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Abstract: This paper solves the distributed fault detection (FD) problem for heterogeneous
multi-agent systems (MAS). For a heterogeneous MAS, we adopt a distributed control law to
realise cooperative output regulation (COR) when no fault occurs in the MAS, and propose a
state-feedback-based FD scheme, where the adopted distributed control law and proposed FD
scheme all utilise state information. Furthermore, we consider the condition that state information
is unmeasurable, the output-feedback-based distributed FD scheme is proposed, and the adopted
distributed control law also utilises measurement output. Finally, two numerical examples are utilised
to verify that the proposed distributed FD schemes could locate and remove the faulty agent in time.

Keywords: distributed fault detection (FD); heterogeneous multi-agent systems (MAS); unknown
input observer (UIO); cooperative output regulation (COR)

1. Introduction

Recently, a large amount of literature on cooperative control of multi-agent systems (MAS) has
emerged, which investigate this problem from different aspects, such as event-triggered and finite-time
cooperative control [1,2]. Besides homogeneous MAS, research on heterogeneous MAS is also
significant. As an effective method to realise cooperative control of heterogeneous MAS, for instance,
a network of unmanned aerial vehicles (UAVs) with different dynamics, cooperative output regulation
(COR) has attracted intensive research attention during the past decade [3–6], which was based on
output regulation theory, where the influence of mismatched disturbance generated by an exosystem
could be completely rejected via converting mismatched forms into matched forms [7]. Specifically,
H. Basu and S. Y. Yoon considered the condition that only partial information of an exosystem matrix
was accessible to each agent, where a distinct estimator network was proposed to cooperatively
estimate the value of the exosystem state [8]. As some agents may destroy other healthy agents due
to the influence of unexpected faults, security operation of heterogeneous MAS has attracted some
researchers’ attention.

Existing security operation schemes of heterogeneous MAS are passive, where the fault tolerant
COR is ensured by the designed passive fault tolerant controllers in each agent. In [9], Deng et al.
designed a distributed adaptive fault tolerant control law to attenuate partial loss of actuator
effectiveness faults. Furthermore, they considered the condition that actuators suffered from both
partial loss of effectiveness faults and stuck faults [10,11]. Besides designing passive fault tolerant
control laws for each agent, detecting and removing faulty agents is the other effective method to
ensure the security operation of MAS. Hence, some literature on FD schemes for MAS has emerged
during the past decade. The basic idea is to design an additional FD algorithm for MAS, and run the
FD and control algorithms simultaneously; the FD algorithm will locate and remove faulty agents in
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time, where the FD algorithm could be seen as a redundant algorithm to make the MAS operate well.
In [12], N. Meskin et al. proposed a centralised FD scheme for a group of unmanned vehicles, a bank of
observers for FD were installed in one vehicle to monitor the remaining vehicles, where the observers
needed to utilise all the nodes’ information. Furthermore, they considered the condition that agents
suffered from external disturbances [13]. In [14], the authors proposed an FD scheme for linear MAS
based on sliding mode fault estimators, where the design of fault estimators also utilised all the nodes’
input information. In summary, centralised FD schemes require one agent to have ability to obtain all
the nodes’ information, which is contradicted with the distributed nature of MAS. Hence, researchers
start considering distributed FD, where each agent just needs to have ability to obtain itself and its
neighbours’ measurable information. I. Shames and K. H. Johansson et al. proposed a distributed FD
scheme for a group of double integrators based on unknown input observer (UIO) [15,16], where the
disturbance decoupling idea was widely utilised [17,18]. The basic idea was to adopt a distributed
consensus law for each agent, and construct some FD observers for the MAS closed-loop system in one
agent to judge whether a fault occurred in itself or its neighbours, then the utilisation or influence of
agents’ control inputs for FD results was avoided. Furthermore, the authors proposed a distributed FD
scheme for second-order MAS with uncertain communication topology, where the design process of
some agent’s FD observers just utilised local topology information [19]. As above framework possesses
distributed characteristics, some researchers have extended above framework to MAS with different
kinds of agent dynamics. Shi et al. designed robust FD observers for a group of discrete-time double
integrators with both process and measurement noise [20]. Jia and Wang proposed a distributed
anti-disturbance FD scheme for disturbed second-order MAS, where the influence of exogenous
disturbances for FD results was actively rejected [21]. Besides MAS with double-integrator dynamics,
Liu et al. considered linear MAS with Lipschitz nonlinearity [22], and adopted a reduced-order
observer design to lower the computational burden of each agent [23].

