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Abstract: Global Navigation Satellite System (GNSS) can be applied for the navigation of the
high-orbit satellites. The system observability will change due to the changes in the visible satellite
numbers and the spatial geometry between the navigation satellites and the users in the navigation
system. The influence of the observability changing is not considered in the traditional navigation
filter algorithm. In this paper, an optimized navigation filter method based on observability analysis is
proposed. Firstly, a novel criterion for the relative observable degree is proposed for each observation
component by making use of observation data from previous and posterior time simultaneously.
Secondly, according to the relationship between observability and navigation filter accuracy, a novel
optimized navigation filter method is constructed by introducing an adjusting factor based on the
relative observable degree. Through the comparative simulations with the traditional Extended
Kalman Filter (EKF), the optimized navigation filter method can reduce the estimation error of
position and velocity by about 36% and 44% respectively. Therefore, the superiority of the proposed
filter optimization algorithm is verified.

Keywords: GNSS; high-orbit satellites; observability; observable degree; adjusting factor;
filter optimization

1. Introduction

High-orbit satellites [1] have better performance for ground coverage, safety, and stability
compared with low-orbit and medium-orbit ones. For this reason, they play an important role
in practice, e.g., satellite navigation and positioning systems. GNSS is the general term for all satellite
navigation and positioning systems in orbit [2,3]. The position and velocity estimation of the users can
be obtained based on GNSS by measuring the pseudo-range and Doppler frequency shift between the
users and the navigation satellites. It has the advantages of comprehensive navigation information,
high navigation accuracy, and simple measurement equipment [4], and has been widely applied
in reality [5–10]. The navigation of the high-orbit satellites based on GNSS is one of the important
research areas in the high-orbit satellite navigation technology.

The observability is the premise and the foundation of the navigation system with good navigation
performance. The concept of observability was firstly proposed by Kalman [11], which refers to the
ability of the navigation system to estimate the state variables through the outputs or the observations of
the navigation system. In the engineering practice, we consider that the observability can be extended to
the following three levels: the geometric observability, the physical observability, and the engineering

Appl. Sci. 2020, 10, 7513; doi:10.3390/app10217513 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/10/21/7513?type=check_update&version=1
http://dx.doi.org/10.3390/app10217513
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 7513 2 of 17

observability. For the navigation system of high-orbit satellites based on GNSS, the geometrical
observability refers to that the line of sight of the high-orbit satellite to the navigation constellation
is visible, the physical observability refers to that the effective observation data of the high-orbit
satellite measurement equipment on the GNSS navigation satellite can be obtained and the engineering
observability refers to that after obtaining effective observation data, the value of the user’s state
variables that meet the engineering accuracy requirements can be estimated. These three levels of
observability are names as ’visibility’, ’testability’, and ’availability’. Among them, the ’availability’ in
this article refers to the observability in the control field. It is the basis for judging the performance
of the navigation system and the reflection of the ability of the control system to determine the
state variables at the initial moment [12]. In addition, good observability is the guarantee for the
state filter convergence of the navigation system of high-orbit satellite [13,14]. Therefore, research
on the observability of the navigation system is an important link in the design of the navigation
system and the optimization of the navigation filter algorithm and has important theoretical and
practical significance.

Since the navigation system of high-orbit satellites based on GNSS is a nonlinear system, there are
currently two main methods to analyze the observability for the nonlinear system: one is to transfer
the nonlinear system into a linear system by linearizing the nonlinear system and then distinguish
the observability by using the Grammar matrix of the linear system [15,16]. The second method
analyzes the observability of the navigation system through the observability discriminant matrix
which can be computed through the Lie derivative in the differential manifold [17,18]. However,
the calculation complexity of the second method is high and its operating efficiency may also be reduced
when the system equation is complex. The observability can only qualitatively judge whether the
navigation system is observable. To quantify the observability of the system and its state components,
the observable degree needs to be applied [19]. The analysis method of the observable degree has
not been clearly defined. Ham [20] firstly proposed the method in 1983 which uses the eigenvalues
and eigenvectors of the estimated error covariance matrix to describe the observability of the system
state. However, the method can only work after the filter, and the system observability cannot be
given in real-time. Reference [21] proposed a method to analyze the observable degree of the system
through the singular value of the observable matrix. The method can judge the observability of the
system before filter and is a pre-analysis method. However, this method can only give the overall
observability of the system and cannot obtain the observability for each state component of the
system. Reference [22] defined a method which analyzes the observable degree according to the error
attenuation degree of the initial state variables, but the method paid much attention to the initial error
covariance and ignored the real-time performance of filter; besides, some studies proposed to use the
Fisher information matrix are also used to measure the observability of the navigation system in some
studies [23–25].

