
only needs to learn the PointNet representation. Li et al. [76] proposed a deterministic PointNetLK
method to improve the generalization by using analytical gradients. Wang and Fang [72] presented
CPD-Net, a network architecture that performs non-rigid registration under the concept of learning a
displacement vector function that estimates the geometric transformation. The pipeline is decomposed
into three main components: ‘Learning Shape Descriptor’ with a MultiLayer Perceptron (MLP) that
learns descriptors from the input source and target point sets; ‘Coherent PointMorph’ that is a three
MLPs block fed with the two descriptors concatenated with the source data points; and the ‘Point
Set Alignment’, where the loss function is defined to determine the quality of the alignment. Deep
Closest Point [70] registers two point clouds by first embedding them into high-dimensional space
using DGCNN [101] to extract features. After that, contextual information is estimated using an
attention-based module that provides a dependency term between the feature sets, i.e., one set is
modified in a way that is knowledgeable about the structure of the other. Finally, alignment is obtained
using a differentiable Singular Value Decomposition (SVD) layer, which seems to provide better
results than an MLP. This proposal also includes a “pointer generation” that provides a probabilistic
approach to generate a soft map between the two features sets to minimize the problem of falling into
a local minima.

Going back to the work of Pais et al. [73] cited above, the component performing the alignment
uses a CNN that receives as input features extracted from the selected correspondences at different
stages of the previous components composed by ResNet blocks. The registration block receives as
input features previously extracted and outputs the transformation parameters.

4.4. Summary

Through this section, an overview of neural networks that perform alignment or registration tasks
is provided. A perspective based on the traditionally employed pipeline in registration methods is
used to analyze the proposals. From the analyzed works (summarized in Table 1), it is possible to
observe that the extraction and matching of features are tasks widely explored with neural networks
because they are common points with other problems such as object classification or recognition.
However, it is not common to find neural networks with the ability to manage geometric information
for applying transformations on data to meet some requirements.

There are approaches dealing with some parts of the pipeline or the whole registration.
Interestingly, the proposals that compute the transformation for the alignment also perform the
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matching of features. That means there are no proposals performing only the calculation of the
transformation. In terms of deformable alignment, there exist specific proposals for learning
deformations or non-rigid registration with networks, such as the SDNs, but is a current topic
under research.

In addition, it is noticeable that most of the analyzed neural networks employ a GAN, a CNN, or
a variation of them, but there are a few works with a GAN architecture managing 3D data. However,
this point is under active study because this kind of data requires many resources. As occurs with
2D images, the main solution is to use discrete input data. Similar to pixels in 2D, voxel grids are
the common solution for 3D. However, in some situations, it is important to work at point level, e.g.,
for estimating deformation flow. Although there are some proposals working with point clouds as
input data, most of them require an organized point cloud or a limitation in the number of points.

From the reviewed methods, it is possible to extract the key innovations that are relevant to
registration problems. Table 2 summarizes the key contributions of the reviewed methods classified
according to the stage in which they are relevant.

Table 2. Summary of the key advantages of the reviewed methods.

target selection

• Reconstruction of 3D models from a single 2D image using encoder–decoder architectures [18,68]
• Leverage partial 3D observations to generate complete 3D models (mesh completion) using

Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) for predicting
missing geometry [39,50]

• The use of Adversarial Training (AT) to predict structural deformations on 3D meshes given a
multi-modal input (e.g., forces, material properties, visual imaging) [61]

features and matching

• Registration of global and local point clouds with a generic Deep Auto Encoder (DAE) architecture
regardless of the input data and its source [15]

• The Shape Deformation Network (SDN) is an autoencoder architecture able to deal with deformable
shapes extracting global shape descriptors [29]

• Capability for multi-spectral registration using Asymmetric Siamese Convolutional Networks [57]
• Filtering inaccurate features correspondences based on geometrical and global properties to minimize

their influence in the registration process [67,73]
• Registration process speedup using a two-staged approach based on Convolutional Neural Networks