To the best of the authors’ knowledge, there has been little published research on distributed
FD schemes for heterogeneous MAS. M. R. Davoodi et al. designed a distributed FD scheme for
heterogeneous MAS [24], where the observer in one agent judged whether a fault occurred in itself
and its neighbours or not. However, the above observer was not decoupled from control inputs,
which meant that the FD results would be influenced by control inputs. In [25], the authors considered
a heterogeneous MAS with sensor faults, where fault estimators were designed in each agent to
detect the fault. However, the considered agent dynamics did not contain exogenous disturbances,
which were assumed to affect each agent and unknown for most agents in the MAS [3–6], and it seemed
costly that all agents were equipped with fault estimators. Motivated by existing works mentioned
above, we design a distributed FD scheme for disturbed MAS with heterogeneous dynamics based
on UIO. As the exogenous disturbance is unknown for most agents of the MAS [3–6], above agents
need to estimate the exogenous disturbance through cooperating with its neighbours, therefore,
a bank of UIOs are designed according to the formed closed-loop system with the information of
communication topology, which utilise exogenous disturbance estimate as feedback information,
i.e., avoids utilising unknown exogenous disturbance. The contributions of this paper are listed as
follows: First, a state-feedback-based distributed FD scheme for heterogeneous MAS is proposed
in this paper, as well as an output-feedback-based distributed FD scheme. Second, unlike [24],
the FD results will not be influenced by agents’ control inputs, since FD observers are designed for
closed-loop systems. Third, in comparison with [25], the considered agent dynamics contain exogenous
disturbances in this paper. FD observers could still be designed for those agents, which cannot obtain
exogenous signal directly, and only partial agents need to be equipped with observers.

The rest of this paper is organised as follows: Section 2 gives the preliminaries and problem
formulation, where Sections 2.1 and 2.2 introduce relevant knowledge of graph theory and
UIO, and Section 2.3 gives the problem formulation. Section 3 gives results of this paper,
state-feedback-based and output-feedback-based distributed FD schemes are proposed in Sections 3.1
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and 3.2. Section 4 gives two simulation examples to verify that the proposed FD schemes are effective.
Finally, Section 5 gives conclusions and future directions.

Notation: Some standard notation will be adopted in this paper. C and Rn denote the set of
complex numbers and n-dimensional Euclidean space, respectively. IN and I denote an identity
matrix with dimension N and appropriate dimension, respectively. ⊗ denotes the Kronecker product.
ei represents a column with only one nonzero entry ‘1’, which locates in the i-th row. Re(ζ) represents
the real part of ζ, where ζ ∈ C. diag(A1, A2, · · · , AN) represents a block-diagonal matrix with matrices
Ai, i = 1, 2, · · · , N. λi(A) denotes the i-th eigenvalue of A. A > 0 means that A is positive definite.
‘!’ denotes the factorial of a non-negative integer, and Cb

a = a!
(a−b)!b! , where a, b are non-negative integers,

and b ≤ a. The superscript ‘T’ represents the transpose of a matrix.

2. Preliminaries and Problem Formulation

2.1. Graph Theory

A graph G = {V(G), E(G)} could represent communication links among one leader agent and
several follower agents, where V(G) = {V0,V1, · · · , VN} and E(G) = {(Vi, Vj) : Vi,Vj ∈ V} ⊆ V ×V
represent the vertex and edge sets of G, agent i could receive information from agent j if (Vi, Vj) ∈ E(G),
where Vj is also called the neighbour of Vi. If (Vi, Vj) ∈ E means that (Vj, Vi) ∈ E , graph G
is called undirected. A path from Vi to Vj is a sequence of distinct nodes {Vk0 , Vk1 , · · · , Vkl

},
where k0 = i, kl = j and (Vkr , Vkr+1) ∈ E , 0 ≤ r ≤ l − 1. An induced subgraph Gs is a graph such
that V(Gs) ⊂ V(G), and (Vi, Vj) ∈ E(Gs) indicates that (Vi, Vj) ∈ E(G). Subgraph Gs with the vertex
set {V1, · · · , VN} represents the communication relationship among follower agents. The adjacency
matrix A = [aij] associated with G is defined as aii = 0 and aij = 1 if (Vi, Vj) ∈ E(G). What is more,
define the in-degree of each agent as di = ∑N

j=0 aij ≥ 1, and define the Laplacian matrix associated with
G as L = [lij], where lii = di and lij = −aij, j 6= i.

For the convenience of analysis, denote Ls as the Laplacian matrix associated with Gs, and define
A0 = diag(a10, a20, · · · , aN0) and H = Ls +A0. Furthermore, define Ni = {Vj ∈ V(Gs) : (i, j) ∈
E(Gs), i 6= j} as the neighbour set of node Vi ∈ V(Gs) in Gs, and define N̄i = {i} ∪ Ni, where |N̄i| is
the cardinality of N̄i, and {ī1, · · · , ī|N̄i |} are sequence numbers of nodes in N̄i from small to large.

Lemma 1 ([26]). If the subgraph Gs is undirected, and each follower agent has paths to the leader in the graph
G,H is positive definite.

2.2. Unknown Input Observer

Consider the following system with unknown input:

ξ̇ = Qξ + Wu + Yw

y = Mξ
(1)

where ξ ∈ Rn is the state. u ∈ Rr and w ∈ Rs are the known and unknown inputs, and W and Y
represent their input channels, respectively. y ∈ Rm is the measurement output, and H represents the
measurement matrix.

In order to estimate the actual state of System (1), the following observer is designed.

