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Abstract: The electroencephalography (EEG) sensor has become a prominent sensor in the study of
brain activity. Its applications extend from research studies to medical applications. This review
paper explores various types of EEG sensors and their applications. This paper is for an audience
that comprises engineers, scientists and clinicians who are interested in learning more about the EEG
sensors, the various types, their applications and which EEG sensor would suit a specific task. The
paper also lists the details of each of the sensors currently available in the market, their technical
specs, battery life, and where they have been used and what their limitations are.
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1. Introduction

An electroencephalography (EEG) sensor is an electronic device that can measure electrical signals
of the brain. EEG sensors typically measure the varying electrical signals created by the activity of
large groups of neurons near the surface of the brain over a period of time. They work by measuring
the small fluctuations in electrical current between the skin and the sensor electrode, amplifying the
electrical current, and performing any filtering, such as bandpass filtering [1].

Innovations in the field of medicine began in the early 1900s, prior to which there was little
innovation due to the uncollaborative nature of the field of medicine. Innovation in diagnosis and
treatment came from interdisciplinary advances in the applied sciences, such as those of physics and
chemistry. One such innovation was the discovery of the small electrical currents produced by the
brain and other organs. Measurement of electrical activity, such as in EEG, was not performed until
after 1903, when the technique to measure the electrical activity of the heart was discovered by Willem
Einthoven. This measurement technique was extended to the brain to extract the EEG signal [2].

2. EEG Device Design Technology

2.1. Connection Types

2.1.1. Wired and Wireless Communications

Wired and wireless EEG headsets transfer the data to a computer via a cable, wireless or Bluetooth
connection, respectively. Wired EEG connections are more stable and often can transfer more data in a
given time, but do not offer the freedom of movement provided by wireless connections. One of the
main drawbacks of wireless EEG headsets is that, during the capture of brain data, the headset may
lose its wireless connectivity and not record the data. Regardless of the connection type, the movement
of cables and electrodes can cause artifacts in the EEG signal, as it can disrupt the connections between
the electrodes and the scalp.
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2.1.2. Electrode Connection

EEG devices require a consistent electrical connection between the individual electrodes and the
scalp of the individual wearing the device. This can be achieved in a variety of ways, some of which
are listed below.

2.1.3. Wet EEG Devices

There are different types of wet EEG devices discussed below (Figure 1).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 22 

2.1.2. Electrode Connection 

EEG devices require a consistent electrical connection between the individual electrodes and the 
scalp of the individual wearing the device. This can be achieved in a variety of ways, some of which 
are listed below. 

2.1.3. Wet EEG Devices  

There are different types of wet EEG devices discussed below (Figure 1). 
Soft gel-based: Using this connection, electrodes connect with the scalp by applying conductive 

gel into the pocket of each electrode. After completion of an experiment, it is necessary to clean the 
headset by removing the gel and cleaning the electrodes. This is often done with alcohol because of 
its evaporative properties [3,4]. 

Saline solution: Some of the EEG headsets require a conductive gel to help make low-impedance 
electrical contact between the skin and the sensor electrode. EEG headsets that have this technology 
connect electrodes by applying saline to each electrode [3,4]. 

Dry: Dry EEG devices do not use any gel or saline to connect the electrodes with the scalp, which 
makes it easier to record EEG data without the help of a trained technician [3,4]. Furthermore, its 
setup time is considerably shorter than wet headsets. 

Others: Some EEG sensor connections types do not fit cleanly into either of these two categories. 
Conductive solid gel materials, such as those produced by Enobio, have also been used successfully 
in EEG devices. 

2.2. Differences between Dry and Wet Devices 

In January of 2019, researchers at the University of California, The Otto von Guericke University 
of Magdeburg, and The Hebrew University of Jerusalem performed a comparative analysis of the 
signal quality of dried wireless and wet wire EEG devices, and concluded that the quality of wireless 
dry devices is significantly comparable with the wired wet. Although some researchers observed 
that, for those activities that demand body movement like running/walking, wired wet sensors 
showed better performance [5,6]. This seems to indicate that wet sensors may be more resistant to 
movement artifacts, although more research needs to be conducted to fully understand which 
technology can provide more reliable data. 