Currently, there are many navigation filter algorithms applied to the navigation systems of the
high-orbit satellites, including traditional Kalman filter and various improved forms. In addition,
many scholars have proposed a large number of corresponding improved filter algorithms for the
nonlinearity and uncertainty of the actual navigation system as well as the non-gaussian and correlation
of noise, etc. [26–30]. Reference [31] proposed an adaptive filter method based on the state observability.
The method constructed some adaptive factors according to the proposed quantized observability
of each state component. The filter gain attenuation method is simultaneously applied to adjust the
components whose observability is weak. Reference [32] proposed an information fusion algorithm
based on the observable degree. The algorithm determines the information distribution coefficient
according to the observable degree of the observation model and takes the unscented filter as the
federated filter algorithm. Reference [33] proposed a smart Kalman filter method based on the adaptive
observability to solve the problem of inaccurate parameters of the observation equation. The method
improves the filter robustness by iteratively solving the adaptive adjustment factor.
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However, the observable degree of the different state variables of the navigation system is
inconsistent and the information transmitted to the subsequent filter estimation is also inconsistent.
The previous research mainly used the observability directly as an adjustment factor and fed it back to
the filter to improve the importance of the state variables with strong observability, while to reduce
the influence of state variables with weak observability. Since the observability results obtained
by different observability measurement methods are not consistent, it may cause the navigation
filter divergence and reduce the overall navigation performance. In addition, the high-orbit satellite
navigation is different from the general navigation system because the high-orbit satellite is higher
than most orbits of the four major satellite navigation systems at present. Superadd the transmitting
antenna of the GNSS satellite is facing the earth [34], and the angle between the main lobe signal
transmission is limited. When the high-orbit satellite moves beyond the GNSS constellation, it can
only receive the navigation satellite signal from the other side of the earth [35]. Therefore, the number
of navigation satellites (i.e. the number of the visible satellites) that can be observed by the satellite
at the receiver antenna position is limited. In a cycle of satellite operation, the number of visible
navigation satellites changes constantly, which leads to the change of the observability. Therefore,
it is of great significance to optimize the existing navigation filter algorithm and improve the overall
performance of the navigation system of high-orbit satellites based on GNSS with the observability
and the observable degree of the navigation system.

Based on the above analysis, we propose an adaptive navigation filter optimization method based
on the observability and the observable degree of local components. According to the attenuation
degree between the error of the optimal solution obtained from the observation in a period and the
error of the state variable estimated by the filter at the current time, a new observability calculation
matrix is defined, and the relative observable degree of each state component of the system is obtained.
The advantages of this optimization method are that it can improve the traditional navigation filter
method which only uses the observation information of the previous time, and can adjust the original
filter process with the feedback of the observation information during the later time and the degree of
error attenuation, which effectively improves the navigation filter accuracy and reduces the estimation
error. The main contributions of this paper are as follows:

(1) We propose a new method for calculating the observable degree of a high-orbit satellite navigation
system based on GNSS, which can simultaneously give the relative observability of each state
component at each moment and the overall observability of the system;

(2) We design an adaptive optimization method of navigation filter based on this observable degree,
which maps the observable degree of the state component to a feedback weighting factor to
improve the performance of the navigation filter;

(3) Based on the GNSS navigation system, we combine the proposed observability calculation method
as an adjustment factor of the adaptive filter for filter optimization. Numerical simulation shows
that the method effectively improves the navigation filter accuracy of the navigation systems of
the high-orbit satellite based on GNSS.

The rest of this article is organized as follows. In Section 2, we briefly introduce the state
equation and measurement equation of the high-orbit satellite navigation system based on GNSS.
In Section 3, we analyze the observability of the system and propose the observability matrix of the
system. Furthermore, the observable degree calculation matrix of the system is defined. In Section 4,
according to the proposed framework for the observable degree, we propose an adaptive filter method.
In Section 5, we verify the effectiveness of the proposed method by simulation of the high-orbit satellite
navigation system based on GNSS. Section 6 is the summary and prospect of the full text.
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2. Navigation Model Based on GNSS

The models of the navigation system include the state model and the measurement model, which is
the basis for analyzing the observability of the navigation system and designing the navigation filter
algorithm. Under the high-orbit environment, the force on the satellite is very complex. In addition to
the gravity, the satellite is also affected by other perturbation forces. For the measurement equation,
we only give the corresponding measurement model by measuring the inter-satellite pseudo-range
based on the GNSS.

