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Abstract: Speaker identification is gaining popularity, with notable applications in security,
automation, and authentication. For speaker identification, deep-convolutional-network-based
approaches, such as SincNet, are used as an alternative to i-vectors. Convolution performed by
parameterized sinc functions in SincNet demonstrated superior results in this area. This system
optimizes softmax loss, which is integrated in the classification layer that is responsible for making
predictions. Since the nature of this loss is only to increase interclass distance, it is not always
an optimal design choice for biometric-authentication tasks such as face and speaker recognition.
To overcome the aforementioned issues, this study proposes a family of models that improve upon
the state-of-the-art SincNet model. Proposed models AF-SincNet, Ensemble-SincNet, and ALL-SincNet
serve as a potential successor to the successful SincNet model. The proposed models are compared
on a number of speaker-recognition datasets, such as TIMIT and LibriSpeech, with their own
unique challenges. Performance improvements are demonstrated compared to competitive baselines.
In interdataset evaluation, the best reported model not only consistently outperformed the baselines
and current prior models, but also generalized well on unseen and diverse tasks such as Bengali
speaker recognition.

Keywords: speaker recognition; speaker identification; margin loss; SincNet; inter dataset testing;
biometric authentication; feature embedding

1. Introduction

Speaker recognition is of interest in biometric authentication and security, and consists of two
subtasks, speaker verification and identification. The process of verifying the claimed identity
of a speaker on the basis of speech signals from a person is known as speaker verification.
Speaker identification is the task in which a speaker’s signal is compared with a set of known
speaker signals. Previously, the i-vector method [1] was widely used as a speaker-recognition
technique, where handcrafted features performed classification using methods such as probabilistic
linear discriminant analysis (PLDA) [2] and heavy-tailed PLDA [3]. Handcrafted features are mostly
FBANK and MFCC coefficients [4–6]. Since these handcrafted features are designed from perceptual
evidence, they are lacking in many aspects and are unable to attain optimal performance for a variety
of tasks in the speech domain.

Though speaker recognition is still a daunting task, remarkable performance improvements in
speech domain [7–11] have been achieved in recent years by deep learning. In fact, when the i-vector
framework was used in conjunction with deep neural networks (DNNs), there was performance
improvement [12,13]. Convolutional neural networks (CNNs) proved to be effective in image-based
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tasks such as image classification and recognition, and object detection due to their ability to
automatically extract meaningful features. With few studies done in the direction of speaker verification
using CNNs [14,15], current waveform-based DCNNs suffer in the first convolutional layer because
of high-dimensional inputs [16]. They also suffer from the vanishing-gradient problem when the
architecture is very deep [16].

In this regard, in speaker-recognition tasks, promising results were demonstrated by SincNet [16],
which is a CNN-based architecture. The convolutional layer of SincNet consists of parameterized sinc
functions to implement band-pass filters, and it is responsible for extracting low-level features from the
waveform of an audio signal. This is followed by processing the extracted features by the deeper layers
of the network. The low and high cutoff frequencies are the only parameters of the filters learned
from data [16] at this stage. SincNet, due to its significantly smaller number of learnable parameters,
converges much faster compared to conventional CNNs. This model uses a softmax function in its
last layer to generate probability distribution over the training classes. However, softmax creates a
decision boundary to distinguish samples from different classes, but it does not minimize intraclass
distance [17,18].

Both speaker recognition (SR) and facial recognition (FR) are viewed an open-set problems
because of their nature. An open-set problem is where there is no boundary point or limited class.
Speaker and facial recognition does not have a limited number of class boundaries. Therefore,
there is demand for specialized loss functions tailored to enforce this criterion. Classical softmax
loss works well in optimizing a selection boundary that can distinguish classes. On the other hand,
margin-based loss maximizes interclass distance and decreases intraclass variation, which is significant.
This has motivated more studies on designing loss functions for FR tasks [17–20]. On the other hand,
limited work has been done for SR tasks. AM-SincNet [21] was proposed, where the authors adopted
additive margin softmax loss [17] from FR and integrated it with SincNet, showing 40% improvement
in frame-error rate (FER) compared to the SincNet model trained with softmax loss. Margin-based loss
has not only shown class variations, but has also proven to be robust.