 
 

 

(a) (b) (c) 

Figure 1. (a) dry, (b) saline solution, (c) gel-based. 

2.3. Electrode Placement Standards 

The American clinical neurophysiology society suggested two international placements of 
electrodes on the scalp: 10–20 and 10–10 standards [7]. The numbers refer to the distances between 
adjacent electrodes placed on the skull. For example, for the 10–20 standard, the relative distance 
between an electrode and the underlying area on the skull is either 10% or 20% [7,8]. The electrode 
location starts with a letter, followed by odd or even numbers to indicate the placement and the left 

Figure 1. (a) dry, (b) saline solution, (c) gel-based.

Soft gel-based: Using this connection, electrodes connect with the scalp by applying conductive
gel into the pocket of each electrode. After completion of an experiment, it is necessary to clean the
headset by removing the gel and cleaning the electrodes. This is often done with alcohol because of its
evaporative properties [3,4].

Saline solution: Some of the EEG headsets require a conductive gel to help make low-impedance
electrical contact between the skin and the sensor electrode. EEG headsets that have this technology
connect electrodes by applying saline to each electrode [3,4].

Dry: Dry EEG devices do not use any gel or saline to connect the electrodes with the scalp, which
makes it easier to record EEG data without the help of a trained technician [3,4]. Furthermore, its setup
time is considerably shorter than wet headsets.

Others: Some EEG sensor connections types do not fit cleanly into either of these two categories.
Conductive solid gel materials, such as those produced by Enobio, have also been used successfully in
EEG devices.

2.2. Differences between Dry and Wet Devices

In January of 2019, researchers at the University of California, The Otto von Guericke University
of Magdeburg, and The Hebrew University of Jerusalem performed a comparative analysis of the
signal quality of dried wireless and wet wire EEG devices, and concluded that the quality of wireless
dry devices is significantly comparable with the wired wet. Although some researchers observed that,
for those activities that demand body movement like running/walking, wired wet sensors showed
better performance [5,6]. This seems to indicate that wet sensors may be more resistant to movement
artifacts, although more research needs to be conducted to fully understand which technology can
provide more reliable data.

2.3. Electrode Placement Standards

The American clinical neurophysiology society suggested two international placements of
electrodes on the scalp: 10–20 and 10–10 standards [7]. The numbers refer to the distances between
adjacent electrodes placed on the skull. For example, for the 10–20 standard, the relative distance
between an electrode and the underlying area on the skull is either 10% or 20% [7,8]. The electrode
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location starts with a letter, followed by odd or even numbers to indicate the placement and the
left or right side of the brain, including: F (frontal), C (central), T (temporal), P (posterior), and O
(occipital) [9]. Figure 2 shows the name and position of each electrode in the 10–20 (black circles)
and in 10–10 system (gray circles) [8]. The 10–20 system is suitable for both clinical and non-clinical
studies and event-related potentials studies (ERPs) [8]. The 10–10 system is suitable for obtaining more
detailed EEG data [7,9].
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2.4. EEG Devices with Several Sensors

Some EEG devices are designed to capture both psychological (brain) and physiological (blood
pressure, muscle activity, heart rate, etc.) data. These devices have one or more extra channels
for capturing physiological signals such as Electrocardiogram (ECG), Electrooculography (EOG),
Photoplethysmogram (PPG), and Electromyography (EMG).

ECG sensors record the heart’s response during resting or physical activity.
EOG sensors measure human eye movements.
PPG sensors monitor blood volume changes.
EMG sensors collect muscle activity data.

Some EEG devices are equipped with motion sensors such as gyroscopes and accelerometers to
capture head and body motion data. These can be used to measure, e.g., orientation, acceleration,
and speed.