2.1. State Equation of the Navigation System

In the Earth’s inertial coordinate system, in order to analyze the navigation model, we define the
state variable as

X =
[
r

T
v

T
]T

where the r =
[

x y z
]T

is the position vector of the high-orbit satellite in the Earth’s inertial

coordinate system and the v =
[
vx vy vz

]T
is the corresponding speed vector. Therefore the state

equation of the orbital motion for the high-orbit satellite can be expressed as

Ẋ = f (X (t) , t) + w (t) . (1)

where f (X (t) , t) is the perturbation acceleration of the high-orbit satellite, the specific form can be
found in the reference [36], and w (t) is the error vector of the perturbation model.

2.2. Measure Equation of the Navigation System

In the navigation system of high-orbit satellite based on GNSS, the observation is the pseudo-range
measurement between the navigation satellites and the user satellite, and the measurement equation is
as follows:

ρj = dj + vj, j = 1, 2...

dj =
√
(x− xj)

2 + (y− yj)
2 + (z− zj)

2
. (2)

The subscript j represents the j-th visible navigation satellite, and vj is the measurement error,
and ρj is the pseudo-range from j-th navigation satellite to the user satellite, and dj is the geometrical
distance from j-th navigation satellite to the user satellite. Assuming that there are m navigation
satellites, then m measurement equations can be obtained, and the measurement model can be obtained
by combining these m pseudo-range measurement equations. Let Z (t) =

[
ρ1, · · · , ρj, · · · , ρm

]T,

h =
[
d1, · · · , dj, · · · , dm

]T, v =
[
v1, · · · , vj, · · · , vm

]T, the measurement model of the high-orbit
satellite navigation system based on GNSS can be expressed as:

Z (t) = h (X (t)) + v(t). (3)

2.3. Model Linearization

In the navigation system composed of Equations (1) and (3), since the navigation models are all
nonlinear models, hence, we discretize the state equation and measure equation, and then linearizes it
as follows: {

Xk+1 = Fk+1,kXk + wk

Zk = HkXk + vk
(4)

where Xk ∈ R6×1 is the state vector. Zk ∈ Rm×1 is the measurement vector. m is the number of visible
navigation satellites. Fk+1,k ∈ R6×6 is the state one-step transition matrix, the expression is as shown
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in Formula (5) . Hk+1,k ∈ Rm×6 is the measurement matrix, the expression is as shown in Formula (5).
wk ∈ R6×1 is the system noise vector, and vk ∈ Rm×1 is the measurement noise vector. Both of them
are zero-mean Gaussian white noise vector sequences, and they are not correlated with each other, that

is, satisfying:


E[wk] = 0, E[wkwT

j ] = Qkδkj

E[vk] = 0, E[vkvT
j ] = Rkδkj

E[wkvT
j ] = 0

Qk, Rk is the system noise covariance matrix and the

measurement noise covariance matrix respectively.

Fk+1,k = ∇Xk f̃ (Xk)
T =

∂
(

X + f (X, k)T
)

∂X
|X=X̂k

= I6×6 +
∂ f (X)

∂X
|X=X̂k

T

Hk = ∇xh(Xk)
T =

∂h(X)

∂X
|X=X̂k

(5)

where T is the sample interval.

3. Observability of the Navigation System

The observability of the navigation system is the prerequisite and foundation for the system to
have good navigation performance, and it is also the key to optimize the navigation filter algorithms.
In this section, according to the definition of ’observability in engineer’ of the navigation system,
we propose a new method of observability calculation for high-orbit satellite navigation system based
on GNSS, including observability discrimination methods and measurement criterion, aiming at the
linearized navigation model (4) and considering the difference of relative observability of each state
component of the navigation system.

3.1. Observability Qualitative Analysis

For the navigation model (4), according to the state equation, we can get

Xi = Fi,i−1Fi−1,i−2 · · · Fk+1,kXk + wi = Fi,kXk + wi (6)

where wi =
i

∑
j=k+1

Fi,jwj−1, i = k, k + 1, ..., k + m, Fi,j =
i−j
∏

s=1
Fi−s+1,i−s. According to the

observability definition, given m measurement data, m measurement equations are combined,
and Equations (4) and (6) can be obtained. We can get

Zk = HkXk + vk

Zk+1 = Hk+1Xk+1 = Hk+1 (Fk+1,kXk + wk+1) + vk+1 = Hk+1Fk+1,kXk + Hk+1wk+1 + vk+1

Zk+2 = Hk+2Xk+2=Hk+2 (Fk+2,kXk + wk+2) + vk+2 = Hk+2Fk+2,kXk + Hk+2wk+2 + vk+2

...