In this paper, a family of models is proposed to serve as a potential successor to the SincNet
model. The proposed models consist of angular-margin-based losses integrated with the original
SincNet model, which showed performance improvements when compared to competitive baselines on
multiple datasets. Interdataset evaluation was conducted, which showed that among all the proposed
models, ALL-SincNet consistently outperformed the baselines and prior models. The contributions of
this study can be summarized as follows:

• A family of models is proposed that utilizes angular-margin-based losses to improve the original
SincNet architecture.

• Experimentally significant performance improvements are demonstrated in comparison to the
performance of competitive baselines over a number of speaker-recognition datasets.

• Interdataset evaluation was performed, which demonstrated that one of the proposed models,
ALL-SincNet, consistently outperformed the baselines and prior models.

• Cross-domain evaluation was performed on Bengali speaker recognition, which is considered
a more diverse domain task, and it showed that ALL-SincNet could generalize reasonably well
compared to the other baselines.

The remainder of the paper is organized as follows. The next two sections discuss related work
and previously designed loss functions for SR and FR tasks. Sections 4 and 6 discuss the methodology
of the proposed work and demonstrate the experiment results. We end with Sections 7 and 8,
which summarize our study and outline future work directions.
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2. Related Work

2.1. Speaker Recognition

For SR tasks, the i-vector [1] is used as a de facto feature-extraction method. Extracted features
are then classified using PLDA [2] and heavy-tailed PLDA [3]. Though these methods achieve
considerable results, there is still scope for improvement [22]. Recently, the use of low-level speech was
investigated by researchers [23]. They considered under degraded conditions for speaker recognition,
feature-extraction methods, and short-term features. Deep-learning methods demonstrated major
advances in feature extraction and pattern recognition [24–31]. For example, in [25], the authors
proposed a CNN-based method where the recording of a speaker was treated as an image. In [26],
the authors proposed a CNN-based deep neural network for the speaker’s short speech embedding.
They used 5 s of speech for both sides of verification. A DNN was directly applied to time-frequency
speech representation. In [29], the authors proposed to add a filter-bank layer within a CNN as an
extra layer that learned jointly with the rest of the network to optimize cross-entropy loss. A filter-bank
layer with multiple hidden layers has been proposed by the authors in [30] for spoofing detection.
They showed that the filter bank produced cepstral coefficient features that distinguished between
natural and synthetic speech more precisely than naive DNN features can, and manually designed
cepstral coefficients. Before the output layer of the DNN, the authors of [32] proposed to add
an L2 normalization layer followed by a scale layer, which normalizes the learned embeddings
in an end-to-end fashion. The authors showed from the experiment that performance could be
significantly improved by setting a proper value of scale parameter α. In [33], the authors proposed
robust speaker embedding where embeddings are extracted without a nonlinear activation function.
Towards deep speaker embedding, the authors from [34] proposed attentive statistical pooling for
extracting features. The pooling layer calculated weighted standard deviation and weighted means
over frame-level features that only focused on important frames. A recent trend is to learn directly
from raw waveforms and completely avoid the feature-extraction step; this showed good results,
including in speech-emotion recognition [35], speaker verification [36], and in spoofing detection with
raw waveforms [37].

2.2. Loss

For some time, margin-based loss has been a popular research field in FR tasks. Previous works in
open-set biometric-authentication tasks were done in the direction of FR [18–20]. Although SR tasks
are similar to FR tasks, they have not received enough attention [21,38,39]. Additive margin softmax
loss incorporated with a SincNet architecture was proposed in [21], and it demonstrated significantly
improved performance compared to that of SincNet with softmax loss. On the other hand, a new
ensemble additive margin softmax for speaker-verification motivation inspired by the work from [40]
by the authors in [38] , where [38] the ensemble was the Hilbert–Schmidt independence criterion [41]
with additive margin softmax loss. In [39], the authors introduce central loss and A-softmax loss
for open-set speaker verification towards the more discriminative speaker embeddings where the
frame-level feature extracted from a deep convolutional neural network.

To the best of our knowledge, this is the first study to show comprehensive analysis of different
angular-margin-based loss functions. This is also the first study that performed interdataset and
interlanguage evaluation in speaker recognition.