3. Applications of EEG

EEG devices can provide valuable information about human mental health states, thoughts, and
imagination. Thus, researchers in different areas of research have utilized it. Figure 3 demonstrates five
categories of EEG data applications and their relevant sub-categories. In a later section, EEG Headset
Applications and Research Usages, a report of relative research use for various devices is provided as part
of a table.
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Brain–computer interfaces (BCI): BCIs, sometimes called brain–machine interfaces (BMIs), are
one of the most common applications of EEG. BCIs use real-time EEG data to control and direct
mechanical and electronic devices [10–17].

BCI devices are commonly used as a human–machine interface to help individuals with mild
to severe motor disabilities, including those who are not able to communicate with others [10]. BCI
devices designed for the disabled do not rely on muscle movements; instead, they use specific brain
activity, imagining doing an activity, or concentrating on an object on-screen, and translate them into
control functions and commands [10,11].

The most common BCI applications are listed below.

1. Autonomous navigation of digital or mechatronic devices:

• Real-time teleoperation of robotic body parts [18–22];
• Controlling and directing a robot [23–26], drone [27], dashboard of a vehicle [28], or a

miniature or semi-automated car [29,30];
• Monitoring and controlling sensors inside of smart houses [31].

2. Helping people with disabilities or motor activity impairment:

• Control of mobile phone apps using eyewinks [32];
• Directing electrical wheelchair movement [33–36];
• Control of artificial body part such as prosthetic hand or arm [10,37,38];
• Recognizing a patient’s attempt to move their body, e.g., stroke [39] and brain injury [40];
• Post-stroke motor rehabilitation using VR [41];
• Controlling a robot using body gestures [42];
• Mind-controlled dialing systems [43];
• Speech recognition system for people with speech disability [12,44];
• Mouse cursor control using imagined hand movement [45];
• Gaze controller for patients with neurodegenerative diseases [46].
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3. Neurogaming and Entertainment

• Controlling a video game or virtual reality (VR) environment using body gesture and eye
movement [47];

• Controlling fiber optic clothes or dresses [19].

Neurology: Real-time EEG signals can be used to provide immediate information about
brain-wave activities. EEG data have been applied for diagnosing and predicting many abnormal
brain diseases and cognitive impairments, listed below:

• Epilepsy [48];
• Parkinson’s Disease [49];
• Memory problems like Alzheimer’s [50];
• Language impairments such as Dyslexia [51];
• Attention Deficit Hyperactivity Disorder (ADHD) [52];
• Seizures [12];
• Schizophrenia [53];
• Autism in adults and children [54,55];
• Sleep disorders and insomnia [56,57];
• Anxiety [58];
• Post-traumatic stress disorder [10];
• Huntington’s disease [59];
• Multiple sclerosis diagnosis [60];
• Amyotrophic lateral sclerosis [61];
• Traumatic brain injury (TBI) [62];
• Coma [63];
• Level of consciousness [64];
• Neurosurgery [65].

Neuroscience Research: Neuroscience attempts to understand the functionality of the nervous
system. It allows clinical or non-clinical researchers to get an idea about how the brain acts when
humans experience different emotional states and how the brain works in various mental states.
Researchers have applied EEG devices in their studies in the below fields.

1. Cognitive neuroscience:

• Measuring cognitive load [28,66,67];
• Detecting differences between brain wave activity during suicidal and non-suicidal states [68].

Understanding brain activity during insight (insight is a moment where a human understands
how to solve a puzzle or gains knowledge) [69];

• Analyzing brain workload during decision making or learning a new task [60,70,71];
• Studying sleep pattern [72];

2. Behavioral neuroscience:

• Changing the workplace light and measuring brain alertness status [73];
• Measuring drowsiness or sleep detection for drivers and pilots [74];
• Measuring mental workload of deaf children exposed to a noisy environment during a word

recognition task [75];
• Determining surgeon stress level while performing surgery [76];
• Identifying and reducing stress level [77];
• Environmental Psychology [78].
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3. Neurophysiology:

• Measuring changes in brain after drinking alcohol [79];
• Detecting fatigue [74].