Zk+m−1 = Hk+m−1Xk+m−1 = Hk+m−1 (Fk+m−1,kXk + wk+m−1) + vk+m−1

= Hk+m−1Fk+m−1,kXk + Hk+m−1wk+m−1 + vk+m−1

(7)

Let Zk,m =
[

ZT
k , ZT

k+1, · · · , ZT
k+m−1

]T
, Ok,m =

[
HT

k , FT
k+1,k HT

k , · · · FT
k+m−1,k HT

k+m−1

]T
,

Vk,m =
[
vT

k , (Hk+1wk+1 + vk+1)
T, · · · , (Hk+m−1wk+m−1 + vk+m−1)

T
]T

Then the Equation (6) can be
transferred to

Zk,m = Ok,mXk + Vk,m (8)
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Based on the weighted least squares, we can get

OT
k,mG−1

k,mZk,m = OT
k,mG−1

k,mOk,mXk (9)

where Gk,m is the covariance matrix of Vk,m. To make the above
equation have a unique solution, OT

k,mGk,m
−1Ov should be nonsingular.

Let Bk,m = OT
k,mG−1Ok,m =

k+m−1
∑

i=k
FT

i,k HT
i

(
i

∑
j=k+1

HiFi,jQj−1FT
i,j H

T
i + Ri

)−1

HiFi,k, it is defined as

the observability discrimination matrix. If the system is observable, since Bk,m is a positive
semi-definite matrix, Bk,m being nonsingular is equivalent to that being a positive definite matrix,
that is, Bk,m > 0. Calculate the condition number of Bk,m in different periods, cond (Bk,m) = σmax/σmin ,
where σmax and σmin are the largest and the smallest singular values of the matrix respectively. If the
condition number is large, it indicates that the overall observability of the system at that moment
is weak; if the condition number is small, it indicates that the overall observability of the system at that
moment is strong.

3.2. Observable Degree Analysis

Due to the inconsistency of the information validity between different state variables, in order to
more accurately pass the state variable information to the subsequent filter, the observable degree of
each state component of the system needs to be given. The method of the observable degree of each
state variable in this article is given below.

In the filter process, the filter estimation of state variables is a sequential process, and there is
a relationship between different moments. Regarding the estimated value of the state variable at
the previous moment as a random variable, the estimated error covariance of the random variable
will affect the prediction accuracy of the filter at the current moment and subsequent moments.
The traditional filter only quotes the measurement information at various previous moments to
estimate the state value at the current moment, which is not enough for a stable sequence process.
The measurement information at subsequent moments can also provide useful information for the
current state estimation. Therefore, we set an objective function to minimize the error value of the
current state variable estimation and the subsequent measurement information, in order to determine
the best estimate at the current moment.

Based on the above optimization ideas, we give an optimal estimation problem as follows. At the
k-th moment, we give a set of measured values Zk, Zk+1, · · · Zk+m from k to k + m to find the optimal
estimation X̂k,k+m of Xk that minimizes the loss function (10) [37].

Jk = (Xk − Xk)
TP−1

k (Xk − Xk) +
k+m

∑
i=k

Z̃T
i R−1

i Z̃i (10)

where Xk is the expectation of the state variable at the k-th moment, Pk is the estimation error covariance
matrix at the k-th moment. Z̃i = Zi − HiXi is the error between the measured value and the measured
estimated value at the i (i = k, · · · , k + m)-th moment, Ri is the covariance matrix of the measurement
error at the i-th moment. Substitute Z̃i = Zi − HiXi into the right side of Equation (10), we can get:

Jk = (Xk − Xk)
TP−1

k (Xk − Xk) +
k+m

∑
i=k

(Zi − HiXi)
T R−1

i (Zi − HiXi) (11)

Substitute Formula (10) into (11), we get
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Jk = (Xk − Xk)
TP−1

k (Xk − Xk) +
k+m

∑
i=k

(Zi − Hi(Fi,kXk + wi))
TR−1

i (Zi − Hi(Fi,kXk + wi))

= (Xk − Xk)
TP−1

k (Xk − Xk) +
k+m

∑
i=k

(Zi − Hiwi − HiFi,kXk)
TR−1

i (Zi − Hiwi − HiFi,kXk)

= XT
k

(
P−1

k +
k+m

∑
i=k

FT
i,k HT

i R−1
i HiFi,k

)
Xk −

[
XT

k P−1
k +

k+m

∑
i=k

(Zi − Hiwi)
TR−1

i HiFi,k

]
Xk

− XT
k

[
P−1

k Xk +
k+m

∑
i=k

FT
i,k HT

i R−1
i (Zi − Hiwi)