3. Loss Function

This section includes an indepth discussion of different loss functions used in our experiments.
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3.1. Softmax Loss

Softmax loss is formulated by

Lso f tmax = − 1
N

N

∑
i=1

log
φ

∑C
c=1 eWT

c fi
(1)

where
φ = eWT

yi
fi ,

where Wc (c = 1,....,C; C is the number of classes) represents the weight vector of last fully connected
layer, fi denotes the feature input vector of the last fully connected layer corresponding to the original
input xi with the label yi. N represents the number of training samples in a minibatch, and bias was
set to 0. This can only penalize the classification error by increasing interclass discrepancy [17].

3.2. A-Softmax Loss

The inner product of Equation (1) can be factorized into ‖Wc‖ ‖fi‖ cos(θc). Equation (1) can be
rewritten as

Lso f tmaxrevised
= − 1

N

N

∑
i=1

log
e‖Wyi‖‖fi‖ cos(θyi )

∑C
c=1 e‖Wc‖‖fi‖ cos(θc)

(2)

A-Softmax loss [18] was proposed, which is derived from Equation (2), and imposed to normalize the
weight vector (‖Wc‖ = 1), modifying softmax loss to angular softmax loss by restoring ‖fi‖ cos(θyi )

with ‖fi‖ φ(θyi )

LA−so f tmax = − 1
N

N

∑
i=1

log
φ

φ + ∑C
c=1,c 6=yi

e‖fc‖ cos(θc)
(3)

where φ = e‖fi‖Φ(θyi )

The authors of [18] proposed to define φ(θ) = (−1)k cos(mθ) − 2k, θ ∈ [ kπ
m , (k+1)π

m ] and
k ∈ [0, m− 1] for removing the restriction, in which θ must be in the range of [0, π

m ].

3.3. AM-Softmax Loss

Additive margin softmax loss works as a better class separator than the original softmax and
A-Softmax [17] do. Here, the authors proposed to introduce an additive margin to the original softmax
loss’s decision boundary. It can be derived from Equation (1) by adding margin to Equation (1).
Both deep feature vectors fi and weight vectors Wc are normalized in the implementation settings,
and s is a hyperparameter for scaling the cosine values.

LAM−So f tmax = − 1
N

N

∑
i=1

log
eα

eα + ∑C
c=1,c 6=yi

esWT
c fi

= − 1
N

N

∑
i=1

log
eβ

eβ + ∑C
c=1,c 6=yi

es·cos(θc)

(4)

where α = s · (WT
yi

fi −m)

β = s · (cosθyi
−m)
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3.4. CosFace Loss

Equation (1) can be reformulated in a way in which the posterior probability only relies on the
cosine of the angle between weights and input vectors by normalizing input vectors xi and weights wi.
Normalized softmax (NS) loss is derived as

LNS = − 1
N

N

∑
i=1

log
ecos(θyi ,i)

∑c ecos(θc ,i)
(5)

where cos(θyi , i) is the output of normalised dot product of wi and xi. However, this normalized form
of softmax is not sufficiently discriminative because NS loss only penalizes classification error [19].
To address this problem, cosine margin m in Equation (5) is introduced by the authors in [19], where θj
is the angle between Wj and xi. Equation (6) is the proposed large-margin cosine loss (LMCL) in [19]:

LCosFace = −
1
N

N

∑
i=1

log
es(cos(θyi ,i)−m)

es(cos(θyi ,i)−m) + ∑c 6=yi
escos(θc ,i)

(6)

subject to

W =
W∗

‖W∗‖ ,

x =
x∗

‖x∗‖ ,

cos(θj, i) = Wj
Txi

4. Method

4.1. SincNet

On the basis of CNNs, SincNet showed superior results and consistently performed better than
conventional CNNs MFCC and FBANK [21] on SR tasks. The initial convolutional layer in SincNet
is a set of parameterized sinc functions that implement band-pass filters, which are responsible of
convolving the audio signal to vital low-level features. The convolutional operation is performed by a
predefined function g that depends on learnable parameters θ. The only learned parameters of the
filter are high and low cutoff frequencies [16]. Later, these features are processed by deeper layers of
the architecture. SincNet enforces itself to emphasize only the filter parameters with prime effect on
performance [16]. The convolution formula is shown as Equation (7):

y[n] = x[n] ∗ g[n, θ] (7)

where x[n] is a chunk of a speaker signal, y[n] is the filtered output, and band-pass filter g is defined as

g[n, a1, a2] = 2a2
sin(2πa2n)