ż = Gz + TWu + Ry

ξ̂ = z + Hy
(2)
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where ξ̂ ∈ Rn and z ∈ Rn are the estimated state and observer’s state, respectively. Parameter matrices
of observer (2) need to be designed to make the state estimation error be not influenced by unknown
input w, where the design method is shown as follows:

G = TQ− R1M, T = I − HM,

(HM− I)Y = 0, R = R1 + R2, R2 = GH
(3)

then the state estimation error dynamics is shown as follows:

ė(t) = Ge(t) (4)

where e = ξ − ξ̂. If the designed R1 makes G Hurwitz stable, e will converge to zero asymptotically.
Observer (2) is usually called unknown input observer (UIO). Lemma 2 gives the existence conditions
of a UIO.

Lemma 2 ([16]). A UIO for System (1) exists if

(i) rank(MY) = rank(Y)

(ii)

[
sI −Q Y

M 0

]
is of full column rank for ∀s ∈ C, Re(s) ≥ 0, i.e., (TQ, M) is detectable.

Remark 1. The above two conditions guarantee existence of H and R1 in (3), respectively, where R1 makes G
Hurwitz stable.

2.3. Problem Formulation

The considered heterogeneous MAS consists of the following N agents:

ẋi = Aixi + Biui + Eiv + B fi
fi

ei = Cixi + Diui + Fiv

ymi = Cmixi, i = 1, 2, · · · , N

(5)

where xi ∈ Rni , ei ∈ Rpi , ymi ∈ Rpm , ui ∈ Rmi and fi ∈ Rli are the state, tracking error, measurement
output, control input and fault signal of the i-th agent, respectively. Columns of B fi

are linearly
independent, and (Ai, Bi, Cmi) are stabilisable and detectable. v ∈ Rq is the reference input to be
tracked or the disturbance to be rejected, which is assumed to be generated by the following exosystem:

v̇ = Sv

In this paper, the leader labelled as 0 could represent the exosystem. System (5) could be seen as
follower agents, where only some follower agents of the MAS could utilise v directly, i.e., the leader
is their neighbour in the graph G, and the remaining follower agents just have paths to the leader.
The above two facts mean that the leader has paths to all follower agents in the graph G.

System (5) also needs to satisfy the following assumptions.

Assumption 1. Re[λi(S)] = 0, i = 1, · · · , q.

Assumption 2. The following equations

XiS = AiXi + BiUi + Ei

0 = CiXi + DiUi + Fi, i = 1, 2, · · · , N
(6)

have solution pairs (Xi, Ui), respectively.
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Remark 2. According to Theorem 1.9 in [27], solution pairs (Xi, Ui) are determined to exist if

rank

[
λi(S)I − Ai Bi

Ci Di

]
= ni + pi for any λi(S). In fact,

[
sI − Ai Bi

Ci Di

]
is of full row rank for ∀s ∈

C, Re(s) ≥ 0 if System (5) are minimum phase systems, combined with Assumption 1, matrix Equation (6) will
always have solutions if System (5) are minimum phase systems. Furthermore, the solution pair (Xi, Ui) will be
unique if pi = mi.

Assumption 3. There exists only one faulty agent in each N̄i, i = 1, · · · , N.

For System (5), a state-feedback-based distributed control law is proposed in [1].

ui = K1ixi + K2iηi

η̇i = Sηi − c
N

∑
j=1

[aij(ηi − ηj) + ai0(ηi − v)]
(7)

where ηi is a dynamic compensator, c is a positive scalar to design, K1i and K2i are parameter matrices
to design. Let K2i be as follows:

K2i = Ui − K1iXi

Xi and Ui are determined by matrix equations in Assumption 2. If Ai + BiK1i are Hurwitz stable,
c > 0, and the leader has paths to all follower agents, control law (7) will realise COR when there
exists no faulty agent [3], i.e., tracking errors ei converge to zero asymptotically. However, the given
exosystem under Assumption 1 just has an unforced purely oscillatory solution, which cannot include
some kinds of solutions such as those of a damped differential system or the solution of a forced
differential system or dynamic system, i.e., some kinds of practical signals cannot be generated by
the given exosystem, where the application prospect is limited. This is due to the fact that the given
exosystem needs to ensure that matrix Equation (6) has solutions, and the following Theorems 2 and 3
hold. Furthermore, COR will not realise if some agent suffers from fault signals. Hence, there exists a
need to detect the faulty agent.

This paper aims at adopting a distributed control law for the MAS, and designing distributed
observers in some agents to detect the possibly faulty agent. Running the observers and control law
simultaneously, the observers could detect the faulty agent if there occurs a fault, and the distributed
control law could also realise COR if no fault occurs. It is worth indicating that if the solution pair
(Xi, Ui) is not unique, we just need to select one of them to design the control law (7), and design
FD observers (15) and (29), where the parameters of FD observers contain the selected solution pairs
(Xi, Ui). What is more, the designed control law (7) with any chosen solution pair (Xi, Ui) will realise
consensus control when there exists no faulty agent, and existence of the designed FD observers will
also hold under any chosen solution pair (Xi, Ui).

