
applied
sciences

Article

Exploring Reward Strategies for Wind Turbine Pitch
Control by Reinforcement Learning

Jesús Enrique Sierra-García 1,* and Matilde Santos 2

1 Electromechanical Engineering Department, University of Burgos, 09006 Burgos, Spain
2 Institute of Technological Knowledge, Complutense University of Madrid, C/Profesor García Santesmases 9,

28040 Madrid, Spain; msantos@ucm.es
* Correspondence: jesierra@ubu.es

Received: 28 September 2020; Accepted: 20 October 2020; Published: 23 October 2020
����������
�������

Featured Application: Wind Turbine Pitch Control.

Abstract: In this work, a pitch controller of a wind turbine (WT) inspired by reinforcement learning
(RL) is designed and implemented. The control system consists of a state estimator, a reward
strategy, a policy table, and a policy update algorithm. Novel reward strategies related to the energy
deviation from the rated power are defined. They are designed to improve the efficiency of the WT.
Two new categories of reward strategies are proposed: “only positive” (O-P) and “positive-negative”
(P-N) rewards. The relationship of these categories with the exploration-exploitation dilemma,
the use of ε-greedy methods and the learning convergence are also introduced and linked to the
WT control problem. In addition, an extensive analysis of the influence of the different rewards
in the controller performance and in the learning speed is carried out. The controller is compared
with a proportional-integral-derivative (PID) regulator for the same small wind turbine, obtaining
better results. The simulations show how the P-N rewards improve the performance of the controller,
stabilize the output power around the rated power, and reduce the error over time.

Keywords: intelligent control; pitch angle; reinforcement learning; reward strategies; wind turbine;
renewable energies

1. Introduction

Wind energy gains strength year after year. This renewable energy is becoming one of the most
used clean energies worldwide due to its high efficiency, its competitive payback, and the growth
in investment in sustainable policies in many countries [1]. Despite its recent great development,
there are still many engineering challenges regarding wind turbines (WT) technology that must
be addressed [2].

From the control perspective, one of the main goals is to stabilize the output power of the WT
around its rated value. This should be achieved while the efficiency is maximized, and vibrations and
fatigue are minimized. Even more, safety must be guaranteed under all operation conditions. This may
even be more critical for floating offshore wind turbines (FOWT), as it has been proved that the control
system can affect the stability of the floating device [3,4]. This general and ambitious control objective
is implemented in many different control actions, depending on the type of WT. So, the pitch angle
control is normally used to maintain the output power close to its rated value once the wind speed
overpasses a certain threshold. The control of the generator speed is intended to track the optimum
rotor velocity when the wind speed is below the rated output speed. And finally, the yaw angle control
is used to optimize the attitude of the nacelle to follow the wind stream direction.

Appl. Sci. 2020, 10, 7462; doi:10.3390/app10217462 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-6088-9954
https://orcid.org/0000-0003-1993-8368
http://dx.doi.org/10.3390/app10217462
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/21/7462?type=check_update&version=4

Appl. Sci. 2020, 10, 7462 2 of 22

This work is focused on the pitch control of the wind turbine. Blade pitch control technology alters
the pitch angle of a blade to change the angle of wind attack and ultimately to change the aerodynamic
forces on the blades of a WT. Therefore, this control system pitches the blades usually a few degrees
every time the wind changes in order to keep the rotor blades at the required angle, thus controlling the
rotational speed of the turbine [5,6]. This is not a trivial task due to the non-linearity of the equations
that describe its dynamics, the coupling between the internal variables, and uncertainty that comes
from external loads [7], mainly wind and, in the case of FOWT, also waves and currents, that makes
its dynamics changes [8]. The complexity of this system has led to propose the use of advanced
and intelligent control techniques such as fuzzy logic, neural networks, and reinforcement learning,
among others, to address WT related control problems.

Among control solutions, sliding mode control, and adaptive control have been recently applied
to WT with encouraging results. In Liu et al. [9], a PI-type sliding mode control (SMC) strategy for
(permanent magnet synchronous generator) PMSG-based wind energy conversion system (WECS)
uncertainties is presented. Nasiri et al. propose a super-twisting sliding mode control for a gearless
wind turbine by a permanent magnet synchronous generator [10]. A robust SMC approach to control
the rotor speed in the presence of uncertainties in the model is also proposed in Colombo et al. [11].
In addition, closed loop convergence of the whole system is proved. In Yin et al. [12], an adaptive
robust integral SMC pitch angle controller and a projection-type adaptation law are synthesized to
accurately track the desired pitch angle trajectory, while it compensates model uncertainties and
disturbances. Bashetty et al. propose an adaptive controller for pitch and torque control of the wind
turbines operating under turbulent wind conditions [13].

The WT control problem has also been addressed in the literature using different intelligent control
techniques, mainly fuzzy logic and neuro-fuzzy inference systems [14–21]. Reinforcement learning has
been an inspiration for the design of control strategies [22,23]. A recent overview of deep reinforcement
learning for power system applications can be found in Zhang et al. [24]. In Fernandez-Gauna et
al. [25], RL is used for the control of variable speed wind turbines. Particularly, it adapts conventional
variable speed WT controllers to changing wind conditions. As a further step, the same authors apply
conditioned RL (CRL) to this complex control scenario with large state-action spaces to be explored [26].
In Abouheaf et al. [27], an online controller based on a policy iteration reinforcement learning paradigm
along with an adaptive actor-critic technique is applied to the doubly fed induction generator wind
turbines. Sedighizadeh proposes an adaptive PID controller tuned by RL [28]. An artificial neural
network based on RL for WT yaw control is presented in Saénz-Aguirre et al. [29]. In a more recent
paper, the authors propose a performance enhancement of this wind turbine neuro–RL yaw control [30].

The paper by Kuznetsova proposes a RL algorithm to plan the battery scheduling in order to
optimize the use of the grid [31]. Tomin et al. propose adaptive control techniques, which first
extract the stochastic property of wind speed using a trained RL agent, and then apply their obtained
optimal policy to the wind turbine adaptive control design [32]. In Hosseini et al., passive RL solved
by particle swarm optimization policy (PSO-P) is used to handle an adaptive neuro-fuzzy inference
system type-2 structure with unsupervised clustering for controlling the pitch angle of a real wind
turbine [33]. Chen et al. also propose a robust wind turbine controller that adopts adaptive dynamic
programming based on RL and system state data [34]. In a related problem, deep reinforcement
learning with knowledge assisted learning are applied to deal with the wake effect in a cooperative
wind farm control [35].

To summarize, in the literature, the RL approach has been applied to the different control actions
of wind turbines or to other related problems with successful results. However, this learning strategy
has not been directly applied to the pitch control, neither the reward mechanisms have been analyzed
in order to improve the control performance. Thus, in the present work, the RL-inspired pitch control
proposed in Sierra-García et al. [36] has been extended to complete the range of reward policies.
Novel reward strategies related to the energy deviation from the rated power, namely Mean Squared

Appl. Sci. 2020, 10, 7462 3 of 22

Error Reward Strategy (MSE-RS), Mean error Reward Strategy (Mean-RS), and the corresponding
increments, ∆MSE-RS and ∆Mean-RS, have been proposed, implemented, and combined.

In addition, many of the previous works based on RL execute ε-greedy methods in order to
increase the exploration level and avoid actions unexplored. The ε-greedy methods select an action
either randomly or considering the previous experiences, the latter being called greedy selection.
The greedy selection is carried out trying to maximize the future expected rewards, based on the
previous rewards already received. The probability of selecting a random action is ε and the probability
of performing a greedy selection is (1− ε). This approach tends to improve the convergence of the
learning, but its main drawback is that it introduces a higher randomness in the process and makes the
system less deterministic. To avoid the use of ε-greedy methods, the concept of Positive-Negative (P-N)
rewards, and its relationship with the exploration-exploitation dilemma is here introduced and linked
to the WT control problem. An advantage of P-N rewards, observed in this work, is that the behavior
is generally more deterministic than ε-greedy, allowing more replicable results with fewer iterations.

Moreover, a deep study of the influence of the type of reward in the performance of the system
response and in the learning speed has also been carried out. As it will be shown in the simulation
experiments, P-N rewards work better than Only-Positive (O-P) rewards for all the policy update
algorithms. However, the combination of P-N with O-P rewards helps to soften the variance of the
output power.

The rest of the paper is organized as follows. Section 2 describes the model of the small wind
turbine used. Section 3 explains the RL-based controller architecture, the policy update algorithms and
the reward strategies implemented. The results for different configurations are analyzed and discussed
in Section 4. The paper ends with the conclusions and future works.

2. Wind Turbine Model Description

The model of a small turbine of 7 kW is used. The equations of the model are summarized in
Equations (1)–(6). The development of these equations can be found in Sierra-García et al. [18].

.
Ia =

1
La

(
Kg·Kφ·w− (Ra + RL)Ia

)
, (1)

λi =

[(
1

λ+ c8

)
−

(c9

θ3 + 1

)]−1

, (2)

Cp(λi,θ) = c1

[
C2

λi
− c3θ− c4θ

c5 − c6

]
e−

c7
λi , (3)

.
w =

1
2·J·w

(
Cp(λi,θ)·ρπR2

·v3
)
−

1
J

(
Kg·Kφ·Ia + K f w

)
, (4)

..
θ =

1
Tθ

[
Kθ

(
θre f − θ

)
−

.
θ
]
, (5)

Pout = RL·Ia
2 (6)

where La is the armature inductance (H), Kg is a dimensionless constant of the generator, Kφ is the
magnetic flow coupling constant (V·s/rad), Ra is the armature resistance (Ω), RL is the resistance of
the load (Ω), considered in the study as purely resistive, w is the angular rotor speed (rad/s), Ia is
the armature current (A), the values of the coefficients c1 to c9 depend on the characteristics of the
wind turbine, J is the rotational inertia (kg m2), R is the radius or blade length (m), ρ is the air density
(kg/m3), v is wind speed (m/s), K f is the friction coefficient (N m/rad/s), θre f is the reference for the
pitch (rad), and θ is the pitch (rad).

The state variables of the control system are the current in the armature and the angular speed
of the rotor, [Ia, w]. On the other hand, the manipulated or control input variable is the pitch angle,

Appl. Sci. 2020, 10, 7462 4 of 22

θre f , and the controlled variable is the output power, Pout, unlike other works where the rotor speed is
the controlled variable.

The RL controller proposed in this paper is applied to generate a pitch reference signal, θre f , in order
to stabilize the output power, Pout, of the wind turbine around its rated value. Equations (1)–(6) are
used to simulate the behavior of the wind turbine and thus allow us to evaluate the performance of
the controller.