2πa2n
− 2a1

sin(2πa1n)
2πa1n

(8)

where a1 and a2 are the learned low and high cutoff frequencies. Due to this filtering procedure with a
sinc function, SincNet accurately reduces the number of parameters in the first convolutional layer
compared to conventional CNNs [16]. Sinc functions were designed to handle digital signals such as
audio and electroencephalograms (EEGs). So, using the sinc function helps the network to extract
more meaningful features. If a standard CNN has F filters of L length, and if F = 100 and L = 100,
then the CNN employs F · L = 10k parameters. SincNet employs 2 · F = 0.2k, which is significantly
less than in a standard CNN. Moreover, sinc functions are symmetrical, so computational cost can be
decreased by simply calculating half of the filters and turning them to the other side [21].
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4.2. Proposed Architecture

Though the original SincNet showed promising results in SR tasks, it applies softmax loss to
compute posterior probabilities over the selected speaker. Despite being a rational choice, it is
not specifically capable of producing sharp divergence between classes in the final classification
layer. To address that, this study proposes three different methods that can differentiate between
classes more than traditional softmax loss can. Figure 1 illustrates the overall network architecture,
which is originally from [16], where the model was modified by replacing softmax loss with our set of
loss functions. This led to three models, namely, AF-SincNet, Ensemble-SincNet, and ALL-SincNet.
The following sections discuss these different configurations.

SincNet Filters

Pooling

Layer Norm

Leaky ReLU

X-Loss

CNN/DNN Layers

Dropout

Speaker Classification

Speech Waveform

Figure 1. Visual representation of our model architecture. X-Loss illustrates loss functions used in
experiments (e.g., AF-SincNet).

4.2.1. ArcFace Loss

The difference between ArcFace loss [20] and CosFace loss [19] is that CosFace loss uses the cosine
margin, and ArcFace loss utilizes the arc-cosine function to calculate the angle between weights and
vectors and add the additive margin to the target angle. ArcFace loss is currently the state-of-the-art
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technique in FR-based systems [20]. The geodesic distance margin penalty is equal to the additive
margin penalty in the normalized hypersphere [20].

LArcFace = −
1
N

N

∑
i=1

log
α

α + ∑C
c=1,c 6=yi

escos(θc ,i)
(9)

where α = es(cos(θyi ,i+m)

This study uses ArcFace [20] as classification loss and integrates it with SincNet in the
AF-SincNet model.

4.2.2. Ensemble Loss

Inspired from [20], this study also performed experiments where three separate loss terms were
incorporated in a single framework. Loss terms ArcFace, CosFace, and A-Softmax were used and
integrated with the SincNet classification layer. The formula was as in Equation (10):

LPS1 = − 1
N

N

∑
i=1

log
α

α + ∑C
c=1,c 6=yi

escos(θc)
(10)

where
α = es(cos(m1θyi+m2)−m3)

Here, m1 = m from A-Softmax, m2 = m from Equation (9), and m3 = m from Equation (6).

4.2.3. Combination of Margin-Based Toss

An open-set task has no limitations of class label, which means that the open-set model has to
be more robust in learning feature embedding in a latent space. Experience from FR tasks showed
that embedding vectors found from training using an angular-margin-based loss function can become
useful in open-set tasks. Utilizing this understanding, this study proposes an objective function that is
a linear combination of the three loss functions described above, as shown in Equation (11):

LPS2 = LArcFace + LCosFace + LA−so f tmax (11)

In essence, the proposed loss function is the joint optimization of the three different
angular-margin-based loss functions. Through trial and error, we found that ascribing equal weights
to each of the loss components performed well for speaker-recognition tasks.

5. Experiments

This section discusses the considered datasets, training and testing procedure, and employed
metrics in this study.

5.1. Datasets

This study considered multiple datasets for training and evaluation purposes. The TIMIT [42]
and LibriSpeeh [43] datasets were considered in this study. These two datasets are widely used in
SR-related tasks, such as [16,21,44,45]. For the interlanguage test, the large Bengali ASR dataset [46]
was used for evaluation only.