]
+

(
XT

k P−1
k Xk +

k+m

∑
i=k

(Zi − Hiwi)
TR−1

i (Zi − Hiwi)

)
(12)

In order to minimize the objective function, since Jk is a quadratic function, the optimal estimate
X̂k,k+m of Xk is expressed as follows:

X̂k,k+m =

(
P−1

k +
k+m
∑

i=k
FT

i,k HT
i R−1

i HiFi,k

)−1 (
P−1

k Xk +
k+m
∑

i=k
FT

i,k HT
i R−1

i (Zi − Hiwi)

)
(13)

Let Kk,k+m =
k+m
∑

i=k
FT

i,k HT
i R−1

i (Zi − Hiwi), Lk,k+m =
k+m
∑

i=k
FT

i,k HT
i R−1

i HiFi,k, then X̂k,k+m can be

expressed as:

X̂k,k+m =
(

P−1
k + Lk,k+m

)−1 (
Kk,k+m + P−1

k Xk

)
(14)

Since P−1
k is a positive definite matrix, Lk,k+m is a positive semi-definite matrix, the above optimal

solution X̂k,k+m must exist. Then we can get the expression of the error at the k-th moment of the state
variable as [38]:

X̃k,k+m = Xk − X̂k,k+m = Xk −
(

P−1
k + Lk,k+m

)−1 (
Kk,k+m + P−1

k Xk

)
(15)

That is

X̃k,k+m = Xk −
(

P−1
k + Lk,k+m

)−1
[

k+m

∑
i=k

FT
i,k HT

i R−1
i (HiXi + vi − Hiwi) + P−1

k Xk

]

= Xk −
(

P−1
k + Lk,k+m

)−1
[

k+m

∑
i=k

FT
i,k HT

i R−1
i (HiFi,kXk + vi) + P−1

k Xk

]

= Xk −
(

P−1
k + Lk,k+m

)−1
(

k+m

∑
i=k

FT
i,k HT

i R−1
i HiFi,kXk + P−1

k Xk

)
−
(

P−1
k + Lk,k+m

)−1 k+m

∑
i=k

FT
i,k HT

i R−1
i vi

= Xk −
(

P−1
k + Lk,k+m

)−1 (
Lk,k+mXk + P−1

k Xk

)
−
(

P−1
k + Lk,k+m

)−1 k+m

∑
i=k

FT
i,k HT

i R−1
i vi

=

[
I −

(
P−1

k + Lk,k+m

)−1
Lk,k+m

]
Xk − (I + PkLk,k+m)

−1Xk −
(

P−1
k + Lk,k+m

)−1 k+m

∑
i=k

FT
i,k HT

i R−1
i vi

=
[

I − (I + PkLk,k+m)
−1PkLk,k+m

]
Xk − (I + PkLk,k+m)

−1Xk −
(

P−1
k + Lk,k+m

)−1 k+m

∑
i=k

FT
i,k HT

i R−1
i vi

=
[
(I + PkLk,k+m)

−1 (I + PkLk,k+m − PkLk,k+m)
]

Xk − (I + PkLk,k+m)
−1Xk

−
(

P−1
k + Lk,k+m

)−1 k+m

∑
i=k

FT
i,k HT

i R−1
i vi

= (I + PkLk,k+m)
−1 (Xk − Xkk

)
−
(

P−1
k + Lk,k+m

)−1 k+m

∑
i=k

FT
i,k HT

i R−1
i vi

= (I + PkLk,k+m)
−1X̃k,k −

(
P−1

k + Lk,k+m

)−1 k+m

∑
i=k

FT
i,k HT

i R−1
i vi

(16)
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After simplification, we can get:

X̃k,k+m = (I + PkLk,k+m)
−1

(
X̃k,k − Pk

k+m

∑
i=k

FT
i,k HT

i R−1
i vi

)
(17)

It can be seen from Equation (17) that the state estimation error obtained is proportional
to (I + PkLk,k+m)

−1, and (I + PkLk,k+m)
−1 represents the ratio of the state estimation error value

obtained at the k-th moment from the previous moment to the state estimation error estimated by the
measurement at the later moment, and it can be expressed as the error loss of the state estimation.

Define Dk,k+m = (I + PkLk,k+m)
−1 as the calculation matrix of the observable degree, and its

diagonal element is the observable degree of the corresponding state variable, namely

ηk,i = (Dk,k+m)i,i (18)

where (Dk,k+m)i,i is the i-th main diagonal element of Dk,k+m, ηk,i is the observable degree of the
i-th state variable at the k-th moment. The larger ηk,i is, the weaker the observability of the i-th
state variable, and the smaller ηk,i is, the stronger the observability of the i-th state variable at that time.