3. Results

3.1. State-Feedback-Based Distributed FD

Define yi as the observer feedback information that agent i’s observers for FD could utilise,
which is designed to contain state xi and compensator state ηi of agent i, as well as agent i’s neighbours’,
where agent i’s neighbours’ compensator state ηi are also utilised in control law (7).

yi =


xī1 − Xī1 ηī1

...
xī|N̄i |

− Xī|N̄i |
ηī|N̄i |

 (8)
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Substitute (7) into (5), we obtain

ẋi = (Ai + BiK1i)xi + BiK2iηi + Eiv + B fi
fi

η̇i = Sηi − c
N

∑
j=1

[aij(ηi − ηj) + ai0(ηi − v)]
(9)

Furthermore, let θi = xi − Xiv, eηi = ηi − v, and according to Assumption 2, we could obatin

θ̇i = (Ai + BiK1i)xi + BiK2iηi − (AiXi + BiUi)v + B fi
fi

= (Ai + BiK1i)xi + BiK2iηi − (AiXi + BiK2i + BiK1iXi)v

+ B fi
fi

= (Ai + BiK1i)θi + BiK2ieηi + B fi
fi

ėηi = Seηi − c
N

∑
j=1

[aij(eηi − eη j) + ai0eηi]

(10)

Remark 3. Obviously, it is impossible to design observers for System (10) decoupled from eηi(t) if agent i could
not obtain exogenous signal v(t) directly. What is more, the evolution of eηi(t) is influenced by eη j(t), j ∈ Ni,
i.e., ||eηi(t)|| may not be monotonic for t ≥ 0, therefore, the bound of ||eηi(t)|| is unknown based only on local
information, which means that isolation thresholds cannot be selected [28]. Therefore, observers for FD need to
be designed for the following closed-loop System (12), where utilisation of exogenous signal v is avoided.

Denote
ζi =

[
θT

ī1
· · · θT

ī|N̄i |

]T
, f̄i =

[
f T
ī1
· · · f T

ī|N̄i |

]T

eη =
[
eT

η1 · · · eT
ηN

]T
, ψi =

[
ζT

i eT
η

]T
(11)

we obtain System (12) for agent i.

ψ̇i = Aiψi + B̄ fi
f̄i

Ai =

[
Ω1i Ω2i
0 IN ⊗ S− cH⊗ Iq

]
, B̄ fi

=

[
Ω3i
0

]
Ω1i = diag(Aī1 + Bī1 K1ī1 , · · · , Aī|N̄i |

+ Bī|N̄i |
K1ī|N̄i |

)

Ω2i =
[
eī1 ⊗ (Bī1 K2ī1)

T , · · · , eī|N̄i |
⊗ (Bī|N̄i |

K2ī|N̄i |
)T
]T

Ω3i = diag(B f ī1
, · · · , B f ī|N̄i |

)

(12)

and (8) can be rewritten as follows:

yi = Ciψi

Ci =
[

I −Ci1

]
Ci1 =

[
eī1 ⊗ XT

ī1
eī2 ⊗ XT

ī2
· · · eī|N̄i |

⊗ XT
ī|N̄i |

]T

(13)

Combine (12) and (13), we obtain |N̄i| systems as follows:{
ψ̇i = Aiψi + b̄ fiīk

f īk + B̄ f−iīk
f̄−iīk

yi = Ciψi, k = 1, · · · , |N̄i|
(14)



Appl. Sci. 2020, 10, 7466 7 of 16

where b̄ fiīk
=

[
eT

k ⊗ BT
f īk

0
]T

, B̄ f−iīk
denotes the surplus of B̄ fi

after deleting b̄ fiīk
, and

f̄−iīk =
[

f T
ī1
· · · f T

īk−1
f T
īk+1

· · · f T
ī|N̄i |

]T

Construct |N̄i| observers (15) for all the agents of N̄i in agent i, which are labelled as iīk, k =

1, · · · , |N̄i|.
żiīk = Giīk ziīk + Riīk yi

ψ̂iīk = ziīk + Qiīk yi, k = 1, · · · , |N̄i|
(15)

where
(Qiīk Ci − I)b fiīk

= 0, Tiīk = I −Qiīk Ci

Giīk = Tiīk Ai − R1iīk
Ci, R2iīk

= Giīk Qiīk

Riīk = R1iīk
+ R2iīk

(16)

R1iīk
is a matrix to make Giīk Hurwitz stable.

Then, construct |N̄i| residual generators riīk as follows:

riīk = yi − Ciψ̂iīk , k = 1, · · · , |N̄i|.

Theorem 1. Suppose that observers (15) exist for each agent in N̄i, and Assumption 3 is satisfied.
If limt→∞ riīk (t) = 0, and limt→∞ rij(t) 6= 0, where j ∈ N̄i and j 6= īk, there occurs a fault in agent
īk.

Proof of Theorem 1. The UIO error (residual) dynamics are shown as follows:

ėiīk (t) = Giīk eiīk (t) + Tiīk B̄ f−iīk
f̄−iīk ,

riīk (t) = Cieiīk (t),
(17)

where eiīk = ψi − ψ̂iīk = Tiīk ψi − ziīk . Therefore, residual generators will only be influenced by
f−ik(t). Assumption 3 indicates that f̄−iīk (t) = 0 if f īk (t) 6= 0, therefore, limt→∞ riīk (t) = 0 and
limt→∞ rij(t) 6= 0, j 6= īk indicates that agent īk is faulty.