Neuroscience can also be applied to understanding human emotion in VR with/without the ability
to touch the environment [80,81] by displaying various types of media, such as:

• Real world or VR pictures [82];
• Images of nature and city environments [32];
• TV advertisements [36];
• Auditory stimuli [83];
• Multimedia [36,47,69], along with memory recall and dreams [84].

Neuromarketing or Consumer Neuroscience: Neuromarketing, one of the newest branches of the
advertising industry, aims to understand the consumer’s needs, behaviors and emotions, and forecast
their decision-making processes [81,85–87]. Some neuromarketing research attempts to understand
customers’ preferences and expectations regarding a specific product [81] and their reaction to TV
advertising by analyzing EEG signals [86,87].

Biometrics: Recognizing and distinguishing people using physiological or behavioral features
such as fingerprint, voice, face, iris, gaze, gait and/or posture is called biometrics [71,88,89]. Studies
show that EEG data can provide information about individuals’ differences. Recently, cognitive
and emotional brain status has been utilized for biometrics, meaning EEG data are used to identify
people [89]. The main ideas behind why EEG-based biometric systems have received more attention
recently relate to privacy compliance and robustness to spoofing attacks, as well as universality [88,89].

Custom Solutions and Neurofeedback (Neurotherapy): EEG devices have been applied in other
areas of research to make a comfortable environment, improve well-being and life quality, and boost
the learning process. Neurofeedback data can be used for either clinical or non-clinical research. Some
customized EEG solutions are listed:

1. Sport, fitness and meditation: Monitoring health status and boosting quality of life using brain
activity during exercise and listening to music [83].

2. Educational purposes:

i. Measuring the reading ability of students [84];
ii. Measuring confusion level during online lectures [90] or concentration level and cognitive

workload when students are trying to solve a math puzzle [91] with the aim of designing
intelligent tutor systems (ITS);

iii. Real-time brain visualization, which can have educational, training, or entertainment
applications [92,93].

Figure 4 shows the most popular research topics of EEG data, as found by an internet search of
“EEG” followed by each keyword in the pie chart of the figure. It is clear that after neuroscience, BCIs
have received the most attention from researchers, and the percentage of studies on biometrics and
neuro-marketing fields is relatively small.
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4. EEG Headset Applications and Research Usages

There are many commercially available EEG headsets. In the following, a set of tables shows the
approximate applications for each headset, as well as their specifications and relative research use.
In general, information was gathered from the company website for each product.

Table 1 indicates the applications that each EEG Headset has been used in, according to the
producing company’s reports.

Table 1. Recommended EEG application by manufactured company.

Applications (Company Recommendation) EEG Headset Product Name (Company)

Neuroscience Research

• DSI 24, DSI 7, DSI 7 Flex, VR300 (Wearable Sensing)
• B-Alert X-Series (Advanced Brain Monitoring)
• Enobio (Neuroelectrics)
• Eego mylab (ANT Neuro)
• Imec product
• SMARTFONES, SMARTING (mBrainTrain)

Neuromarketing

• DSI 24, DSI 7 (Wearable Sensing)
• B-Alert X-Series (Advanced Brain Monitoring)
• SMARTFONES, SMARTING (mBrainTrain)

Brain computer interface and Neurogaming

• DSI 24, DSI 7, VR300, NeuroCube, NeusenW
(Wearable Sensing)

• Epoc ×, Epoc +, Epoc Flex, INSIGHT (Emotiv)
• B-Alert X-Series (Advanced Brain Monitoring)
• Enobio (Neuroelectrics)
• MindWave, MindWave Mobile 2 (NeuroSky)
• BrainWaveBank products
• NeusenW (wearable sensing)
• Eego mylab, EegoTM mini-series (ANT Neuro)
• SMARTFONES, SMARTING (mBrainTrain)
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Table 1. Cont.