The values of the parameters used during the simulations (Table 1) are taken from Mikati et al. [37].

Table 1. Parameters of the wind turbine model.

Parameter Description Value/Units

La Inductance of the armature 13.5 mH
Kg Constant of the generator 23.31
Kφ Magnetic flow coupling constant 0.264 V/rad/s
Ra Resistance of the armature 0.275 Ω
RL Resistance of the load 8 Ω
J Inertia 6.53 kg m2

R Radio of the blade 3.2 m
ρ Density of the air 1.223 kg/m3

K f Friction coefficient 0.025 N m/rad/s
[c1, c2, c3] Cp constants [0.73, 151, 0.58]
[c4, c5, c6] Cp constants [0.002, 2.14, 13.2, 18.4]
[c7, c8, c9] Cp constants [18.4,−0.02,−0.003]
[Kθ, Tθ] Pitch actuator constants [0.15, 2]

3. RL-Inspired Controller

The reinforcement learning approach consists of an environment, an agent and an interpreter.
The agent, based on the state perceived by the interpreter st and the previous rewards provided by
the interpreter r1...t, selects the best action to be carried out. This action, at, produces an effect on the
environment. This fact is observed by the interpreter who provides information to the agent about
the new state, st+1, and the reward of the previous action, rt+1, closing the loop [38,39]. Some authors
consider that the interpreter is embedded in either the environment or the agent; in any case, the function
of the interpreter is always present.

Discrete reinforcement learning can be expressed as follows [40]:

• S is a finite set of states perceived by the interpreter. This set is made with variables of the
environment, which must be observable by the interpreter and may be different to the state
variables of the environment.

• A is a finite set of actions to be conducted by the agent.
• st is the state at t
• at is the action performed by the agent when the interpreter perceives the state st

• rt+1 is the reward received after action at is carried out
• st+1 is the state after action at is carried out
• The environment or world is a Markov process: MDP = 〈s0, a0, r1, s1, a1, r2, s2, a2 . . .〉

• π : S ×A→ [0, 1] is the policy; this function provides the probability of selection of an action a
for every pair (s, a)

• pa
ss′ = Pr

{
st+1 = s′

∣∣∣st = s∧ at = a
}

is the probability that a state changes from s to s′ with action a
• pπ(s′, a′) is the probability of selecting action a′ at state s′ under policy π
• ra

s = E
{
rt+1

∣∣∣st = s∧ at = a
}

is the expected one-step reward
• Qπ

(s,a)
= ra

s + γ
∑

s′ pa
ss′

∑
a′ pπ(s′, a′)Qπ

(s′,a′)
is the expected sum of discounted rewards

The scheme of the designed controller inspired by this RL approach is presented in Figure 1. It is
composed by a state estimator, a reward calculator, a policy table, an actuator, and a method to update

Appl. Sci. 2020, 10, 7462 5 of 22

the policy. The state estimator receives the output power error (Perr,), defined as the difference between
the rated power Pre f and the current output power Pout, and its derivative,

.
Perr. These signals are

discretized and define the state st ∈ S, where t is the current time. The interpreter is implemented
by the state estimator and the reward calculator. The agent includes the policy, the policy update
algorithm and the actuator. Both interpreter and agent form the controller (Figure 1).Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 22

Figure 1. Scheme of the reinforcement learning (RL) controller.

The policy is defined as a function : → which assigns an action ∈ to each state in .
This action is selected in a way that maximizes the long-term expected reward. The actuator
transforms the discrete action into a control signal for the pitch θ in the range [0, /2]. Each
time an action is executed, in the next iteration, the reward calculator observes the new and
and calculates a reward/penalty for action . The policy update algorithm uses this reward to
modify the policy for the state .

The policy has been implemented as a table (,): × → R together with a function : → .
The table relates each pair (,) ∈ × with a real number that represents an estimation of the long-
term expected reward, that is, the one that will be received when action is executed in the state ,
also known as . The estimate depends on the policy update algorithm. The table has s rows (states)
and a columns (actions). Given a state , the function searches for the action with the maximum
value of in the table.

3.1. Policy Update Algorithm

The policy update algorithm calculates the estimate corresponding to the previous pair (,) ∈× of the (,) each control cycle. At , the last state and action, that is, (,), are updated
by the policy function , using the previous estimation of the long-term expected reward (,)
and the current reward , Equation (7).

(,)(): = (,)(), , … (7)

Once the table is updated, the table is searched for the action that maximizes the reward,
Equation (8): (): = arg (,)() (8)

The different policy update algorithms that have been implemented and compared in the
experiments are the following

i. One-reward (OR), the last one received. As it only takes into account the last reward (smallest
memory), it may be very useful when the system to be controlled changes frequently, Equation
(9) : (,)(): = (9)

Policy : ×

State
estimator

 +−

Policy
update

algorithm

Actuator

Reward
calculator

 { , , }

Interpreter Agent Environment

Figure 1. Scheme of the reinforcement learning (RL) controller.

The policy is defined as a function π : S→ A which assigns an action at ∈ A to each state in
S. This action at is selected in a way that maximizes the long-term expected reward. The actuator
transforms the discrete action at into a control signal for the pitch θre f in the range [0,π/2]. Each time

an action is executed, in the next iteration, the reward calculator observes the new Perr and
.
Perr and

calculates a reward/penalty rt for action at−1. The policy update algorithm uses this reward to modify
the policy for the state st−1.

The policy has been implemented as a table Tπ
(s,a)

: S×A→ R together with a function fa : S→ A .

The table relates each pair (s, a) ∈ S × A with a real number that represents an estimation of the
long-term expected reward, that is, the one that will be received when action a is executed in the state s,
also known as Q. The estimate depends on the policy update algorithm. The table has s rows (states)
and a columns (actions). Given a state s, the function fa searches for the action with the maximum
value of Q in the table.

3.1. Policy Update Algorithm

The policy update algorithm calculates the estimate corresponding to the previous pair (s, a) ∈ S×A
of the Tπ

(s,a)
each control cycle. At ti, the last state and action, that is, (st−1, at−1), are updated by the

policy function fπ, using the previous estimation of the long-term expected reward Tπ
(st−1,at−1)

and the
current reward rt, Equation (7).

Tπ
(st−1,at−1)

(ti) := fπ
(
Tπ
(st−1,at−1)

(ti−1), rt, . . .
)

(7)

Once the table Tπ is updated, the table is searched for the action that maximizes the
reward, Equation (8):

fa(st) := arg
a

MAX
(
Tπ
(st,a)

(ti)
)

(8)

The different policy update algorithms fπ that have been implemented and compared in the
experiments are the following

Appl. Sci. 2020, 10, 7462 6 of 22

i. One-reward (OR), the last one received. As it only takes into account the last reward (smallest
memory), it may be very useful when the system to be controlled changes frequently, Equation (9)

OR : Tπ
(st−1,at−1)

(ti) := rt (9)

ii. Summation of all previous rewards (SAR). It may cause an overflow in the long term, that
could be solved if the values are saturated to be maintained within some limits, Equation (10)

SAR : Tπ
(st−1,at−1)

(ti) := Tπ
(st−1,at−1)

(ti−1) + rt (10)

iii. Mean of all previous rewards (MAR). This policy gives more opportunities to not yet selected
actions than SAR, especially when there are many rewards with the same sign, Equation (11)

MAR : Tπ
(st−1,at−1)

(ti) :=
1
i

[
Tπ
(st−1,at−1)

(ti−1) + rt

]
(11)

iv. Only learning with learning rate (OL-LR). It considers a percentage of all previous rewards,
Equation (12), given by the learning rate parameter α ∈ R [0, 1].

OL− LR : Tπ
(st−1,at−1)

(ti) := Tπ
(st−1,at−1)

(ti−1) + α·rt (12)

v. Learning and forgetting with learning rate (LF-LR). The previous methods do not forget any
previous reward; this may be effective for steady systems but for changing models it might be
advantageous to forget some previous rewards, Equation (13). The forgetting factor is modelled
as the complementary leaning rate (1− α).

LF− LR : Tπ
(st−1,at−1)

(ti) := (1− α)Tπ
(st−1,at−1)

(ti−1) + α·rt (13)

vi. Q-learning (QL). The discount factor, γ ∈ R [0, 1] is included in the policy function,
Equations (14) and (15).

amax = arg
a

MAX
(
Tπ
(st,a)

(ti−1)
)
, (14)

QL : Tπ
(st−1,at−1)

(ti) = (1− α)·Tπ
(st−1,at−1)

(ti−1) + α
[
rt − γ·Tπ(st−1,amax)

(ti−1)
]

(15)

3.2. Exploring Reward Strategies

Once the table Tπ and the function fa are implemented, and a policy update algorithm fπ is selected,
it is necessary to define the reward strategy of the reinforcement learning procedure. Although so far
the definition of the policy update algorithm is general, the design of the rewards and punishments
requires expert knowledge about the specific system.

In this work the target is to stabilize the output power of the WT around it nominal value thus
reducing the error between the output power and the rated power. The error will then be the key to
define the reward.

3.2.1. Only Positive (O-P) Reward Strategies

The most intuitive approach seems to be rewarding the relative position of the system output to
the rated (reference) value. The closer the output to the desired value, the bigger the reward. However,
considering the distance (absolute value of the error), the reward grows with the error. To avoid this

Appl. Sci. 2020, 10, 7462 7 of 22

problem, a maximum error is defined, PerrMAX , and the absolute error is subtracted from it. This is
called “Position Reward Strategy” (PRS), Equation (16).

PRS : rti = PerrMAX −

∣∣∣Perr(ti)
∣∣∣ (16)

This strategy only provides positive rewards and no punishments. Thus it belongs to the category
only positive (O-P) reinforcement. As it will be seen in the results section, this is the cause of its lack of
convergence when individually applied. The main drawback of O-P rewards is that the same actions
are selected repeatedly, and many others are not explored. This means that the optimal actions are
rarely visited. To solve it, exploration can be externally forced by greedy-methods [40] or O-P rewards
can be combined with positive-negative reinforcement (P-N rewards).

To illustrate the problem, let Tπ
(s,a)

be initialized to 0 for all the states and actions,

Tπ
(s,a)

(t0) = 0, ∀(s, a). At t0 the system is in the state s0 = s. Since all actions have the same
value in the table, any action a0 = as0 is at random selected. At the next control time t1 the state is
s1, which can be different or equal to s0. The reward received is r1 > 0. The policy update algorithm
modifies the value of the table associated to the previous pair (state, action) Tπ

(s0,a0)
(t1) = fπ(r1) > 0.