Remark 4. Assumption 3 could be relaxed if the number of faulty agents is known, and all the faulty agents
locate in the same set N̄i. Assume the number of faulty agents as h < |N̄i|, then construct Ch

|N̄i |
systems

as follows: {
ψ̇i = Aiψi + b̃ fik

f̃ik + B̃ f−ik
f̃−ik

yi = Ciψi, k = 1, · · · , Ch
|N̄i |

where f̃ik =
[

f̃ T
ik1

f̃ T
ik2
· · · f̃ T

ikh

]T
, i.e., h elements chosen from { f ī1 , f ī2 , · · · , f ī|N̄i |

}, then f̃ik has Ch
|N̄i |

combinations, as well as b̃ fik
. B̃ f−ik

is the surplus of B̄ fi
after deleting b̃ fik

.
Design Ch

|N̄i |
observers and residual generators in agent i for above systems following the same steps.

Finally, the only residual generator containing all the faults converges to zero. For h = |N̄i| − 1, if all the
residual generators will not converge to zero, there exists no healthy agent in N̄i.

Theorem 2. If Assumption 1 is satisfied, c > 0, and each follower agent has paths to the leader in the graph G,
there exists an observer (15) for any īk ∈ N̄i.

Proof of Theorem 2. For īk ∈ N̄i, Lemma 2 indicates that there exists an observer (15) if rank(Ci b̄ fik
) =

rank(b̄ fik
), andMiīk =

[
sI − Ai b̄ fik

Ci 0

]
is of full column rank for ∀s ∈ C, Re(s) ≥ 0.
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Firstly, we verify the first condition, where

Ci b̄ fik
=

[
I −Ci1

]
·
[

ek ⊗ B f īk

0

]
= ek ⊗ B f īk

(18)

It is easy to verify that coulmns of Ci b̄ fik
are linearly independent, where the first condition holds.

Then, we need to verify thatMiīk is of full column rank for ∀s ∈ C, Re(s) ≥ 0, which is shown
as follows: sI −Ω1 −Ω2 ek ⊗ B f īk

0 sI − (IN ⊗ S− cH⊗ Iq) 0
I −Ci1 0

 (19)

Let ν1 ∈ R∑
|N̄i |
k=1 nīk , ν2 ∈ RNq and ν3 ∈ Rlīk satisfy (20).(sI −Ω1) · ν1 −Ω2 · ν2 + (ek ⊗ B f īk

) · ν3

[sI − (IN ⊗ S− cH⊗ Iq)] · ν2

ν1 − Ci1 · ν2

 = 0 (20)

H is positive definite according to Lemma 1, then, there exists a Y1 to make Y1HY−1
1 = Λ1 =

diag[λ1(H), · · · , λN(H)], where λ1(H), · · · , λN(H) > 0. For the exosystem matrix S, a unitary
matrix Y2 could make Y2SYH

2 = Λ2, where Λ2 is an upper triangular matrix with diagonal elements
{λ1(S), · · · , λq(S)} [29]. Then, we obtain eigenvelus of IN ⊗ S − cH ⊗ Iq via pre-multiplying by
(IN ⊗Y2) · (Y1 ⊗ Iq) and post-multiplying by (Y−1

1 ⊗ Iq) · (IN ⊗YH
2 ) for IN ⊗ S− cH⊗ Iq, which are

shown as follows:

{λi(S)− cλj(H) : i = 1, · · · , q, j = 1, · · · , N}

According to Assumption 1, we have Re[λi(S)] = 0, i.e., Re[λi(IN ⊗ S− cH⊗ Iq)] < 0. Hence,
columns of sI − (IN ⊗ S− cH⊗ Iq) are linearly independent for ∀s ∈ C, Re(s) ≥ 0, i.e., ν2 = 0, as well
as ν1. As columns of B f īk

are linearly independent, we have ν3 = 0, therefore, (19) is of full column

rank for ∀s ∈ C, Re(s) ≥ 0. Above conditions guarantee existence of observers (15) for any node in
N̄i.

Remark 5. If compensator state ηī1 , ηī2 , · · · , ηī|N̄i
| in yi are replaced by exosystem state v, existence of the

observers for FD is still ensured. In practical operation, only partial follower agents could obtain exosystem
state v, but each follower agent has access to itself and its neighbours’ compensator state, i.e., the estimate of v,
therefore, feedback information yi is designed as (8).

Remark 6. Establishment of Theorem 1 depends on Assumption 3 and existence of observers for FD,
where existence of the observers for FD is proved in Theorem 2. Then, Theorems 1 and 2 together guarantee that
the faulty agent will be detected.

Remark 7. Existence of FD observers just requires c > 0, which is the same as realisation conditions of COR,
i.e., control law (7) and observers (15) are able to run simultaneously. What is more, if the remaining follower
agents still have paths to the leader after removing the faulty agent, the remaining follower agents could still
realise COR.