4. Optimized Filter Algorithm for Navigation System Based on the Observable Degree

As the observability is related to the filter accuracy tightly, one of the most efficient methods
to increase the accuracy is to optimize the filter algorithm based on the observability. In this paper,
a novel Adaptive extend Kalman Filter (AKF) base on the novel observability criterion is proposed for
the navigation system of high-orbit satellites. The framework is summarized in Figure 1. The details of
the method will be reported in the following part.

The traditional process of EKF is reported as follows.

Navigation System of High-orbit 

    Satellites Based on GNSS

Observable

   Degree

    Filter 

Accuracy 

Observability 

   Analysis 

Adjusting 

   Factor

mapping

Self-adjusting 

Kalman Filter 

Figure 1. The framework of navigation filter optimization algorithm proposed in the paper.

The one-step prediction of the state vector is

X̂k/k−1 = f
(
X̂k−1

)
. (19)
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The error covariance matrix of X̂k/k−1 is

Pk/k−1 = Fk/k−1Pk−1FT
k/k−1 + Qk−1. (20)

The filter gain matrix is

Kk = Pk/k−1HT
k

(
HkPk/k−1HT

k + Rk

)−1
. (21)

The prediction of state vector X̂k is

X̂k = X̂k/k−1 + Kk
(
Zk − h

(
X̂k/k−1

))
. (22)

The error covariance matrix of X̂k is

Pk = (I − Kk Hk)Pk/k−1. (23)

Recent works contribute a variety of the frameworks of the adaptive Kalman Filter, in the paper,
we choose the framework with an adjusting factor ψk in front of the filter gain Kk in Equation (21).
Then the adaptive filter gain matrix can be written as

K∗k = ψkPk,k−1HT
k

(
HkPk,k−1HT

k + Rk

)−1
, (24)

where ψk is a diagonal matrix. The value of the i-th diagonal element of ψk is the adjusting factor of
the corresponding i-th state variable.

Increasing the value of the adaptive adjustment factor ψk will change the value of the original
gain matrix which can be considered as a balance parameter between the one-step predicted value
of the state variable and the observed value. When the navigation system suffers a weak observable
degree, in order to suppress the influence of the weak observable degree, adjusting the weighting
method can be used to correct the bias of predicted state variables.

As we discussed above, the observability plays an important role in the navigation system.
The adjusting factor should also be designed for each state variable in order to suppress the influence
of weak observable degree. This conclusion is obviously correct because if we use an identical factor
for all the state variables, the effect of the adjusting factor will modify the state variables at an equal
level. The state variable with a high observable degree will be incorrect and the filter accuracy will
be decreased.

In the previous section, we have proposed a relative observable degree for each state variable.
Meanwhile, the prediction of each state variable is closely related to the observable degree. For this
reason, a criterion for defining the adaptive adjusting factor based on the relative observable degree
is proposed.

The definition of ψk can be expressed as

(ψk)i = φ (ηk,i) , i = 1, . . . , n, (25)

where the subscript (i) represents the i-th diagonal element and ηk which donates the observable
degree in k-th moment is defined in Equation (18). φ(η) is a mapping function which represents the
relationship between the observable degree and the adjusting factor.

In the adjusting process, since the original state estimations are biased under weak
observable degree, in order to reduce the bias, the adjusting factor should be well designed.
For example, when the observation component has a high observable degree, the estimation should rely
more on the observation information. In opposite, the estimation should rely more on state prediction.
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Based on the navigation system in this paper, the observation Equation (3) shows that

Z = h (r) , (26)

where r is the position vector of the high-orbit satellites. This Equation (26) indicates that the state
observation is related to the position vector immediately and has little relationship with the velocity
vector. Hence, the setting of the adjusting factor should consider the position vector and the velocity
vector respectively. For the position vector, as the observable degree is a kind of relative value,
the component with the best observable degree should hold the original estimation and its adjusting
factor should be 1. When the state is ideal, if we notate the error of X̂k as X̃k, then the optimal filter
gain is the solution of

K∗k = argmin
K

E(X̃kX̃T
k ), (27)

P∗k = (I − K∗k Hk)Pk/k−1. (28)

However, when suffering a weak observable degree, the estimation error has a larger variance.
An inequality can be derived that

Pk = (I − Kk Hk)Pk/k−1 (29)

≥ (I − K∗k Hk)Pk/k−1 = P∗k . (30)

Compared with Equations (29) and (30), we can find that when the observable degree is weak,
the Kk Hk is larger than K∗k Hk. Hence, in order to reduce the error covariance, the adjusting factor
should be larger than 1.