Now a new action a1 associated with state s1 must be selected. If s1 , s0 the action is randomly selected
again because all the actions in the row have the value 0. However, if the state is the same as the
previous one, the selected action is the same as in t0, a1 = a0 = as0 because fπ(r1) > 0 is the maximum
value of the row. In that case, at the next control time t2 the table is updated Tπ

(s0,a0)
(t2) = fπ(r1, r2).

With this O-P rewards this value always tends to be greater than 0, forcing the same actions to be
selected. Only some specific QL configurations may give negative values. This process is repeated
every control period. If the state action is different from all previous states, a new cell in the table is
populated. Otherwise, the selected action will be the first action selected in that state.

If the initialization of the table Tπ
(s,a)

is high enough (regarding the rewards), we can ensure that all
actions will be visited at least once for OR, MAR and QL update policies. This can be a solution if the
system is stationary, because the best action for each state does not change, so that once all the actions
have been tested, the optimum one has necessarily been found. However, if the system is changing this
method is not enough. In these cases, ε-greedy methods have shown successful results [40]. In each
control period, the new action is randomly selected with a probability ε (forced exploration) or selected
from the table Tπ

(s,a)
with a probability (1− ε) (exploitation).

Another possible measure that can be used with the O-P strategy to calculate the reward is the
previous MSE. In this case, the reward is calculated by applying a time window to capture the errors
prior to the current moment. We have called this strategy “MSE reward strategy” (MSE-RS) and it is
calculated by Equation (17):

MSE−RS : rti =
1√

1
Tw

∑i
j=i−k

[
Perr

(
t j
)2

Ts j

] (17)

where Tw is the time length window; Ts j is the variable step size at t j, and k is calculated so ti − ti−k = Tw.
As it may be observed, greater errors will produce smaller rewards.

In a similar way it is possible to use the mean value, “Mean reward strategy” (Mean-RS), that is
defined as Equation (18),

Mean−RS : rti =
1∣∣∣∣ 1

Tw

∑i
j=i−k

[
Perr

(
t j
)
Ts j

]∣∣∣∣ (18)

In the results section it will be shown how the Mean-RS strategy reduces the mean of the output
error and cuts down the error when it is combined with a P-N reward

Appl. Sci. 2020, 10, 7462 8 of 22

3.2.2. Positive Negative (P-N) Reward Strategies

Unlike O-P reinforcement, P-N reward strategies encourage the natural exploration of actions that
enable convergence of learning. The positive and negative rewards compensate the values of the table
Tπ
(s,a)

, which makes it easier to carry out different actions even if the states are repeated. An advantage
of natural exploration over ε-greedy methods is that their behavior is more deterministic. This provides
more repeatable results with fewer iterations. However, the disadvantage is that if rewards are not
well balanced, the exploration may be insufficient.

To ensure that the rewards are well balanced, it is helpful to calculate the rewards with some
measure of the error variance. PRS, MSE-RS, Mean-RS perform an error measurement in a specific
period of time. They do provide neither a measure of the variation nor how quickly its value changes.
A natural evolution of PRS is to use speed rather than position to measure whether we are getting
closer to or away from rated power and how fast we are doing so. We call it “velocity reward strategy”
(VRS), Equations (19) and (20).

rv =

 −
.
Perr(ti) Perr(ti) > 0

.
Perr(ti) Perr(ti) ≤ 0

, (19)

VRS : rti =

−rv sgn
(.
Perr(ti)

)
, sgn

(.
Perr(ti − 1)

)
∧

∣∣∣∣ .
Perr(ti)

∣∣∣∣ < ∣∣∣∣ .
Perr(ti − 1)

∣∣∣∣
rv otherwise

(20)

The calculation is divided into two parts. First, rv is calculated to indicate whether we are getting
closer to or away from the nominal power, Equation (19). If the error is positive and decreases, we are
getting closer to the reference. The second part is to detect when the error changes sign and the new
absolute error is less than the previous one. It would be a punished action according to Equation (19)
but when this case is detected, the punishment becomes a reward, Equation (20).

A change in the MSE-RS can also be measured as Equation (17). This produces a new P-N reward,
the ∆MSE-RS, which is calculated by Equation (21):

∆MSE−RS : rti =

√√√√
1

Tw

i−1∑
j=i−1−k

[
Perr

(
t j
)2

Ts j

]
−

√√√√
1

Tw

i∑
j=i−k

[
Perr

(
t j
)2

Ts j

]
(21)

Comparing Equation (17) and Equation (21) it is possible to observe how the reward is calculated
by subtracting the inverse of MSE-RS at ti from the inverse of MSE-RS at ti−1. In this way, if the MSE is
reduced, the reward is positive; otherwise it is negative.

Similar to MSE, a P-N reward strategy can be obtained based on the mean value of the error.
It is calculated with Equation (22) and is called ∆Mean−RS.

∆Mean−RS : rti =

∣∣∣∣∣∣∣∣ 1
Tw

i−1∑
j=i−1−k

[
Perr

(
t j
)
Ts j

]∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣ 1
Tw

i∑
j=i−k

[
Perr

(
t j
)
Ts j

]∣∣∣∣∣∣∣∣ (22)

As will be shown in the results, the ∆Mean−RS improve the mean value of the error compared to
other reward strategies.

In addition to these P-N rewards, it is possible to define new rewards strategies by combining O-P
with P-N rewards, such as PRS·VRS. However, the combination of P-N rewards between them does
not generally provide better results; even in the same cases this combination can produce an effective
O-P reward if they always have the same sign.

Appl. Sci. 2020, 10, 7462 9 of 22

4. Simulation Results and Discussion

An in-depth analysis of the performance of the RL controller under different configurations
and reward strategies has been carried out. The algorithm has been coded by the authors using
Matlab/Simulink software. The duration of each simulation is 100 s. To reduce the discretization error,
a variable step size has been used for simulations, with a maximum step size of 10 ms. The control
sampling period Tc has been set to 100 ms. In all the experiments, the wind speed is randomly
generated between 11.5 m/s and 14 m/s.

For comparison purposes, a PID is also designed with the same goal of stabilizing the output
power around the rated value of the wind turbine. Thus, the input of the PID regulator is the output
power and its output is the pitch angle reference. In order to make a fair comparison, the PID output
has been scaled to adjust its range to [0, π/2] rad and it has been also biased by the term π/4. The output
of the PID is saturated for values below 0◦ and above 90◦. The parameters of the PID have been tuned
by trial and error, and they have been set to KP = 0.9, KD = 0.2 and KI = 0.5.

Figure 2 compares the power output, the generator torque and the pitch signal obtained with
different control strategies. The blue line represents the output power when the angle of the blades
is 0◦, that is, the wind turbine collects the maximum energy from the wind. As you would expect,
this action provides maximum power output. The red line represents the opposite case, the pitch angle
is set to 90◦ (feather position). In this position, the blades offer minimal resistance to the wind, so the
energy extracted is also minimal. The pitch angle reference values are fixed for the open loop system
in both cases, without using any external controller. In a real wind turbine, there is a controller to
regulate the current of the blade rotor in order to adjust the pitch angle. In our work this is simulated
by Equation (5). The yellow line is the output obtained with the PID, the purple line when the RL
controller is used, and the green is the rated power. In this experiment, the policy update algorithm is
SAR and the reward strategy is VRS. It is observed how the response of the RL controller is much better
than that of the PID, with smaller error and less variation. As expected, the pitch signal is smoother
with the PID regulator than with the RL controller. However, as a counterpart, the PID reacts slower,
producing bigger overshoot and longer stabilization time of the power output.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 22

action provides maximum power output. The red line represents the opposite case, the pitch angle is
set to 90° (feather position). In this position, the blades offer minimal resistance to the wind, so the
energy extracted is also minimal. The pitch angle reference values are fixed for the open loop system
in both cases, without using any external controller. In a real wind turbine, there is a controller to
regulate the current of the blade rotor in order to adjust the pitch angle. In our work this is simulated
by Equation (5). The yellow line is the output obtained with the PID, the purple line when the RL
controller is used, and the green is the rated power. In this experiment, the policy update algorithm
is SAR and the reward strategy is VRS. It is observed how the response of the RL controller is much
better than that of the PID, with smaller error and less variation. As expected, the pitch signal is
smoother with the PID regulator than with the RL controller. However, as a counterpart, the PID
reacts slower, producing bigger overshoot and longer stabilization time of the power output.

Figure 2. Comparison of power output (up-left), generator torque (up-right) and pitch angle, for
proportional-integral-derivative (PID) and different reinforcement learning (RL) control strategies.

Several experiments have been carried out comparing the performance of the RL controller when
using different policy update algorithms and reward strategies. The quantitative results are
presented in Tables 2–4 and confirm the graphical results of Figure 2. These data were extracted at
the end of iteration 25. The reward window was set to 100 ms. In these tables, the best results per
column (policy) have been boldfaced and the best results per row (reward) have been underlined.

Table 2. MSE [W] for different policy update algorithms and reward strategies.

 Policy Update
Reward OR SAR MAR OL-LR LF-LR QL

PRS 402.86 407.59 403.22 404.11 402.28 406.53
VRS 306.71 265.62 271.56 266.37 281.39 287.83

MSE-RS 405.24 407.81 403.03 403.22 405.88 405.43
MEAN-RS 401.07 402.86 404.10 405,73 401.63 405.32

To
rq

ue
[N

m
]

0 10 20 30 40 50 60 70 80 90 100
t[s]

0

10

20

30

40

50

60

70

80

90

100
pitch value

PID
RL

Figure 2. Comparison of power output (up-left), generator torque (up-right) and pitch angle,
for proportional-integral-derivative (PID) and different reinforcement learning (RL) control strategies.

Appl. Sci. 2020, 10, 7462 10 of 22

Several experiments have been carried out comparing the performance of the RL controller when
using different policy update algorithms and reward strategies. The quantitative results are presented
in Tables 2–4 and confirm the graphical results of Figure 2. These data were extracted at the end of
iteration 25. The reward window was set to 100 ms. In these tables, the best results per column (policy)
have been boldfaced and the best results per row (reward) have been underlined.

Table 2. MSE [W] for different policy update algorithms and reward strategies.

Policy Update

Reward OR SAR MAR OL-LR LF-LR QL

PRS 402.86 407.59 403.22 404.11 402.28 406.53
VRS 306.71 265.62 271.56 266.37 281.39 287.83

MSE-RS 405.24 407.81 403.03 403.22 405.88 405.43
MEAN-RS 401.07 402.86 404.10 405,73 401.63 405.32
∆MSE-RS 308.49 270.21 273.08 274.71 282.84 274.33

∆MEAN-RS 307.50 272.93 274.47 277.17 287.18 284.73

PID 394.09

Table 3. Output power mean [kW] for different policy update algorithms and reward strategies.