According to residual dynamics (17), residual generators will not converge to zero until time
approaches infinity, therefore, appropriate isolation thresholds need to be set [21]. Then, the following
location algorithm is given to locate the possibly faulty agent in N̄i.
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Algorithm 1 Faulty agent location algorithm

1. In agent i, construct residual generators riīk and set appropriate thresholds Θiīk > 0, k = 1, · · · , |N̄i|.
2. Run residual generators riīk , k = 1, · · · , |N̄i|.
(1) Check riīk , k = 1. If ||riīk || < Θiīk , and ||rij|| ≥ Θij, j 6= īk, stop and remove the faulty node.
Otherwise, go to step (2).

...

(|N̄i|) Check riīk , k = |N̄i|. If ||riīk || < Θiīk , and ||rij|| ≥ Θij, j 6= īk, stop and remove the faulty node.

Remark 8. A simple selection method of isolation thresholds Θik is shown as follows. Assume that the initial
error eiīk (0) ≤ is bounded, i.e., ||eiīk (0)|| ≤ ε. Then, one can compute the threshold by considering an upper
estimate of the error expression (17):

Θiīk = Γiīk (t)||Ci||ε

where Γiīk (t), which can be obtained by Jordan decomposition, is such that ||eGiīk
t|| ≤ Γiīk (t).

What is more, selection of isolation thresholds is also related with trade-offs between false alarm and
misdetection rate, among others [30], where more details could be found in [24] and references there-in.

3.2. Output-Feedback-Based Distributed FD

As state information is difficult to obtain, an output-feedback-based control law is designed here,
as well as an output-feedback-based distributed FD scheme, where matrices Ai, B f i and Cmi need to
satisfy the following assumption.

Assumption 4. CmiB f i and

[
sI − Ai B f i

Cmi 0

]
are of full column rank for ∀s ∈ C, Re(s) ≥ 0, i = 1, 2, · · · , N.

Inspired by Reference [2], we design a dynamic output-feedback-based distributed control law:

ui = K1i x̂i + K2iηi

˙̂xi = Ai x̂i + Biui + Eiηi + Li(Cmi x̂i − ymi)

η̇i = Sηi − c
N

∑
j=1

[aij(ηi − ηj) + ai0(ηi − v)]

(21)

where c and K1i, K2i and Li are the scalar and parameter matrices to design, respectively. Let K2i be
designed as follows:

K2i = Ui − K1iXi

Xi and Ui are still determined by the matrix equations introduced in Assumption 2.

Remark 9. Control law (23) consists of two observers, i.e., the compensator ηi and state observer x̂i, which aim
at estimating exosystem and system states, respectively.

yi is designed as follows:

yi =


ymī1 − Cmī1 x̂ī1

...
ymī|N̄i |

− Cmī|N̄i |
x̂ī|N̄i |

 (22)

which contains measurement output and state estimate of agents in N̄i.
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Substitute (23) into (5), we have

ẋi = Aixi + BiK1i x̂i + BiK2iηi + Eiv + B fi
fi

˙̂xi = Ai x̂i + Biui + Eiηi + Li(Cmi x̂i − ymi)

η̇i = Sηi − c
N

∑
j=1

[aij(ηi − ηj) + ai0(ηi − v)]

(23)

let θi = xi − Xiv, exi = xi − x̂i, eηi = ηi − v, and according to Assumption 2, we could obatin (24):

θ̇i = Aixi + BiK1i x̂i + BiK2iηi + B fi
fi + (Ei − XiS)v

= Aixi + BiK1i x̂i + BiK2iηi + B fi
fi − (AiXi + BiUi)v

= Aixi + BiK1i(xi − exi) + BiK2iηi + B fi
fi − (AiXi

+ BiK2i + BiK1iXi)v

= (Ai + BiK1i)θi − BiK1iexi + BiK2ieηi + B fi
fi

ėxi = (Ai + LiCmi)exi − Eieηi + B fi
fi

ėηi = Seηi − c
N

∑
j=1

[aij(eηi − eη j) + ai0eηi]

(24)

Denote
ζi =

[
θT

ī1
· · · θT

ī|N̄i |

]T
, ēxi =

[
eT

xī1
· · · eT

xī|N̄i |

]T

eη =
[
eT

η1 · · · eT
ηN

]T
, ψi =

[
ζT

i ēT
xi eT

η

]T

f̄i =
[

f T
ī1
· · · f T

ī|N̄i |

]T

(25)

then we obtain the following MAS closed-loop system:

ψ̇i = Aiψi + B̄ f i f̄i

Ai =

Ω11i Ω12i Ω13i
0 Ω22i Ω23i
0 0 IN ⊗ S− cH⊗ Iq

 , B̄ fi
=

Ω3i
Ω3i
0


Ω11i = diag(Aī1 + Bī1 K1ī1 , · · · , Aī|N̄i |

+ Bī|N̄i |
K1ī|N̄i |

)