Based on the analysis above, we can optimize the EKF through the adjusting factor. Theprocess of
our Algorithm 1 can be expressed as follows

Algorithm 1 Adaptive Extend Kalman Filter

1: Input: Optimal estimation of X̂∗k−1 and covariance matrix P∗k−1 in moment k− 1
2: Output: Optimal estimation of X̂∗k and covariance matrix P∗k in moment k

Step 1: Calculate the state transition Fk, measurement matrix Hk and state covariance matrix Pk by

Equations (19)–(23)

Step 2: Repeat Step 1 and calculate the state transition matrix and measurement matrix at moment

k + 1, · · · , k + m, written as Hk+1, Fk+1, · · · , Hk+m, Fk+m.

Step 3: Use the Hk, Fk, Hk+1, Fk+1, · · · , Hk+m, Fk+m in Step 1 and Step 2 then calculate the ηk,i by

Equation (18).

Step 4: Define a mapping function φ based on the criterion in Section 3 then calculate the (ψk) by

Equation (25).

Step 5: Calculate the new filter gain matrix K∗k by Equation (24).

Step 6: Calculate X̂∗k = X̂k/k−1 + K∗k
(
Zk − h

(
X̂k/k−1

))
and P∗k =

(
I − K∗k Hk

)
Pk/k−1 and

output them.
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5. Simulation Analysis

In this section, we take the navigation system of high-orbit satellites based on GNSS in the
high-orbit environment as the simulation background and use the observability theory and navigation
filter optimization as the research methods to simulate and analyze the EKF and the navigation filter
optimization method proposed in this paper.

5.1. Simulation Conditions

In this paper, we assume that the navigation system is the Beidou satellite navigation system.
The initial epoch is UTC 0h0min0s on 28 May 2020. The Beidou navigation satellite orbit simulation
data is obtained from the TLE data by the North American Aerospace Defence Command. Figure 2 is an
illustration of the orbits of three BEIDOU navigation systems (contains BDS-1, BDS-2, BDS-3) including
49 satellites, and these orbits are represented by different colors. An inclined geo-synchronization
orbit (IGSO) satellite is the user satellite. The coordinate system used in the simulation is the
J2000.0 geocentric inertial coordinate system, the time system is Coordinated Universal Time (UTC).
The simulation duration is 43080 s, and the sampling time interval is 4 s. In the experiment, only the
main lobe signal of the navigation satellite has been considered, and the receiver sensitivity has not
been considered. Set the half-angle of the main lobe signal beam as 21.3◦, and the half-angle of the part
occluded by the earth as 13.35◦. The satellite orbit dynamics model of user satellite is set as a two-body
model, with a mean square error of position error of 10 m and a mean square error of velocity error of
0.1 m/s [39,40], the mean square error of measured white noise is set to be 1 m, and the position and
velocity at the initial moment are

X0 = [2.242× 107 m 3.257× 107 m 1.539× 107 m −2.139× 103 m/s 469.418 m/s 2.122× 103 m/s],

IGSO

GEO

MEO

Figure 2. This is the Beidou navigation constellation map under J2000.0 geocentric inertial
coordinate system.

The error covariance matrix at the initial moment is

P0 = diag(
[
10 10 10 0.1 0.1 0.1

]
).
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According to Section 3.2, due to the real-time requirements of the navigation system of high-orbit
satellites, in the observability calculation matrix, the parameter m equals to 1. According to the
selection criteria of the adjustment factor in Section 4, if the number of visible satellites is larger than 3,
the observability mapping function is constructed as