Policy Update

Reward OR SAR MAR OL-LR LF-LR QL

PRS 6.80 6.79 6.80 6.80 6.80 6.79
VRS 7.22 7.06 7.13 7.09 7.17 7.18

MSE-RS 6.79 6.79 6.80 6.80 6.79 6.79
MEAN-RS 6.80 6.80 6.80 6.79 6.80 6.79
∆MSE-RS 7.21 7.06 7.07 7.04 7.16 7.14

∆MEAN-RS 7.21 7.05 7.12 7.03 7.17 7.16

PID 7.25

Table 4. Variance [kW] for different policy update algorithms and reward strategies.

Policy Update

Reward OR SAR MAR OL-LR LF-LR QL

PRS 123 126 123 123 123 125
VRS 193 125 152 137 156 174

MSE_RS 124 124 123 123 124 124
MEAN_RS 122 123 124 124 122 124
∆MSE-RS 183 127 130 122 159 150

∆MEAN-RS 180 124 149 121 168 165

PID 273

The smallest MSE error is obtained by combining SAR and VRS. Overall, SAR provides the best
results, closely followed by MAR and OL-LR. As expected, the worst results are produced by O-R,
this can be explained because it only considers the last reward, which limits the learning capacity.
For almost all policy update algorithms, the MSE is lower when VRS is applied; the only exception is
QL, which performs better with ∆MSE-RS.

Another interesting result is that the performance of O-P rewards is much worse than for P-N
rewards. The reason may be that exploration with O-P rewards is very low, and the best actions for
many of the states are not exploited. The exploration can be increased by changing the start of the
Qtable. Finally, the P-N reward provides better performance than the PID even with OR.

Table 3 shows the mean value of the power output obtained by these experiments. The best
value is obtained by combining OL-LR and ∆MEAN-RS. OL-LR is the best policy update followed by
SAR. O-R again provides the worst results. In this case, the best reward strategies are ∆MEAN-RS
and ∆MSE-RS. This may be because the mean value measurement is intrinsically considered in the
reward calculation.

Appl. Sci. 2020, 10, 7462 11 of 22

Table 4 presents the variance of the power output in the previous experiments. Unlike Table 2,
in general, N-P rewards produce worse results than O-P rewards. This is logical because N-P rewards
produce more change in the selected actions and a more varying output, therefore more variation.
However, it is notable that the combination of VRS and SAR provides a good balance between MSE,
mean value, and variance.

Figure 3 represents the evolution of the saturated error and its derivative, iteration by iteration.
In this experiment, the combination of SAR and ∆MSE-RS is used. In Figure 3 it is possible to observe
an initial peak of −1000 W in the error (horizontal axis). This error corresponds to an output power of
8 kW (the rate power is 7 kW). It has not been possible to avoid it at the initial stage with any of the
tested control strategies, even forcing the pitch to feather. A remarkable result is that, in each iteration,
the errors are merged and centered around a cluster. This explains how the mean value of the output
power approaches the nominal power over time.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 22

the errors are merged and centered around a cluster. This explains how the mean value of the output
power approaches the nominal power over time.

Figure 3. Distribution of the error when ∆Mean Squared Error Reward Strategy (∆MSE-RS) and
summation of all previous rewards (SAR) are applied for the first 25 iterations.

One way to measure the center of this cluster is to use the radius of the centroid of the error
calculated by the Equation (23):

= − + − (23)

Figures 4–9 show the evolution of the MSE (left) and the error centroid radius (right) for different
combinations of reward strategy (Section 3.2) and policy update algorithm (Section 3.1). In each
figure, the policy update algorithm is the same and a sweep of different reward strategies is
performed. Each reward strategy is represented by a different color: PRS in dark blue, VRS in red,
MSE-RS in yellow, Mean-RS in purple, ∆MSE-RS in green and ∆MEAN-RS in light blue. It is possible

dP
ow

Er
r[W

]

dP
ow

Er
r[W

]

-1500 -1000 -500 0 500 1000 1500
PowErr[W]

-1000

-800

-600

-400

-200

0

200

400

600

800

1000
Distribution of the power error. Iteration:10

-1500 -1000 -500 0 500 1000 1500
PowErr[W]

-1000

-800

-600

-400

-200

0

200

400

600

800

1000
Distribution of the power error. Iteration:15

dP
ow

Er
r[W

]

dP
ow

Er
r[W

]

Figure 3. Distribution of the error when ∆Mean Squared Error Reward Strategy (∆MSE-RS) and
summation of all previous rewards (SAR) are applied for the first 25 iterations.

Appl. Sci. 2020, 10, 7462 12 of 22

One way to measure the center of this cluster is to use the radius of the centroid of the error
calculated by the Equation (23):

Rc =

√(∑[
Pouti − Pre f

])2
+

(∑[.
Pouti −

.
Pre f

])2
(23)

Figures 4–9 show the evolution of the MSE (left) and the error centroid radius (right) for different
combinations of reward strategy (Section 3.2) and policy update algorithm (Section 3.1). In each figure,
the policy update algorithm is the same and a sweep of different reward strategies is performed.
Each reward strategy is represented by a different color: PRS in dark blue, VRS in red, MSE-RS in
yellow, Mean-RS in purple, ∆MSE-RS in green and ∆MEAN-RS in light blue. It is possible to observe
how, in general, the MSE and the radius decrease with time, although the ratio is quite different
depending on the combination of policy update algorithm and reward strategy that is used.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 22

to observe how, in general, the MSE and the radius decrease with time, although the ratio is quite
different depending on the combination of policy update algorithm and reward strategy that is used.

Figure 4. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy One-reward (OR).

Figure 5. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy SAR.

Figure 6. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy means of all previous rewards (MAR).

M
SE

Figure 4. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy One-reward (OR).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 22

to observe how, in general, the MSE and the radius decrease with time, although the ratio is quite
different depending on the combination of policy update algorithm and reward strategy that is used.

Figure 4. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy One-reward (OR).

Figure 5. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy SAR.

Figure 6. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy means of all previous rewards (MAR).

M
SE

Figure 5. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy SAR.

Appl. Sci. 2020, 10, 7462 13 of 22

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 22

to observe how, in general, the MSE and the radius decrease with time, although the ratio is quite
different depending on the combination of policy update algorithm and reward strategy that is used.

Figure 4. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy One-reward (OR).

Figure 5. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy SAR.

Figure 6. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy means of all previous rewards (MAR).

M
SE

Figure 6. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy means of all previous rewards (MAR).Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 22

Figure 7. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy only learning with learning rate (OL-LR).

Figure 8. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy Learning and forgetting with learning rate (LF-LR).

Figure 9. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy Q-learning (QL).

The MSE and radius decrease to a minimum, which is typically reached between iterations 5 and
10. The MSE minimum is greater than 260 and is 0 for the radius. The MSE minimum is high because,
as explained, the first peak in power output cannot be avoided, it cannot be improved by learning.
As expected, the smallest MSE errors correspond to the smallest values of the radius.

Another remarkable result is that iteration by iteration learning is not observed when O-P
rewards are applied. This is because, as stated, these strategies do not promote exploration and

Figure 7. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy only learning with learning rate (OL-LR).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 22

Figure 7. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy only learning with learning rate (OL-LR).

Figure 8. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy Learning and forgetting with learning rate (LF-LR).

Figure 9. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy Q-learning (QL).

The MSE and radius decrease to a minimum, which is typically reached between iterations 5 and
10. The MSE minimum is greater than 260 and is 0 for the radius. The MSE minimum is high because,
as explained, the first peak in power output cannot be avoided, it cannot be improved by learning.
As expected, the smallest MSE errors correspond to the smallest values of the radius.

Another remarkable result is that iteration by iteration learning is not observed when O-P
rewards are applied. This is because, as stated, these strategies do not promote exploration and

Figure 8. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy Learning and forgetting with learning rate (LF-LR).

Appl. Sci. 2020, 10, 7462 14 of 22

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 22

Figure 7. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy only learning with learning rate (OL-LR).

Figure 8. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy Learning and forgetting with learning rate (LF-LR).

Figure 9. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy Q-learning (QL).

The MSE and radius decrease to a minimum, which is typically reached between iterations 5 and
10. The MSE minimum is greater than 260 and is 0 for the radius. The MSE minimum is high because,
as explained, the first peak in power output cannot be avoided, it cannot be improved by learning.
As expected, the smallest MSE errors correspond to the smallest values of the radius.

Another remarkable result is that iteration by iteration learning is not observed when O-P
rewards are applied. This is because, as stated, these strategies do not promote exploration and

Figure 9. Evolution of the MSE (left) and error centroid radius (right) for different reward strategies
and update policy Q-learning (QL).

The MSE and radius decrease to a minimum, which is typically reached between iterations 5 and
10. The MSE minimum is greater than 260 and is 0 for the radius. The MSE minimum is high because,
as explained, the first peak in power output cannot be avoided, it cannot be improved by learning.
As expected, the smallest MSE errors correspond to the smallest values of the radius.

Another remarkable result is that iteration by iteration learning is not observed when O-P rewards
are applied. This is because, as stated, these strategies do not promote exploration and optimal
actions are not discovered. As will be shown in Section 4.3, this problem is solved when O-P rewards
are combined with P-N rewards. It can also be highlighted how all the P-N rewards converge at
approximately the same speed up to the minimum value, but this speed is different for each policy
update algorithm. From this point on, there are major differences between the P-N reward strategies.
For some policy update algorithms (OR, LF-LR, and QL), these differences increase over time, while for
the rest, they decrease.

The OR strategy is the one that converges the fastest to the minimum, but from this point, the MSE
grows and becomes more unstable. Therefore, it is not recommended in the long term. However,
SAR provides a good balance between convergence speed and stability. When it is used, the MSE for
the three P-N reward strategies converges to the same value.

As expected, OL-LR and SAR produce very similar results because the only difference between
them is that in the former, the rewards are multiplied by a constant. As the rewards are higher, the actions
are reinforced more and there are fewer jumps between actions. This can be seen in Figures 5 and 7.

4.1. Influence of the Reward Window

Several of the reward strategies calculate the reward applying a time window, that is, considering
N previous samples of the error signal, specifically: MSE-RS, MEAN-RS, ∆MSE-RS, ∆MEAN-RS.
To evaluate the influence of the size of this window, several experiments have been carried out varying
this parameter. In all of them, the policy update algorithm has been SAR.