5.1.1. TIMIT

The TIMIT dataset has 462 classes, and the sample rate of each audio sampleis 16 kHz. There are
eight samples for each class and the total number of sample is 3686. For training, five samples of
each class were used, and the rest were used for testing. The zero signal (silence) was removed at the
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beginning and end of each sentence as a preprocessing step by following the same procedures as those
in [16]. The utterances for all speakers with the same text were removed.

5.1.2. LibriSpeech

This study considered exactly the same LibriSpeech data distribution as that in [16]. There are
2484 classes in total in LibriSpeech. The training and test materials were randomly sampled; 12–15 s
of material was used for training, and 2–6 s in testing. The total number of samples was 21,933,
where 14,481 were used as training data and the rest for testing. For both datasets, starting and end
silence was removed.

5.1.3. Large Bengali ASR Dataset

Part of the large Bengali ASR Dataset [46] was used for interdataset testing of our model. The large
Bengali ASR Dataset can be obtained from the OpenSLR site [47]. The dataset is mainly used for
Bengali speech-recognition tasks, and, to the best of our knowledge, this study is the first to use it
as a test set for a speaker-recognition task. The dataset is available in 16 segments, and this study
only used a single segment (asr_bengali_0) for testing. Furthermore, this dataset was used only to
test the proposed models in an interlanguage test setting to explore how the models performed in a
true open-set biometric-recognition setting, so no data samples were involved in the training phase.
For this experiment, the dataset was rearranged following the TIMIT test set, meaning that, from each
class, only three samples were considered. A single sample from each class was registered, and the
two other samples were used for testing. A total of 269 classes are available in asr_bengali_0.

5.2. Baselines

The proposed models were compared with several baselines. First, the recent SincNet [16] model
was considered. This network uses classical softmax loss in training procedures. This was followed by
AM-SincNet, which uses additive margin softmax loss [21]. For easy reference, Table 1 illustrates the
model configurations and their references.

Table 1. Model-configuration details with reference to configuration names.

Model Name Configuration

SincNet (baseline) SincNet + softmax loss [16]
AM-SincNet (baseline) SincNet + AM-Softmax loss [21]

AF-SincNet SincNet + ArcFace loss (Section 4.2.1)
Ensemble-SincNet SincNet + ensemble loss (Section 4.2.2)

ALL-SincNet SincNet + combination of margin-based loss (Section 4.2.3)

5.3. Training and Testing Procedure

The raw waveforms were split into chunks of 200 ms with an overlap of 10 ms, similarly
to previous work [16]. In SincNet, the first 3 layers are convolutional layers, where the first is
a sinc-based convolutional layer, and the two following layers are typical convolutional layers.
Sinc-based convolution used 80 filters of length L = 251. The later layers had 60 filters of length
L = 5. Input samples and all convolutional layers were normalized [48]. Three fully connected layers
composed of 2048 neurons were applied with batch normalization [49]. Leaky_ReLU [50] was used as
the activation function of all hidden layers. This study followed the same protocol as that of [16] to
initialize the model parameters. In order to train the models, RMSprop was used as the optimization
algorithm. Minibatches of 128 were used with a learning rate of 10−2, alpha α = 0.95, and epsilon
ε = 10−7.

Each configuration was trained on each dataset. During training, hyperparameters m and s were
set to m = 0.5 and s = 30, similarly to [21]. For all our training configurations, s = 30 was considered,
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but hyperparameter m was set by trying out different m values in the range of 0.3 ≤ m ≤ 0.75 and
using the optimal value. For Equation (9), m = 0.5. In Equation (10), m1 = 4, m2 = 0.5, and m3 = 0.35.
The same setting was used for Equation (11). For Equations (9)–(11), s was set to 30.

Two distinct kinds of evaluations were performed in this study. First, for speaker identification,
the model was tested on the same distribution as that on which it was trained (e.g., test set of TIMIT,
while the model was trained on the remaining set). For speaker verification, interdataset evaluation
was performed. In this case, the model was tested on a different dataset/domain than the one on which
it was trained (e.g., test set of TIMIT, while the model was trained on the training set of LibriSpeech).
This was to demonstrate the ability to generalize on unseen data distributions. To further test the
generalizability of the proposed models, interlanguage evaluation was performed using Bengali speech
recognition, a more diverse task. As previously stated in Section 5.1, interlanguage evaluation was
performed by using the large Bengali ASR dataset.