(CNNs) to solve coarse-to-fine registration problems [63]

transform

• Using Spatial Transformer Networks (STNs) to deal with geometrical variability by means of learned
invariance to transformations [45,47,95]

• To align multimodal inputs with transformations generated and evaluated in an adversarial fashion [60]
• Ability to preserve detailed geometric information by using a CNN to infer Free Form Deformation

(FFD) parameters for 3D template-image matching [65]
• Unsupervised registration of multiple point clouds in a global frame of reference [27]
• Outperforming single channel CNNs with a multi-channel approach for real-time deformable

registration [64]
• Cloth fitting by modeling 3D body-garment interaction in real time surpassing Physics-Based

Simulation (PBS) [36]

5. Conclusions

In this work, approaches in the intersection between registration and deep neural networks are
reviewed. It is important to remark that a large part of the works was reached through the ArXiv
repository, which at the moment, even though is not peer-reviewed, leads the advancements in many
fields such as artificial intelligence and deep learning. For this reason, extra effort was required to
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select the papers. However, this approach enables including the most recent works in the scope of
this paper.

Registration aims to calculate a common reference for two or more datasets. This field has been
widely studied, but recent techniques in machine learning are being combined with registration
algorithms to increase the capabilities of the proposals. These techniques include neural networks
with many hidden layers, also known as deep learning, and its novelty remains in the ability to
learn representations from huge amounts of data at different levels of abstraction. Applied to
registration, this paradigm allows managing higher-level understanding problems that are more
related to conceptual knowledge of the scene rather than the geometric properties. We name this
paradigm Deep Registration Networks (DRNs) to identify the branch of artificial intelligence exploring
solutions for alignment problems using DNNs.

The contribution of this work is a review of registration methods based on deep networks. To do
that, the learning approaches for registration are reviewed and classified using a novel framework
extracted from the traditional registration pipeline. The review clearly identifies the current efforts and
existing gaps in the intersection between registration and learning algorithms. Moreover, the positive
influence of the internal representations modeled by learning approaches on the registration process is
clearly identified.

As a result, an overall view of this new subfield is provided, setting out different architectures
and solutions that are being provided by the authors. A summary of the different methods is shown in
Table 1 with the inputs, outputs, architectures, and datasets employed to address the problems. Besides,
an analysis of each method has been made using a traditional perspective of the pipeline employed in
registration algorithms. As the main contribution of this work, we provide a framework to understand
the learning methods for registration. In these new methods, the stages of the pipeline are not so
clearly defined as they are in a traditional approach, because some processes are computed directly
and implicitly by the network, e.g., the extraction and matching of features. However, an advantage of
the learning approaches is that they are suitable for real-time problems. The higher computational
needs of a neural network are at the training phase, which is performed once. After that, the data
processing is relatively fast for real-time applications.

From our perspective, it is clear that researchers are still exploring different paradigms, and no
single approach is so far the preferred one. Whether the learning-based approaches will enable
significant improvements over traditional registration approaches is still an open question. To help
assess whether convergence in the literature is happening, we analyzed the approaches using k-means
and SOM networks to find clusters of methods sharing characteristics. However, no significant
clusters were found, suggesting that convergence has not yet happened. The metrics employed
to evaluate each method are different, some of them are even ad hoc solutions. In addition, there
is a lack of standard benchmarks as well as common datasets to compare/evaluate the methods.
For this reason, a comparison between methods is not a contribution as it would not allow extracting
relevant conclusions.

To conclude, we find that most current approaches can be analyzed using concepts from
the four stages of registration identified in Figure 1, which enable the recognition, registration,
and reconstruction of objects. Although the four stages are evident in the traditional algorithms,
with the rise of deep learning, we believe that it will be possible to deal with more complex registration
problems, e.g., at the conceptual level.
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