Figure 10 (left) shows the results when ∆MSE-RS is applied and Figure 10 (right) for ∆MEAN-RS.
Each line is associated with a different window size and is represented in a different color. The reward
is a dimensionless parameter as table Tπ

(st, at)
is dimensionless. The legend shows the size of the

window in seconds. The value −1 indicates that all the previous values, from instant 0 of the simulation,
have been taken into account to obtain the reward. That is, the size of the window is variable and
increases in each control period, and covers from the start of the simulation to the current moment.
MSE-RS and MEAN-RS have not been included as, as explained, they are O-P reward strategies and
do not converge without forced exploration.

Appl. Sci. 2020, 10, 7462 15 of 22

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 22

optimal actions are not discovered. As will be shown in Section 4.3, this problem is solved when O-P
rewards are combined with P-N rewards. It can also be highlighted how all the P-N rewards converge
at approximately the same speed up to the minimum value, but this speed is different for each policy
update algorithm. From this point on, there are major differences between the P-N reward strategies.
For some policy update algorithms (OR, LF-LR, and QL), these differences increase over time, while
for the rest, they decrease.

The OR strategy is the one that converges the fastest to the minimum, but from this point, the
MSE grows and becomes more unstable. Therefore, it is not recommended in the long term. However,
SAR provides a good balance between convergence speed and stability. When it is used, the MSE for
the three P-N reward strategies converges to the same value.

As expected, OL-LR and SAR produce very similar results because the only difference between
them is that in the former, the rewards are multiplied by a constant. As the rewards are higher, the
actions are reinforced more and there are fewer jumps between actions. This can be seen in Figures 5
and 7.

4.1. Influence of the Reward Window

Several of the reward strategies calculate the reward applying a time window, that is,
considering N previous samples of the error signal, specifically: MSE-RS, MEAN-RS, ∆MSE-RS,
∆MEAN-RS. To evaluate the influence of the size of this window, several experiments have been
carried out varying this parameter. In all of them, the policy update algorithm has been SAR.

Figure 10 (left) shows the results when ∆MSE-RS is applied and Figure 10 (right) for ∆MEAN-
RS. Each line is associated with a different window size and is represented in a different color. The
reward is a dimensionless parameter as table (,) is dimensionless. The legend shows the size of
the window in seconds. The value −1 indicates that all the previous values, from instant 0 of the
simulation, have been taken into account to obtain the reward. That is, the size of the window is
variable and increases in each control period, and covers from the start of the simulation to the current
moment. MSE-RS and MEAN-RS have not been included as, as explained, they are O-P reward
strategies and do not converge without forced exploration.

Figure 10. Evolution of the MSE for ∆MSE-RS (left) and ∆MEAN-RS (right) and different temporal
window.

In general, a small window size results in a faster convergence to the minimum, but if the size is
too small it can cause oscillations after the absolute minimum. This happens with a window of 0.01s,
the MSE oscillates and is even less stable for ∆MEAN-RS. A small window size produces noisy
rewards. This parameter seems to be related to the control period; a size smaller than the control
period produces oscillations.

For the ∆MSE-RS strategy, the convergence speed decreases with the size of the window up to 1
s. For smaller window sizes it does not converge. This can be explained as if the window is longer
than the control period, the window can be divided into two parts: the value of a control period

0 5 10 15 20 25
Iteration

240

260

280

300

320

340

360

380

400

420
Evolution of the MSE

0.01
0.1
1
10
20
50
-1

0 5 10 15 20 25
Iteration

250

300

350

400
Evolution of the MSE

0.01
0.1
1
10
20
50
-1

Figure 10. Evolution of the MSE for ∆MSE-RS (left) and ∆MEAN-RS (right) and different
temporal window.

In general, a small window size results in a faster convergence to the minimum, but if the size
is too small it can cause oscillations after the absolute minimum. This happens with a window of
0.01s, the MSE oscillates and is even less stable for ∆MEAN-RS. A small window size produces noisy
rewards. This parameter seems to be related to the control period; a size smaller than the control
period produces oscillations.

For the ∆MSE-RS strategy, the convergence speed decreases with the size of the window up to 1 s.
For smaller window sizes it does not converge. This can be explained as if the window is longer than
the control period, the window can be divided into two parts: the value of a control period preceding
the end of the Tw2 window, and the remaining part from the beginning of the Tw1 window (Figure 11).
An action performed at ti−1 produces an effect that is evaluated when the reward is calculated at ti.
When the size of the window grows during the control period, the Tw1 part also grows, but Tw2 remains
invariant. To produce positive rewards, it is necessary to reduce the MSE, therefore, during Tw2,
the increases in Tw1 should be compensated. A larger Tw1 would give a larger accumulated error in
this part, which would be more difficult to compensate during Tw2 since only the squared error can be
positive. It can then be concluded that the optimal window size for ∆MSE-RS is the control period,
in this case, 100 ms.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 22

preceding the end of the Tw2 window, and the remaining part from the beginning of the Tw1 window
(Figure 11). An action performed at produces an effect that is evaluated when the reward is
calculated at . When the size of the window grows during the control period, the Tw1 part also
grows, but Tw2 remains invariant. To produce positive rewards, it is necessary to reduce the MSE,
therefore, during Tw2, the increases in Tw1 should be compensated. A larger Tw1 would give a larger
accumulated error in this part, which would be more difficult to compensate during Tw2 since only
the squared error can be positive. It can then be concluded that the optimal window size for ∆MSE-
RS is the control period, in this case, 100 ms.

Figure 11. Reward time window regarding the control period.

The behavior of ∆MEAN-RS with respect to the size of the window is similar up to a size of
around 20 s; from this value increasing the window size accelerates the convergence and decreases
the MSE. This is because a larger window size implies a longer Tw1 part (Figure 11). However, unlike
∆MSE-RS, a longer Tw1 produces less accumulated error in Tw1 since, in this case, the positive errors
compensate for the negative ones, and the accumulated error tends to 0. Therefore, Tw2 has a greater
influence on the window, and learning is faster.

Figure 12 shows the variation of the MSE with the size of the reward window, at iteration 5. It is
possible to observe how the MSE grows until the size of the window is 1 s, decreases until a size
around 10 s, and then it grows again until around 25 s, which continues to grow for ∆MSE-RS and
decreases for ∆MEAN-RS. The numerical values of these local minima and maxima are related to the
duration of the initial peak (Figure 2). The O-P rewards have also been represented with different
reward windows. It is possible to observe how for long windows, the ∆MSE-RS tends to behave like
the O-P reward strategies and reaches the same values.

Figure 12. Variation of the MSE with the size of the reward window for different reward strategies.

4.2. Influence of the Size of the Reward

Up to this subsection, the reward mechanism provides a variable size reward/punishment
depending on how good the previous action was. Better/worse actions give greater positive/negative

Figure 11. Reward time window regarding the control period.

The behavior of ∆MEAN-RS with respect to the size of the window is similar up to a size of around
20 s; from this value increasing the window size accelerates the convergence and decreases the MSE.
This is because a larger window size implies a longer Tw1 part (Figure 11). However, unlike ∆MSE-RS,
a longer Tw1 produces less accumulated error in Tw1 since, in this case, the positive errors compensate
for the negative ones, and the accumulated error tends to 0. Therefore, Tw2 has a greater influence on
the window, and learning is faster.

Figure 12 shows the variation of the MSE with the size of the reward window, at iteration 5. It is
possible to observe how the MSE grows until the size of the window is 1 s, decreases until a size around
10 s, and then it grows again until around 25 s, which continues to grow for ∆MSE-RS and decreases
for ∆MEAN-RS. The numerical values of these local minima and maxima are related to the duration of

Appl. Sci. 2020, 10, 7462 16 of 22

the initial peak (Figure 2). The O-P rewards have also been represented with different reward windows.
It is possible to observe how for long windows, the ∆MSE-RS tends to behave like the O-P reward
strategies and reaches the same values.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 22

preceding the end of the Tw2 window, and the remaining part from the beginning of the Tw1 window
(Figure 11). An action performed at produces an effect that is evaluated when the reward is
calculated at . When the size of the window grows during the control period, the Tw1 part also
grows, but Tw2 remains invariant. To produce positive rewards, it is necessary to reduce the MSE,
therefore, during Tw2, the increases in Tw1 should be compensated. A larger Tw1 would give a larger
accumulated error in this part, which would be more difficult to compensate during Tw2 since only
the squared error can be positive. It can then be concluded that the optimal window size for ∆MSE-
RS is the control period, in this case, 100 ms.

Figure 11. Reward time window regarding the control period.

The behavior of ∆MEAN-RS with respect to the size of the window is similar up to a size of
around 20 s; from this value increasing the window size accelerates the convergence and decreases
the MSE. This is because a larger window size implies a longer Tw1 part (Figure 11). However, unlike
∆MSE-RS, a longer Tw1 produces less accumulated error in Tw1 since, in this case, the positive errors
compensate for the negative ones, and the accumulated error tends to 0. Therefore, Tw2 has a greater
influence on the window, and learning is faster.

Figure 12 shows the variation of the MSE with the size of the reward window, at iteration 5. It is
possible to observe how the MSE grows until the size of the window is 1 s, decreases until a size
around 10 s, and then it grows again until around 25 s, which continues to grow for ∆MSE-RS and
decreases for ∆MEAN-RS. The numerical values of these local minima and maxima are related to the
duration of the initial peak (Figure 2). The O-P rewards have also been represented with different
reward windows. It is possible to observe how for long windows, the ∆MSE-RS tends to behave like
the O-P reward strategies and reaches the same values.

Figure 12. Variation of the MSE with the size of the reward window for different reward strategies.

4.2. Influence of the Size of the Reward

Up to this subsection, the reward mechanism provides a variable size reward/punishment
depending on how good the previous action was. Better/worse actions give greater positive/negative

Figure 12. Variation of the MSE with the size of the reward window for different reward strategies.

4.2. Influence of the Size of the Reward

Up to this subsection, the reward mechanism provides a variable size reward/punishment
depending on how good the previous action was. Better/worse actions give greater positive/negative
rewards. In this section the case of all rewards and punishments having the same size is analyzed.
To do so, the P-N reward strategies are binarized, that is, the value +r is assigned if the reward is
positive and -r if it is negative. Several experiments have been carried out varying this parameter r
to check its influence. In all experiments the policy update algorithm is SAR and the window size
is 100 ms.