For this study, Ubuntu 18.04 with 16 GB RAM and RTX 2060 SUPER with 8 GB RAM were used.
All codes were implemented using the PyTorch [51] framework. All the codes are available at github
(https://github.com/jongli747/robust-dsr).

5.4. Metrics

For evaluation, frame-error rate (FER) was used in percentage; it is widely used in SR-based
tasks [16,21]. Frame-level error was calculated at each 200 ms frame. This study also used
classification-error rate (CER) in percentage [16]. CER is sentence-level classification error.
Sentence-level error rate is computed by averaging posterior probabilities computed at each
frame composing the sentence and voting for the speaker with the highest average probability.
For interdataset and interlanguage evaluation, as mentioned in Section 5.3, the CER metric was
used for evaluation.

6. Results

In this section, the proposed models’ performance is discussed in comparison with the baselines.
For TIMIT, speaker identification was evaluated, with 1386 test samples and 462 total classes; in the
case of the LibriSpeech dataset, there were 7452 test samples of 2484 classes. First, the proposed models
were compared with other baseline settings with two datasets on SR. Then, interdataset comparison
for all models is performed. Lastly, to check the proposed model’s language independence, the TIMIT
trained model was tested with the Bengali dataset.

6.1. Intradataset Evaluation

FER and CER in percentage were used to compare our proposed models with the baselines. Table 2
shows that AF-SincNet outperformed all baselines on both datasets. FER represents the frame-level
error rate, where frame size was 200 ms. In Table 2, the performance gap between AF-SincNet and
baseline settings was particularly large in TIMIT. Section 5.1 showed that the number of training
samples in the TIMIT dataset was much less than that in LibriSpeech, which showed the effectiveness
of our proposed AF-SincNet model when the dataset is small. Ensemble-SincNet and ALL-SincNet
only provided comparable results with those of the original SincNet on the TIMIT dataset.

Table 2. Frame-error rate (FER%) of speaker-identification systems. In both datasets, AF-SincNet
outperformed the baseline settings.

Configuration TIMIT ↓ LibriSpeech ↓

SincNet [16] 47.38 45.23
AM-SincNet [21] 28.09 44.73

AF-SincNet 26.90 44.65
Ensemble-SincNet 35.98 45.97

ALL-SincNet 36.08 45.92

https://github.com/jongli747/robust-dsr
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Table 3 reports the achieved classification-error rate (CER%) on TIMIT and LibriSpeech datasets.
AF-SincNet outperformed all baseline settings on the TIMIT dataset. In the LibriSpeech dataset,
AF-SincNet produced comparable results. The two other proposed methods performed poorly in
LibriSpeech, but in TIMIT, all proposed methods outperformed Sincnet with the softmax approach.

Table 3. Classification-error rate (CER%) of speaker-identification systems.

Configuration CER on TIMIT ↓ CER on LibriSpeech ↓

SincNet [16] 1.08 3.2
AM-SincNet [21] 0.36 6.1

AF-SincNet 0.28 5.7
Ensemble-SincNet 0.79 7.2

ALL-SincNet 0.72 6.4

6.2. Interdataset Evaluation

To test the general effectiveness of the proposed model on different data distribution, the models
underwent interdataset evaluation. Here, the model was tested on the LibriSpeech dataset, where the
model was originally trained on the TIMIT dataset and vice versa. This study followed this
experimental protocol for all configurations. The interdataset evaluation procedures were as follows.

• A single speaker’s single speech was registered in our system.
• Cosine similarity was performed using Equation (12) with rest of the test set and identified with

the highest similar score.

Similarity(A, B) =
A · B
‖A‖ ‖B‖ =

∑n
i=1 AiBi√

∑n
i=1 A2

i

√
∑n

i=1 B2
i

(12)

For instance, consider ALL-SincNet models trained on the TIMIT dataset. LibriSpeech’s 2484
speaker’s single speech (2484 samples in total) was registered on that model. Then, cosine similarity
was performed with the rest of the LibriSpeech test set. For each registered sample, the rest of the
LibriSpeech test set (4968 samples) was compared using Equation (12). In the above equation, the two
vectors were A, B, and Ai, Bi, representing the feature-vector components of A and B. Target class was
identified via the highest cosine-similarity score. The equation returned values in the range of 0 to
1, where 0 was totally dissimilar and 1 was exactly similar. Interdataset evaluation was performed
for both datasets, such that, for TIMIT test data, the LibriSpeech dataset trained model was taken and
registered using 462 speeches (TIMIT has 462 classes), and the rest of the procedure was the same as
the previous one.