Ω12i = diag(−Bī1 K1ī1 , · · · ,−Bī|N̄i |
K1ī|N̄i |

)

Ω13i =
[
eī1 ⊗ (Bī1 K2ī1)

T , · · · , eī|N̄i |
⊗ (Bī|N̄i |

K2ī|N̄i |
)T
]T

Ω22i = diag(Aī1 + Lī1 Cmī1 , · · · , Aī|N̄i |
+ Lī|N̄i |

Cmī|N̄i |
)

Ω23i =
[
−eī1 ⊗ ET

ī1
, · · · ,−eī|N̄i |

⊗ ET
ī|N̄i |

]T

Ω3i = diag(B f ī1
, · · · , B f ī|N̄i |

)

(26)

and (24) could be changed to the following form:

yi = Ciψi

Ci =
[
0 C̄i 0

]
, C̄i = diag(Cmī1 , · · · , Cmī|N̄i |

)
(27)
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Combine (26) and (27), we obtain |N̄i| systems as follows:{
ψ̇i = Aiψi + b̄ fiīk

f īk + B̄ f−iīk
f̄−iīk

yi = Ciψi, k = 1, · · · , |N̄i|
(28)

where b̄ fiīk
=

[
eT

k ⊗ BT
f īk

eT
k ⊗ BT

f īk
0
]T

, B̄ f−iīk
is the component of B̄ fi

after deleting b̄ fiīk
.

Follow the same steps in Section 2.1, |N̄i| observers are designed in agent i.

żiīk = Giīk ziīk + Riīk yi

ψ̂iīk = ziīk + Qiīk yi, k = 1, · · · , |N̄i|
(29)

where the design of parameter matrices is the same as (16). Next we just need to prove existence of
observers for FD.

Remark 10. In comparison with yi in (8), (22) contains measurement output and state estimate of one agent’s
and its neighbours’. In the following, Theorem 3 will prove that existence of the above observers is still ensured,
where yi does not contain state information. The objective proposed in Section 1 will realise under the condition
that state information is unmeasurable.

Theorem 3. If Assumptions 1 and 4 are satisfied, c > 0, Aīk + Bīk K1īk are Hurwitz stable, k = 1, · · · , |N̄i|,
and each follower agent has paths to the leader in the graph G, there exists an observer (29) for any agent īk ∈ N̄i.

Proof of Theorem 3. For īk ∈ N̄i, Lemma 2 indicates that there exists an observer (29) if rank(Ci b̄ fiīk
) =

rank(b̄ fiīk
), andMik =

[
sI − Ai b̄ fiīk

Ci 0

]
is of full column rank for ∀s ∈ C, Re(s) ≥ 0.

Firstly, we verify the first condition, for k = 1, we have

Ci b̄ fiī1
=

[
0 diag(Cmī1 , · · · , Cmī|N̄i |

) 0
]
·

e1 ⊗ B f ī1

e1 ⊗ B f ī1

0

 = Cmī1 B f ī1
(30)

where Cmī1 B f ī1
is of full column rank according to Assumption 4. Furthermore, for k = 2, · · · , |N̄i|,

columns of Ci b̄ fiīk
are always linearly independent, where the first condition holds.

Then, we need to verify thatMik is of full column rank for ∀s ∈ C, Re(s) ≥ 0, which is shown
as follows: 

sI −Ω11i −Ω12i −Ω13i ek ⊗ B f īk

0 sI −Ω22i −Ω23i ek ⊗ B f īk

0 0 sI − (IN ⊗ S− cH⊗ Iq) 0
0 C̄i 0 0

 (31)

Consider (31), let ν1, ν2 ∈ R∑
|N̄i |
k=1 nīk , ν3 ∈ RNq and ν4 ∈ Rlk satisfy (32).

(sI −Ω11i) · ν1 −Ω12i · ν2 −Ω13i · ν3 + (ek ⊗ B f īk
) · ν4

(sI −Ω22i) · ν2 −Ω23i · ν3 + (ek ⊗ B f īk
) · ν4

[sI − (IN ⊗ S− cH⊗ Iq)] · ν3

C̄i · ν2

 = 0 (32)
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It has been proved in Theorem 2 that columns of sI − (IN ⊗ S− cH⊗ Iq) are linearly independent
for ∀s ∈ C, Re(s) ≥ 0, we have ν3 = 0. Therefore, ν2 = ν4 = 0 if (33) is of full column rank for
∀s ∈ C, Re(s) ≥ 0, [

sI −Ω22i ek ⊗ B f īk

C̄i 0

]
(33)

where (33) could be transformed to (34) through appropriate row and column transformation, the rank
of which is equal to (33), sI − diag(Aī1 , · · · , Aī|N̄i |

) ek ⊗ B f īk

diag(Cmī1 , · · · , Cmī|N̄i |
) 0

 (34)

according to Assumption 4, (34) is of full column rank for ∀s ∈ C, Re(s) ≥ 0, i.e., ν2 = ν4 = 0. As Ω11i
is Hurwitz stable, ν1 = 0. Hence, (31) is of full column rank for ∀s ∈ C, Re(s) ≥ 0. Finally, existence of
observers (29) for any node in N̄i is established.