The results are shown in Figures 13–15, on the left the evolution of the MSE and on the right the
evolution of the variance. Each line represents a different size of reward with a color code. The legend
indicates the size of the reward. “Var” indicates that the reward strategy is not binarized and therefore
the size of the reward is variable.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 22

rewards. In this section the case of all rewards and punishments having the same size is analyzed. To
do so, the P-N reward strategies are binarized, that is, the value + r is assigned if the reward is positive
and -r if it is negative. Several experiments have been carried out varying this parameter r to check
its influence. In all experiments the policy update algorithm is SAR and the window size is 100 ms.

The results are shown in Figures 13–15, on the left the evolution of the MSE and on the right the
evolution of the variance. Each line represents a different size of reward with a color code. The legend
indicates the size of the reward. “Var” indicates that the reward strategy is not binarized and
therefore the size of the reward is variable.

Figure 13. Evolution of the MSE (left) and variance (right) for different reward sizes when velocity
reward strategy (VRS) is applied.

Figure 14. Evolution of the MSE (left) and variance (right) for different reward sizes when ∆MSE-RS
is applied.

M
SE

0 5 10 15 20 25
Iteration

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Va
ria

nc
e

105 Evolution of the Variance

1
2
5
10
20
50
Var

0 5 10 15 20 25
Iteration

260

280

300

320

340

360

380

400
Evolution of the MSE

1
2
5
10
20
50
Var

Figure 13. Evolution of the MSE (left) and variance (right) for different reward sizes when velocity
reward strategy (VRS) is applied.

Appl. Sci. 2020, 10, 7462 17 of 22

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 22

rewards. In this section the case of all rewards and punishments having the same size is analyzed. To
do so, the P-N reward strategies are binarized, that is, the value + r is assigned if the reward is positive
and -r if it is negative. Several experiments have been carried out varying this parameter r to check
its influence. In all experiments the policy update algorithm is SAR and the window size is 100 ms.

The results are shown in Figures 13–15, on the left the evolution of the MSE and on the right the
evolution of the variance. Each line represents a different size of reward with a color code. The legend
indicates the size of the reward. “Var” indicates that the reward strategy is not binarized and
therefore the size of the reward is variable.

Figure 13. Evolution of the MSE (left) and variance (right) for different reward sizes when velocity
reward strategy (VRS) is applied.

Figure 14. Evolution of the MSE (left) and variance (right) for different reward sizes when ∆MSE-RS
is applied.

M
SE

0 5 10 15 20 25
Iteration

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Va
ria

nc
e

105 Evolution of the Variance

1
2
5
10
20
50
Var

0 5 10 15 20 25
Iteration

260

280

300

320

340

360

380

400
Evolution of the MSE

1
2
5
10
20
50
Var

Figure 14. Evolution of the MSE (left) and variance (right) for different reward sizes when ∆MSE-RS
is applied.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 22

Figure 15. Evolution of the MSE (left) and variance (right) for different reward sizes when ∆Mean-RS
is applied.

It can be seen how, in all cases, the MSE is much better when the size of the reward is not
binarized. However, the variation is similar or even worse. It has already been explained how better
MSE performance typically leads to greater variance. Another interesting result is that the speed of
convergence does not depend on the size of the reward, all the curves provide similar results up to
the absolute minimum. However, from this point on, oscillations appear in the MSE and vary with
size.

The VSE reward strategy is the least susceptible to variations in reward size. For ∆MSE-RS, the
oscillations seem to depend on the size of the reward: the larger the size, the greater the oscillations;
however, its amplitude decreases with time. For ∆MEAN-RS this relationship is not so clear and,
what is worse, the amplitude of the oscillations seems to increase with time. Therefore, it is not
recommended to use a fixed reward size with ∆MSE-RS and ∆MEAN-RS, it is preferable to use a
variable reward size.

4.3. Combination of Individual Reward Strategies

As discussed above, O-P reward strategies do not converge due to the lack of exploration of the
entire space of possible actions. To solve this, ϵ-greedy methods can be applied [40] or they can be
combined with P-N reward strategies. This last option is explored in this section. Different
experiments have been carried out combining reward strategies O-P with P-N and their performance
is studied. In all experiments, the policy update algorithm is SAR and the window size is 100 ms.

Figure 16 shows the results of applying PRS (blue) and VRS (red), PRS ∙VRS (yellow) and
PRS+K∙VRS (purple), with K = 2. It is possible to see how the multiplication makes PRS converge.
However, this is not true with addition, as this operator cannot convert PRS to a P-N reward strategy
in all cases. It depends on the size of each individual reward and on the value of K. Therefore, the
addition operator will not be used from now on to combine the rewards. Another interesting result
is that the PRS∙VRS combination smoothens the VRS curve, the result converges at a slightly slower
speed but is more stable for iterations over 15. This combination presents less variance than VRS in
general.

Figure 15. Evolution of the MSE (left) and variance (right) for different reward sizes when ∆Mean-RS
is applied.

It can be seen how, in all cases, the MSE is much better when the size of the reward is not
binarized. However, the variation is similar or even worse. It has already been explained how better
MSE performance typically leads to greater variance. Another interesting result is that the speed of
convergence does not depend on the size of the reward, all the curves provide similar results up to the
absolute minimum. However, from this point on, oscillations appear in the MSE and vary with size.

The VSE reward strategy is the least susceptible to variations in reward size. For ∆MSE-RS,
the oscillations seem to depend on the size of the reward: the larger the size, the greater the oscillations;
however, its amplitude decreases with time. For ∆MEAN-RS this relationship is not so clear and,
what is worse, the amplitude of the oscillations seems to increase with time. Therefore, it is not
recommended to use a fixed reward size with ∆MSE-RS and ∆MEAN-RS, it is preferable to use a
variable reward size.

4.3. Combination of Individual Reward Strategies

As discussed above, O-P reward strategies do not converge due to the lack of exploration of the
entire space of possible actions. To solve this, ε-greedy methods can be applied [40] or they can be
combined with P-N reward strategies. This last option is explored in this section. Different experiments
have been carried out combining reward strategies O-P with P-N and their performance is studied.
In all experiments, the policy update algorithm is SAR and the window size is 100 ms.

Appl. Sci. 2020, 10, 7462 18 of 22

Figure 16 shows the results of applying PRS (blue) and VRS (red), PRS·VRS (yellow) and
PRS+K·VRS (purple), with K = 2. It is possible to see how the multiplication makes PRS converge.
However, this is not true with addition, as this operator cannot convert PRS to a P-N reward strategy in
all cases. It depends on the size of each individual reward and on the value of K. Therefore, the addition
operator will not be used from now on to combine the rewards. Another interesting result is that the
PRS·VRS combination smoothens the VRS curve, the result converges at a slightly slower speed but is
more stable for iterations over 15. This combination presents less variance than VRS in general.Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 22

Figure 16. Evolution of the MSE (left) and variance (right) for different combinations of position
reward strategy (PRS) and velocity reward strategy (VRS).

Figure 17 shows the results of MSE-RS (blue), MEAN-RS (red), MSE-RS∙VRS (yellow), Mean-RS ∙VRS (purple), and VRS (green). All strategies combined converge at roughly the same speed, slightly
slower than VRS. During iteration 10, the performance of VRS and MSE-RS∙VRS is similar; however,
Mean-RS∙VRS worsens its performance over VRS.

Figure 17. Evolution of the MSE (left) and variance (right) for combinations of MSE-RS, Mean-RS,
and VRS.

In the following experiment, the P-N ∆MSE-RS reward strategy is combined with each O-P
reward strategy. Figure 18 shows the results, PRS (dark blue), MSE-RS (red), ∆MSE-RS (purple),
PRS∙∆MSE-RS (green), MSE-RS∙∆MSE-RS (light blue) and Mean-RS∙∆MSE-RS (magenta). Again it is
possible to observe how all the combined strategies and ∆MSE-RS converge at the same speed until
iteration 5. From this point on ∆MSE-RS and PRS∙∆MSE-RS give smaller error MSE. On the other
hand, the variance decreases until iteration 5, after which it grows, although less for MSE-RS∙∆MSE-
RS and Mean-RS∙∆MSE-RS. Furthermore, PRS∙∆MSE-RS tends to be slightly smaller than ∆MSE-RS.

Va
ria

nc
e

0 5 10 15 20 25
Iteration

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3 105 Evolution of the Variance

MSE-RS
Mean-RS
VRS*MSE-RS
VRS*Mean-RS
VRS

Figure 16. Evolution of the MSE (left) and variance (right) for different combinations of position
reward strategy (PRS) and velocity reward strategy (VRS).

Figure 17 shows the results of MSE-RS (blue), MEAN-RS (red), MSE-RS·VRS (yellow), Mean-RS
·VRS (purple), and VRS (green). All strategies combined converge at roughly the same speed, slightly
slower than VRS. During iteration 10, the performance of VRS and MSE-RS·VRS is similar; however,
Mean-RS·VRS worsens its performance over VRS.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 22

Figure 16. Evolution of the MSE (left) and variance (right) for different combinations of position
reward strategy (PRS) and velocity reward strategy (VRS).

Figure 17 shows the results of MSE-RS (blue), MEAN-RS (red), MSE-RS∙VRS (yellow), Mean-RS ∙VRS (purple), and VRS (green). All strategies combined converge at roughly the same speed, slightly
slower than VRS. During iteration 10, the performance of VRS and MSE-RS∙VRS is similar; however,
Mean-RS∙VRS worsens its performance over VRS.

Figure 17. Evolution of the MSE (left) and variance (right) for combinations of MSE-RS, Mean-RS,
and VRS.

In the following experiment, the P-N ∆MSE-RS reward strategy is combined with each O-P
reward strategy. Figure 18 shows the results, PRS (dark blue), MSE-RS (red), ∆MSE-RS (purple),
PRS∙∆MSE-RS (green), MSE-RS∙∆MSE-RS (light blue) and Mean-RS∙∆MSE-RS (magenta). Again it is
possible to observe how all the combined strategies and ∆MSE-RS converge at the same speed until
iteration 5. From this point on ∆MSE-RS and PRS∙∆MSE-RS give smaller error MSE. On the other
hand, the variance decreases until iteration 5, after which it grows, although less for MSE-RS∙∆MSE-
RS and Mean-RS∙∆MSE-RS. Furthermore, PRS∙∆MSE-RS tends to be slightly smaller than ∆MSE-RS.

Va
ria

nc
e

0 5 10 15 20 25
Iteration

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3 105 Evolution of the Variance

MSE-RS
Mean-RS
VRS*MSE-RS
VRS*Mean-RS
VRS

Figure 17. Evolution of the MSE (left) and variance (right) for combinations of MSE-RS, Mean-RS,
and VRS.