Table 4 reports the comparison of interdataset evaluation between proposed models and baselines
on both datasets.

6.2.1. Trained on TIMIT and Tested on LibriSpeech

Table 4 shows that proposed method ALL-SincNet outperformed all other configurations. It also
shows that, by introducing our proposed methods, performance gradually increased and CER was
decreased. As stated above, 33% of the LibriSpeech test data were registered, and 66% data were
used for the test. TIMIT’s training set was much smaller than the LibriSpeech training set, so the
training time of TIMIT was much less than that of LibriSpeech. So, less than 10% error was achieved
with less time, though this came with a performance trade-off. Moreover, Table 3 shows that SincNet
achieved 3.2% error on intradataset evaluation, and, shown in Table 4, SincNet achieved 10.09%,
so there was performance inconsistency. Our proposed ALL-SincNet was much more consistent in
terms of performance.
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Table 4. Comparison of interdataset evaluation for both TIMIT and LibriSpeech.

TIMIT Trained LibriSpeech Test LibriSpeech Trained TIMIT Test

Configuration CER (%) Configuration CER (%)

SincNet [16] 10.09% SincNet 10.94%
AM-SincNet [21] 9.39% AM-SincNet 13.10%
AF-SincNet 9.14% AF-SincNet 10.83%
Ensemble-SincNet 8.10% Ensemble-SincNet 12.87%
ALL-SincNet 7.15% ALL-SincNet 10.72%

6.2.2. Trained on LibriSpeech and Tested on TIMIT

Table 4 shows that a model trained on Librispeech and tested on TIMIT, representing the proposed
method, outperformed the baseline settings. ALL-SincNet achieved a smaller error rate of 10.72%.
The registered data and test data distribution were the same as before. The main motivation of this
study was to propose a generalized method that could distinguish different feature vectors in latent
space. Our proposed ALL-SincNet, where we calculated different margin-based losses and optimized
them, jointly achieved the best performance on the LibriSpeech-trained TIMIT test.

In both cases, our proposed methods outperformed the other systems. By introducing our
proposed methods, our model generalized better than with the baseline settings.

6.2.3. Interdataset Test on Bengali ASR Dataset (Interlanguage Test)

The TIMIT-trained models were tested on the Bengali ASR dataset, as discussed in Section 5.1.
For our experiments, a subset of the dataset [46] was used only for testing purposes to show our
proposed model’s generalizability. There were 269 unique speakers (or classes), from which three
samples from each class were taken in a total of 807 samples. The testing procedure was the same as
that in Section 6.2.

Table 5 shows the comparison of the proposed models and baseline settings, where the models
were trained on the TIMIT dataset, which is an English speech dataset. Interdataset evaluation
was performed with a more diverse dataset, Bengali ASR [46]. Similar patterns were found in
which ALL-SincNet outperformed all configurations. AF-SincNet and Ensemble-SincNet performed
better than the baselines. Our findings suggest that our proposed model performed reasonably well
compared tothe baselines for interdataset testing of speaker-recognition tasks. By testing the Bengali
dataset on an English-trained model, the effectiveness of our proposed model was found towards
open-set biometric-recognition tasks because, in open-set recognition tasks such as speaker recognition,
models are not tested with the same dataset distribution. Moreover, in open-set biometric-recognition
tasks such as facial recognition [17–19], it is more important to distinguish feature embedding from
different classes in latent space rather than the classification layer, and our proposed model did the
exact same thing for speaker recognition. So, our proposed ALL-SincNet model is more robust in
learning to discriminate high-dimensional features in latent space than in the baseline settings.

Table 5. Evaluation of Bengali ASR with TIMIT-trained (English) model.