Remark 11. In comparison with the output-feedback-based COR problem in Reference [4], where the authors
design two control laws, which correspond to two kinds of follower agents in the MAS, the first kind are called
informed agents, i.e., measurement output ymi contains exogenous signal v, then v is detectable from ymi.
The second kind are called uninformed agents, where measurement output ymi does not contain exogenous signal
v. As Section 2 just considers that all the follower agents are uninformed, i.e., a special case of literature [2],
a single control law (21) will realise COR if no fault occurs, where c > 0, and the designed K1i and Li make
Ai + BiK1i and Ai + LiCmi Hurwitz stable, which is not contradicted with the existence conditions of observers
(29), i.e., control law (21) and observers (29) could run simultaneously.

Remark 12. The faulty agent location algorithm for the output-feedback-based distributed FD scheme is the
same as Algorithm 1 and omitted here.

4. Simulation Example

In this section, we will provide an example to illustrate the effectiveness of the two proposed
distributed FD schemes.

Consider the following agent dynamics in Reference [31]:

ẋi =

0 1 0
0 0 ci
0 −di ai

 xi +

0
0
bi

 ui +

−0.5 0
−1 0.5
0 0

 v

ei =

[
1 0 0
0 1 0

]
xi +

[
−1 0
−0.5 −1

]
v

ymi =

[
1 0 0
0 1 0

]
xi

(35)

where the parameters {ai, bi, ci, di} are modelled as {1, 1, 1, 1}, {10, 2, 1, 1}, {2, 1, 1, 10} and {2, 1, 1, 1},
respectively.

Assume the communication graph G among all the follower agents and the exosystem can be
described by Figure 1, where node 0 represents the exosystem and the other nodes represent four
follower agents, where agent 2 is assumed as faulty, it can be observed that only agent 3 can access the
exosystem state v, v is generated by the exosystem v̇ = Sv, where

S =

[
0 1
−1 0

]
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Then, it can be verified that Assumptions 1–3 are satisfied, (Ai, Bi) are stabilisable, (Ai, Cmi) are
detectable, and four follower agents have paths to the leader in the graph G. What is more,

B f1 = B f2 = B f3 = B f4 =
[
1 0 0

]T

which satisfy Assumption 4. The solutions of (6) are given by

Xi =

[
1 0.5 0
0 1 0

]T

, Ui =
[

0.5di
bi

di
bi

]
where i = 1, 2, 3, 4.

Figure 1. Communication topology of the multi-agent system (MAS).

Choose the coupling gain coefficient c, parameter matrices of control laws as Theorems 2 and 3,
which correspond to the state-feedback-based and output-feedback-based distributed FD schemes,
respectively, as well as parameter matrices of the observers for FD.

For the condition that state information is measurable, run control law (7) and observers (15)
for FD.

The fault is assumed to be a constant and occur in the first element of x2, i.e., f2 = 3.5, which occurs
after 25 s. Residual generators r11, r12 and r14 in agent 1 are shown as Figure 2, which are represented
by 2-norm type. According to Remark 8, we could choose a positive scalar ε, which is larger than
||e21(0)||, ||e22(0)|| and ||e24(0)||, and eσt, which is larger than ||eG21t||, ||eG22t|| and ||eG24t||, combined
with ||C2|| = 1.64. Then, the isolation threshold could be set as 1.64ε · eσt.

It is shown that above residuals converge to little enough values before the fault occurs, then r11

and r14 fluctuate when the fault occurs at the time of 25 s. However, r12 does not fluctuate as r11 and
r14 when the fault occurs, then according to Algorithm 1, the fault occurs in agent 2.

Figure 2. Residual generators in agent 1 under state feedback.

For the condition that state information is unmeasurable, run control law (21) and observers (29)
for FD.

The fault signal is the same as the state feedback case, as well as the isolation threshold selection
method. Simulation results of residual generators r11, r12 and r14 in agent 1 are shown as Figure 3,
and still represented by 2-norm type. It is shown that r12 remains converging after the fault occurs,
where r11 and r14 fluctuate; therefore, the fault occurs in agent 2.



Appl. Sci. 2020, 10, 7466 14 of 16

Figure 3. Residual generators in agent 1 under output feedback.

5. Conclusions

Two distributed FD schemes for heterogeneous MAS are proposed in this paper.
A state-feedback-based distributed control law is adopted to realise COR when there does not
occur any fault, where state-feedback-based observers for FD are designed, and existence of
the designed observers is also proved. Furthermore, we consider the condition that state
information is unmeasurable, an output-feedback-based distributed control law is designed, as well as
output-feedback-based observers for FD, where existence of the above observers are ensured through
appropriately designed feedback information. Finally, two simulation examples verify the effectiveness
of the proposed FD schemes. However, the above distributed control laws and FD schemes require
one agent to obtain information from its neighbours, such as state, compensator state, measurement
output and state estimate, which will exert a heavy burden on communication networks.

Possible future work includes considering the condition that agents suffer from disturbances and
faults simultaneously, as well as reducing communication burden.
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