In the following experiment, the P-N ∆MSE-RS reward strategy is combined with each O-P
reward strategy. Figure 18 shows the results, PRS (dark blue), MSE-RS (red), ∆MSE-RS (purple),
PRS·∆MSE-RS (green), MSE-RS·∆MSE-RS (light blue) and Mean-RS·∆MSE-RS (magenta). Again it is
possible to observe how all the combined strategies and ∆MSE-RS converge at the same speed until
iteration 5. From this point on ∆MSE-RS and PRS·∆MSE-RS give smaller error MSE. On the other hand,
the variance decreases until iteration 5, after which it grows, although less for MSE-RS·∆MSE-RS and
Mean-RS·∆MSE-RS. Furthermore, PRS·∆MSE-RS tends to be slightly smaller than ∆MSE-RS.

Appl. Sci. 2020, 10, 7462 19 of 22
Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 22

Figure 18. Evolution of the MSE (left) and variance (right) for combinations of PRS, MSE-RS, Mean-
RS, and ∆MSE-RS.

In this last experiment, the P-N ∆Mean-RS strategy is combined with each O-P strategy. Figure
19 shows the results, with PRS (dark blue), MSE-RS (red), ∆Mean-RS (purple), PRS∙∆Mean-RS (green),
Mean-RS∙∆MSE-RS (light blue) and Mean-RS∙∆Mean-RS (magenta). Again it is possible to observe
how all the combined strategies and ∆Mean-RS converge at the same speed until approximately
iteration 5, where PRS∙∆Mean-RS improves the MSE. The combination of these strategies provides a
better result than their individual application. Furthermore, the variance also decreases with
iterations. The combination of ∆Mean-RS with Mean-RS and MSE-RS only offers an appreciable
improvement in variance.

Figure 19. Evolution of the MSE (left) and variance (right) for combinations of PRS, MSE-RS, Mean-
RS and ∆Mean-RS.

Table 5 compiles the numerical results of the previous experiments. The KPIs have been
measured at iteration 25. The best MSE is obtained by the combination of PRS∙VRS and the best mean
value and variance by MSE-RS∙∆MSE-RS. In general, it is possible to observe how the combination
with PRS decreases the MSE and the combination with MEAN-RS and MSE-RS improves the mean
value and the variance.

Table 5. MSE, mean value and variance for different combinations of reward strategies.

 KPI

Reward
MSE
[W]

Mean
[kW]

Var
[kW]

PRS 404.10 6.80 124
MSE-RS 403.03 6.80 123

Va
ria

nc
e

0 5 10 15 20 25
Iteration

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4 105 Evolution of the Variance
PRS
MSE-RS
Mean-RS

Mean-RS
PRS* Mean-RS
MSE-RS* Mean-RS
Mean-RS* Mean-RS

Figure 18. Evolution of the MSE (left) and variance (right) for combinations of PRS, MSE-RS, Mean-RS,
and ∆MSE-RS.

In this last experiment, the P-N ∆Mean-RS strategy is combined with each O-P strategy.
Figure 19 shows the results, with PRS (dark blue), MSE-RS (red), ∆Mean-RS (purple), PRS·∆Mean-RS
(green), Mean-RS·∆MSE-RS (light blue) and Mean-RS·∆Mean-RS (magenta). Again it is possible to
observe how all the combined strategies and ∆Mean-RS converge at the same speed until approximately
iteration 5, where PRS·∆Mean-RS improves the MSE. The combination of these strategies provides a
better result than their individual application. Furthermore, the variance also decreases with iterations.
The combination of ∆Mean-RS with Mean-RS and MSE-RS only offers an appreciable improvement
in variance.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 22

Figure 18. Evolution of the MSE (left) and variance (right) for combinations of PRS, MSE-RS, Mean-
RS, and ∆MSE-RS.

In this last experiment, the P-N ∆Mean-RS strategy is combined with each O-P strategy. Figure
19 shows the results, with PRS (dark blue), MSE-RS (red), ∆Mean-RS (purple), PRS∙∆Mean-RS (green),
Mean-RS∙∆MSE-RS (light blue) and Mean-RS∙∆Mean-RS (magenta). Again it is possible to observe
how all the combined strategies and ∆Mean-RS converge at the same speed until approximately
iteration 5, where PRS∙∆Mean-RS improves the MSE. The combination of these strategies provides a
better result than their individual application. Furthermore, the variance also decreases with
iterations. The combination of ∆Mean-RS with Mean-RS and MSE-RS only offers an appreciable
improvement in variance.

Figure 19. Evolution of the MSE (left) and variance (right) for combinations of PRS, MSE-RS, Mean-
RS and ∆Mean-RS.

Table 5 compiles the numerical results of the previous experiments. The KPIs have been
measured at iteration 25. The best MSE is obtained by the combination of PRS∙VRS and the best mean
value and variance by MSE-RS∙∆MSE-RS. In general, it is possible to observe how the combination
with PRS decreases the MSE and the combination with MEAN-RS and MSE-RS improves the mean
value and the variance.

Table 5. MSE, mean value and variance for different combinations of reward strategies.

 KPI

Reward
MSE
[W]

Mean
[kW]

Var
[kW]

PRS 404.10 6.80 124
MSE-RS 403.03 6.80 123

Va
ria

nc
e

0 5 10 15 20 25
Iteration

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4 105 Evolution of the Variance
PRS
MSE-RS
Mean-RS

Mean-RS
PRS* Mean-RS
MSE-RS* Mean-RS
Mean-RS* Mean-RS

Figure 19. Evolution of the MSE (left) and variance (right) for combinations of PRS, MSE-RS, Mean-RS
and ∆Mean-RS.

Table 5 compiles the numerical results of the previous experiments. The KPIs have been measured
at iteration 25. The best MSE is obtained by the combination of PRS·VRS and the best mean value and
variance by MSE-RS·∆MSE-RS. In general, it is possible to observe how the combination with PRS
decreases the MSE and the combination with MEAN-RS and MSE-RS improves the mean value and
the variance.

In view of these results, it is possible to conclude that the combination of individual rewards of
O-P and P-N is beneficial since it converges learning by O-P rewards, without worsening the speed of
convergence and learning is more stable.

Appl. Sci. 2020, 10, 7462 20 of 22

Table 5. MSE, mean value and variance for different combinations of reward strategies.

KPI
Reward MSE [W] Mean [kW] Var [kW]

PRS 404.10 6.80 124
MSE-RS 403.03 6.80 123

MEAN_RS 404.81 6.80 124

VRS 272.90 7.08 115
∆MSE-RS 267.91 7.07 135

∆MEAN-RS 269.61 7.08 137

PRS·VRS 262.20 7.07 131
VRS·MSE-RS 265.50 7.05 127

VRS·MEAN-RS 270.30 7.04 117

PRS·∆MSE-RS 264.99 7.80 125
MSE-RS·∆MSE-RS 284.39 7.00 111

MEAN-RS·∆MSE-RS 274.10 7.03 118

PRS·∆MEAN-RS 266.61 7.04 119
MSE-RS·∆MEAN-RS 280.54 7.01 115
MEAN-RS·∆MEAN-RS 285.60 7.00 116

5. Conclusions and Future Works

In this work, a RL-inspired pitch control strategy of a wind turbine is presented. The controller
is composed by a state estimator, a policy update algorithm, a reward strategy, and an actuator.
The reward strategies are specifically designed to consider the energy deviation from the rated power
aiming to improve the efficiency of the WT.

The performance of the controller has been tested in simulation on a 7 kW wind turbine model
with varying different configuration parameters, especially those related to rewards. The RL-inspired
controller performance is compared to a tuned PID giving better results in terms of system response.

The relationship of the rewards with the exploration-exploitation dilemma and the ε-greedy
methods is studied. On this basis, two novel categories of reward strategies are proposed,
O-P (Only-Positive) and P-N (Positive-Negative) rewards. The performance of the controller has
been analyzed for different reward strategies and different policy update algorithms. The individual
behavior of these methods and their combination have also been studied. It has been shown that the
P-N rewards improve the learning convergence and the performance of the controller.

The influence of the control parameters and RL configuration on the turbine response has been
throughout analyzed and different conclusions regarding learning speed and convergence have been
drawn. It is worth noting the relationship between the size of the reward and the need for forced
exploration for the convergence of learning.

Some potential challenges may include to extend this proposal to design model-free general
purpose tracking controllers. Another research line would be to incorporate risk detection in the P-N
reward mechanisms to perform safe non-forced exploration for systems, which must fulfill safety
requirements during the learning process.

As other future works, it would be desirable to test the proposal in a real prototype of a wind
turbine. Also, it would be interesting to apply this control strategy to a larger turbine, and see if this
control action affects the stability of a floating offshore wind turbine.

Author Contributions: Conceptualization, J.E.S.-G. and M.S.; methodology, J.E.S.-G. and M.S.; software, J.E.S.-G.;
validation, J.E.S.-G.; formal analysis, J.E.S.-G.; investigation, J.E.S.-G. and M.S.; resources, J.E.S.-G. and M.S.;
data curation, J.E.S.-G.; writing—original draft preparation, J.E.S.-G. and M.S.; writing—review and editing,
J.E.S.-G. and M.S.; visualization, J.E.S.-G. and M.S.; supervision, J.E.S.-G. and M.S.; project administration, M.S.;
funding acquisition, M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Spanish Ministry of Science, Innovation and Universities
under MCI/AEI/FEDER Project number RTI2018-094902-B-C21.

Appl. Sci. 2020, 10, 7462 21 of 22

Acknowledgments: An earlier version of this paper was presented at (21st International Conference on Intelligent
Data Engineering and Automated Learning—IDEAL 2020) [36].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Our World in Data. 2020. Available online: https://ourworldindata.org/renewable-energy (accessed on
8 September 2020).

2. Mikati, M.; Santos, M.; Armenta, C. Electric grid dependence on the configuration of a small-scale wind and
solar power hybrid system. Renew. Energy 2013, 57, 587–593. [CrossRef]

3. Tomás-Rodríguez, M.; Santos, M. Modelling and control of floating offshore wind turbines. Rev. Iberoam.
Autom. Inf. Ind. 2019, 16, 381–390. [CrossRef]

4. Kim, D.; Lee, D. Hierarchical fault-tolerant control using model predictive control for wind turbine pitch
actuator faults. Energies 2019, 12, 3097. [CrossRef]

5. Bianchi, F.D.; De Battista, H.; Mantz, R.J. Wind Turbine Control Systems: Principles, Modelling and Gain
Scheduling Design; Springer: London, UK, 2006.