(ψk)i=


ηi

min
i=1,2,3

ηi
, i = 1, 2, 3

ηi
16

, i = 4, 5, 6

If the number of visible satellites is smaller than 3,

(ψk)i=

1.1, i = 1, 2, 3
ηi
2

, i = 4, 5, 6

5.2. Simulation Results and Analysis

First, we obtain the number of the visible satellites at different times according to the geometric
relationship between the navigation satellites and the user satellites, which is shown in Figure 3a.
From the observability analysis of the system in Section 3.1, the rank of the observability discriminant
matrix during the entire sampling duration is calculated to be 6 all the time, which shows that the
system is observable during the entire simulation process. Then the condition number is calculated.
The condition number of the observable matrix during the simulation process is shown in Figure 3b.
According to the observability calculation formula in Section 3.2, the observable degree of each state
component of the system is obtained. Figure 4a shows the observable degree of the position vector
at different moments, and Figure 4b shows the observable degree of the velocity vector at different
moments. In this paper, EKF and the improved adaptive filter are used to evaluate the overall
system and each state variable. Figure 5 shows the average error of each state component in the
corresponding sampling period. The filter results obtained are shown in Figure 6. Figure 6 reflects the
comparison result between the residual error of EKF and adaptive filter estimation results for each
state variable. Figure 7a,b reflect the comparison result between diagrams of EKF and adaptive filter
position estimation error and velocity estimation error respectively. Figure 8a,b are the comparison
figures of the filter position and velocity error of the period with high observability respectively.
Taking 8000–10,000 sampling points as an example, Figure 9 shows the comparison result between the
observability of the state variable component y and its residual error result.
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Figure 3. Figure (a) is the figure of number of observed stars. The abscissa is sampling time. Figure (b)
is the figure of condition number of observation matrix. The abscissa is sampling time. The abscissas in
follow figures are the same.
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Figure 4. (a,b) show the observable degree of position and velocity respectively. The abscissa is
sampling time.

Pos

Vel

Pos 32k-43kVel 32k-43k

x

y

z

Vx Vy

Vz

0.2 0.4 0.6 0.8 1.0

Comparison Chart of Error 

EKF
AKF

Figure 5. The radar figure shows the rate between estimation errors of EKF and AKF. The evaluation
criterion is the mean error. The ’x’,’y’,’z’,’Vx’,’Vy’,’Vz’ represent the each state variable respectively.
The ’Pos’,’Vel’ represent the position and velocity respectively. The ’Pos 32k-43k’,’Vel 32k-43k’ represent
the position and velocity during 32,000 s–43,080 s respectively.

According to the simulation experiment results above, this paper mainly analyzes from the
following aspects:

(1) The results of the high-orbit satellite navigation are directly related to the number of the
visible satellites and changes in observability. From Figures 3a,b and 4, it can be seen that the number
of the visible satellites changes constantly in the simulation period. When the number decreases,
the observability matrix condition number becomes larger, and the observability of the position of each
state component becomes weaker, the filter estimation error also becomes larger. When the number
of the visible satellites increases, the condition number of the observability matrix becomes smaller,
and the observability of the position state component becomes stronger and the filter estimation has
lower error.

(2) The accuracy of the adaptive filter based on observability has been significantly improved
compared with conventional methods. It can be seen from Figures 5–9 that in the entire navigation
process, the optimized navigation filter method can reduce the estimation error of position and velocity
by about 36% and 44% respectively compared with the original EKF, which verifies the effectiveness
of this method proposed in this article. It can be seen from Figure 8 that in the period when the
number of visible satellites is large, the adaptive filter method will reduce the position error more
significantly, and the result is reduced by nearly 70%. This shows that when there exist enough visible
satellites, the observability of the overall state variable will be strong, and the proposed navigation
filter optimization method will achieve better performance than the other cases.

(3) The observability calculation method for state components proposed in this paper can reflect
the changes in the filter accuracy of each component. It can be seen from Figure 9 that the observable
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degree of the state component y becomes smaller, its observability becomes relatively better, and the
residual error in the y direction also rapidly becomes smaller. This result further verifies the relationship
between observability and filter accuracy. When the observability is strong, the filter accuracy of the
state variable is high.
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Figure 6. The figure reflects estimation error of each state variable between EKF and AKF.
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Figure 7. The figure reflects estimation error of position and velocity by EKF and AKF.
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Figure 8. The figure reflects estimation error of position and velocity by EKF and AKF in period
between 32,000 s and 43,080 s.
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Figure 9. This is a comparison chart between error and observable degree at portion y.

6. Conclusions

To address the problem of the variable number of the visible satellites of the satellite navigation
system in a high-orbit environment, this paper discusses the observability of the navigation system
and proposes an adaptive navigation filtering optimization method based on the observability analysis.
Firstly, the observability of the navigation system is analyzed, and a novel observability calculation
method is proposed based on minimizing the objective function of error loss. Then the observable
degree of different state variables can be derived. Secondly, according to the relationship between the
observability and the filtering accuracy, a mapping value of the observable is applied as the feedback
adjustment coefficient to construct an adaptive filter method. This method can combine the information
of the previous period and the next period simultaneously to obtain feedback on the filter process.
Through this approach, the estimation error can be effectively reduced. Simulation experiments on the
high-orbit satellites of the Beidou navigation system show that the proposed adaptive EKF achieves
better performance compared with traditional EKF, and verify the effectiveness and practicability of
the novel method.

In order to further improve the navigation accuracy, the next main work will focus on the effective
method of combining observability with other filter methods, and combining the optimization methods
to improve the filter accuracy.
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