Configuration CER (%)

SincNet [16] 31.98%
AM-SincNet [21] 29.19%

AF-SincNet 28.07%
Ensemble-SincNet 28.44%

ALL-SincNet 27.51%
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7. Discussion

In this paper, three different methods, namely, AF-SincNet, Ensemble-SincNet, and ALL-SincNet,
were proposed. The proposed methods were compared with previous state-of-the-art methods
SincNet [16] and AM-SincNet [21]. Tables 2 and 3 show the proposed method’s performance on the
TIMIT and LibriSpeech datasets. Tables 2 and 3 show that the performance of AF-SincNet fell within a
single phase, which was CER in LibriSpeech test data. Figure 2 and 3 shows the comparison of FER over
training epochs for both the datasets. Figure 2 shows that only the SincNet curve stopped converging
at its optimal point. All curves were still converging towards the optimal point. So, the proposed
methods can still be improved by training more epochs (we trained 1600 epochs). Table 4 shows
that ALL-SincNet outperformed all other configurations, whereas Tables 2 and 3 show that it did
not perform well, which implies that our proposed ALL-SincNet is more robust than the traditional
SincNet and other settings are, and this has actual implications in open-set biometric-authentication
tasks, e.g., speaker or facial recognition. Table 5 (pretrained model that trained with the TIMIT dataset
and was tested on the Bengali ASR dataset) shows that ALL-SincNet also performed better than with
other settings, which implies that our proposed ALL-SincNet is robust and helps to generalize the
SincNet architecture towards interlanguage speaker-recognition tasks.

During our training, the original SincNet with softmax loss suffered from overfitting problems
in small datasets, e.g., TIMIT. Our proposed model also mitigated that issue. Figure 4 shows that
our proposed angular-margin-loss-based methods were less prone to overfitting than the original
SincNet architecture.

Figure 4 shows that our proposed margin-loss-based models were less prone to overfitting than
the original SincNet architecture. This also supports the findings of the interdataset evaluations in
Table 4.

0 200 400 600 800 1000 1200 1400 1600
Epoch

40

50

60

70

80

90

100

FE
R%

SincNet
AM-SincNet
AF-SincNet
Ensemble-SincNet
ALL-SincNet

Figure 2. FER (%) comparison over training epochs on LibriSpeech dataset.
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Figure 4. Comparison of overfitting problem between SincNet and proposed AF-SincNet.

8. Conclusions

There is some work in the field of speaker recognition using traditional handcrafted features
and, more recently, deep-learning. SincNet, a deep-learning-based model, achieved state-of-the-art
results in speaker-recognition tasks. It is a CNN-based architecture where the initial layer consists of a
band-pass-filter-based convolutional layer. Similar to many models predicting probability distribution,
the last SincNet layer uses a softmax function of which the output is optimized using cross-entropy
loss. From other biometric systems, particularly facial recognition, it can be observed that loss
functions leveraging angular margins have been successful. Inspired by such results, this study
employed angular-margin-based loss functions, singly and jointly, on the SincNet architecture in a
systematic manner.

This study proposed three different SincNet-based models: AF-SincNet, Ensemble-SincNet,
and ALL-SincNet. The proposed models were evaluated with competitive baselines such as
SincNet and AM-SincNet. All configurations were tested with different evaluation protocols,
namely, intradataset, interdataset, and interlanguage evaluations. In the intradataset experiments,
the AF-SincNet model performed better than with the other settings in terms of FER and CER
metrics; in the interdataset and interlanguage settings, ALL-SincNet, which employed the proposed
joint optimization of three angular-margin losses, performed the best overall. In fact, ALL-SincNet
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outperformed other models for both interdataset evaluations performed on TIMIT and LibriSpeech.
ALL-SincNet also outperformed other settings when trained on the English TIMIT dataset and
evaluated on Bangla speaker-recognition data. Even though ALL-SincNet performed worse than
the other configurations in intradataset evaluation, it consistently outperformed the other settings
in interdataset and interlanguage evaluations. This suggests that the model was not overfitting the
intradataset samples and was more robust than the baselines and other configurations, thus indicating
the efficacy of jointly optimizing for the three angular margin-based loss functions for this type of task.

In future work, the proposed models will be tested in a noisy environment setting. We also plan to
evaluate larger datasets such as VoxCeleb [26] and VoxCeleb2 [24], which contain millions of samples
from more than 6000 speakers.
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