6. Salle, S.D.L.; Reardon, D.; Leithead, W.E.; Grilmble, M.J. Review of wind turbine control. Int. J. Control 1990,
52, 1295–1310. [CrossRef]

7. Acho, L. A proportional plus a hysteretic term control design: A throttle experimental emulation to wind
turbines pitch control. Energies 2019, 12, 1961. [CrossRef]

8. Astolfi, D.; Castellani, F.; Berno, F.; Terzi, L. Numerical and experimental methods for the assessment of
wind turbine control upgrades. Appl. Sci. 2018, 8, 2639. [CrossRef]

9. Liu, J.; Zhou, F.; Zhao, C.; Wang, Z. A PI-type sliding mode controller design for PMSG-based wind turbine.
Complexity 2019, 2019, 2538206. [CrossRef]

10. Nasiri, M.; Mobayen, S.; Zhu, Q.M. Super-twisting sliding mode control for gearless PMSG-based wind
turbine. Complexity 2019, 2019, 6141607. [CrossRef]

11. Colombo, L.; Corradini, M.L.; Ippoliti, G.; Orlando, G. Pitch angle control of a wind turbine operating above
the rated wind speed: A sliding mode control approach. ISA Trans. 2020, 96, 95–102. [CrossRef]

12. Yin, X.; Zhang, W.; Jiang, Z.; Pan, L. Adaptive robust integral sliding mode pitch angle control of an
electro-hydraulic servo pitch system for wind turbine. Mech. Syst. Signal Process. 2019, 133, 105704.
[CrossRef]

13. Bashetty, S.; Guillamon, J.I.; Mutnuri, S.S.; Ozcelik, S. Design of a Robust Adaptive Controller for the Pitch
and Torque Control of Wind Turbines. Energies 2020, 13, 1195. [CrossRef]

14. Rocha, M.M.; da Silva, J.P.; De Sena, F.D.C.B. Simulation of a fuzzy control applied to a variable speed wind
system connected to the electrical network. IEEE Latin Am. Trans. 2018, 16, 521–526. [CrossRef]

15. Rubio, P.M.; Quijano, J.F.; López, P.Z. Intelligent control for improving the efficiency of a hybrid
semi- submersible platform with wind turbine and wave energy converters. Rev. Iberoam. Autom.
Inf. Ind. 2019, 16, 480–491.

16. Marugán, A.P.; Márquez, F.P.G.; Perez, J.M.P.; Ruiz-Hernández, D. A survey of artificial neural network in
wind energy systems. Appl. Energy 2018, 228, 1822–1836. [CrossRef]

17. Asghar, A.B.; Liu, X. Adaptive neuro-fuzzy algorithm to estimate effective wind speed and optimal rotor
speed for variable-speed wind turbine. Neurocomputing 2018, 272, 495–504. [CrossRef]

18. Sierra-García, J.E.; Santos, M. Performance Analysis of a Wind Turbine Pitch Neurocontroller with
Unsupervised Learning. Complexity 2020, 2020, 4681767. [CrossRef]

19. Chavero-Navarrete, E.; Trejo-Perea, M.; Jáuregui-Correa, J.C.; Carrillo-Serrano, R.V.; Ronquillo-Lomeli, G.;
Ríos-Moreno, J.G. Hierarchical Pitch Control for Small Wind Turbines Based on Fuzzy Logic and Anticipated
Wind Speed Measurement. Appl. Sci. 2020, 10, 4592. [CrossRef]

20. Lotfy, M.E.; Senjyu, T.; Farahat, M.A.F.; Abdel-Gawad, A.F.; Lei, L.; Datta, M. Hybrid genetic algorithm
fuzzy-based control schemes for small power system with high-penetration wind farms. Appl. Sci. 2018, 8, 373.
[CrossRef]

21. Li, M.; Wang, S.; Fang, S.; Zhao, J. Anomaly Detection of Wind Turbines Based on Deep Small-World Neural
Network. Appl. Sci. 2020, 10, 1243. [CrossRef]

https://ourworldindata.org/renewable-energy
http://dx.doi.org/10.1016/j.renene.2013.02.018
http://dx.doi.org/10.4995/riai.2019.11648
http://dx.doi.org/10.3390/en12163097
http://dx.doi.org/10.1080/00207179008953597
http://dx.doi.org/10.3390/en12101961
http://dx.doi.org/10.3390/app8122639
http://dx.doi.org/10.1155/2019/2538206
http://dx.doi.org/10.1155/2019/6141607
http://dx.doi.org/10.1016/j.isatra.2019.07.002
http://dx.doi.org/10.1016/j.ymssp.2018.09.026
http://dx.doi.org/10.3390/en13051195
http://dx.doi.org/10.1109/TLA.2018.8327408
http://dx.doi.org/10.1016/j.apenergy.2018.07.084
http://dx.doi.org/10.1016/j.neucom.2017.07.022
http://dx.doi.org/10.1155/2020/4681767
http://dx.doi.org/10.3390/app10134592
http://dx.doi.org/10.3390/app8030373
http://dx.doi.org/10.3390/app10041243

Appl. Sci. 2020, 10, 7462 22 of 22

22. Wang, Z.; Hong, T. Reinforcement learning for building controls: The opportunities and challenges.
Appl. Energy 2020, 269, 115036. [CrossRef]

23. Khamparia, A.; Singh, K.M. A systematic review on deep learning architectures and applications. Expert Syst.
2019, 36, e12400. [CrossRef]

24. Zhang, Z.; Zhang, D.; Qiu, R.C. Deep reinforcement learning for power system applications: An overview.
CSEE J. Power Energy Syst. 2019, 6, 213–225.

25. Fernandez-Gauna, B.; Fernandez-Gamiz, U.; Grana, M. Variable speed wind turbine controller adaptation by
reinforcement learning. Integr. Comput.-Aided Eng. 2017, 24, 27–39. [CrossRef]

26. Fernandez-Gauna, B.; Osa, J.L.; Graña, M. Experiments of conditioned reinforcement learning in continuous
space control tasks. Neurocomputing 2018, 271, 38–47. [CrossRef]

27. Abouheaf, M.; Gueaieb, W.; Sharaf, A. Model-free adaptive learning control scheme for wind turbines with
doubly fed induction generators. IET Renew. Power Gener. 2018, 12, 1675–1686. [CrossRef]

28. Sedighizadeh, M.; Rezazadeh, A. Adaptive PID controller based on reinforcement learning for wind turbine
control. Proc. World Acad. Sci. Eng. Technol. 2008, 27, 257–262.

29. Saénz-Aguirre, A.; Zulueta, E.; Fernández-Gamiz, U.; Lozano, J.; Lopez-Guede, J.M. Artificial neural network
based reinforcement learning for wind turbine yaw control. Energies 2019, 12, 436. [CrossRef]

30. Saenz-Aguirre, A.; Zulueta, E.; Fernandez-Gamiz, U.; Ulazia, A.; Teso-Fz-Betono, D. Performance
enhancement of the artificial neural network–based reinforcement learning for wind turbine yaw control.
Wind Energy 2020, 23, 676–690. [CrossRef]

31. Kuznetsova, E.; Li, Y.F.; Ruiz, C.; Zio, E.; Ault, G.; Bell, K. Reinforcement learning for microgrid energy
management. Energy 2013, 59, 133–146. [CrossRef]

32. Tomin, N.; Kurbatsky, V.; Guliyev, H. Intelligent control of a wind turbine based on reinforcement learning.
In Proceedings of the 2019 16th Conference on Electrical Machines, Drives and Power Systems ELMA, Varna,
Bulgaria, 6–8 June 2019; pp. 1–6.

33. Hosseini, E.; Aghadavoodi, E.; Ramírez, L.M.F. Improving response of wind turbines by pitch angle controller
based on gain-scheduled recurrent ANFIS type 2 with passive reinforcement learning. Renew. Energy
2020, 157, 897–910. [CrossRef]

34. Chen, P.; Han, D.; Tan, F.; Wang, J. Reinforcement-based robust variable pitch control of wind turbines.
IEEE Access 2020, 8, 20493–20502. [CrossRef]

35. Zhao, H.; Zhao, J.; Qiu, J.; Liang, G.; Dong, Z.Y. Cooperative Wind Farm Control with Deep Reinforcement
Learning and Knowledge Assisted Learning. IEEE Trans. Ind. Inform. 2020, 16, 6912–6921. [CrossRef]

36. Sierra-García, J.E.; Santos, M. Wind Turbine Pitch Control First Approach based on Reinforcement Learning.
In Proceedings of the 21st International Conference on Intelligent Data Engineering and Automated
Learning—IDEAL Guimarães, Guimarães, Portugal, 4–6 November 2020.

37. Mikati, M.; Santos, M.; Armenta, C. Modeling and Simulation of a Hybrid Wind and Solar Power System for
the Analysis of Electricity Grid Dependency. Rev. Iberoam. Autom. Inf. Ind. 2012, 9, 267–281. [CrossRef]

38. Jiang, M.; Hai, T.; Pan, Z.; Wang, H.; Jia, Y.; Deng, C. Multi-agent deep reinforcement learning for multi-object
tracker. IEEE Access 2019, 7, 32400–32407. [CrossRef]

39. Santos, M.; López, V.; Botella, G. Dyna-H: A heuristic planning reinforcement learning algorithm applied to
role-playing game strategy decision systems. Knowl.-Based Syst. 2012, 32, 28–36. [CrossRef]

40. Sutton, R.S.; Barto, A.G. Reinforcement Learning an Introduction, 2nd ed.; The MIT Press: Cambridge, MA, USA,
2015; in progress.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apenergy.2020.115036
http://dx.doi.org/10.1111/exsy.12400
http://dx.doi.org/10.3233/ICA-160531
http://dx.doi.org/10.1016/j.neucom.2016.08.155
http://dx.doi.org/10.1049/iet-rpg.2018.5353
http://dx.doi.org/10.3390/en12030436
http://dx.doi.org/10.1002/we.2451
http://dx.doi.org/10.1016/j.energy.2013.05.060
http://dx.doi.org/10.1016/j.renene.2020.05.060
http://dx.doi.org/10.1109/ACCESS.2020.2968853
http://dx.doi.org/10.1109/TII.2020.2974037
http://dx.doi.org/10.1016/j.riai.2012.05.010
http://dx.doi.org/10.1109/ACCESS.2019.2901300
http://dx.doi.org/10.1016/j.knosys.2011.09.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Wind Turbine Model Description
	RL-Inspired Controller
	Policy Update Algorithm
	Exploring Reward Strategies
	Only Positive (O-P) Reward Strategies
	Positive Negative (P-N) Reward Strategies

	Simulation Results and Discussion
	Influence of the Reward Window
	Influence of the Size of the Reward
	Combination of Individual Reward Strategies

	Conclusions and Future Works
	References