Applications (Company Recommendation) EEG Headset Product Name (Company)

Ergonomics and Biometrics
• DSI 24, DSI 7 (Wearable Sensing)
• B-Alert X-Series (Advanced Brain Monitoring)

Neurofeedback

• DSI 24, DSI 7 (Wearable Sensing)
• Sleep studies: EEG Electrode Cap Kit (OPENBCI),

Sleep Profiler PSG2TM, Sleep Profiler™ (Advanced
Brain Monitoring), Muse 2, Muse S (Muse TM),
LiveAmp (Brain Products), BE Micro (EB Neuro)

• Enobio (Neuroelectrics)
• MindWave Mobile 2 (NeuroSky)
• Eego mylab (ANT Neuro)
• Imec product
• SMARTFONES, SMARTING (mBrainTrain)

Biofeedback

• Meditation and Sleep studies: Muse 2, Muse S (Muse
TM)

• Cardiology and Gastroenterology: BE Micro
(EB Neuro)

Custom Solutions (e.g., Sports, education)

• DSI 7 Flex (Wearable Sensing)
• Enobio (Neuroelectrics)
• MindWave, MindWave Mobile 2 (NeuroSky)
• Eego mylab (ANT Neuro)

Table 2 provides information about the characteristics of the available EEG headsets\caps, such as
number of channels, sampling rate, electrode connection type, headset preparation time (the amount
of time it takes to prepare the headset/cap), and price. Some of the EEG devices are equipped with
extra sensors, enabling them to track muscle activities (EMG), heart rate (ECG), eye movement (EOG),
and blood pressure (PPG); these are indicated in the “Extra Sensors” column. The “Motion Sensors”
column shows any EEG devices that have motion sensors, such as an accelerometer or gyroscope, for
tracking body or head movement. The “Communication Mode” column indicates the way in which the
sensor transfers its recorded data. If the EEG device is a wireless Bluetooth device, it works in a specific
range, and outside of that distance, may not work correctly; this information is shown in the “Bluetooth
range” column. The “Battery life” column shows how many hours the device is capable of working for
using its wireless technology. For some companies, such as Compumedics Neuroscan, the listed EEG
devices are only components of the full device, which is necessary to perform Electroencephalography,
such as cap and amplifier, thus cannot be used without the purchase of separate hardware.

Some of the EEG devices have included open source software, allowing users to capture and
analyze the data for free, while for some headset/caps, users need to pay subscription fees and/or
purchase the related software; this information is denoted in the “Included Software” column.
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Table 2. Sensors information.

Company Product Name Extra Sensors
(Optional) Motion Sensors Communication

Mode(s)
Bluetooth

Range Included Software Battery Life (When
Applicable)

Compumedics
Neuroscan

Quick-Cap Neo Net
EOG
ECG
EMG

- - - - -

Quick-cap Silicone
Array

EOG
ECG
EMG

- - - - -

Quick-Cap Hydro Net
EOG
ECG
EMG

- - - - -

Quick-Cap
EOG
ECG
EMG

- - - - -

Wearable sensing

DSI 24
EMG
EOG
ECG

Accelerometer
(Opt) Bluetooth Wireless 10 m/30 feet DSI-Streamer Data Acquisition

Software and API -

DSI 7 N/A Accelerometer
(Opt) Bluetooth Wireless 10 m/30 feet DSI-Streamer Data Acquisition

Software and API -

DSI 7 Flex N/A Accelerometer
(Opt) Bluetooth Wireless 10 m/30 feet DSI-Streamer Data Acquisition

Software and API -

VR300 N/A Accelerometer
(Opt) Bluetooth Wireless 10 m/30 feet

DSI-Streamer Data Acquisition
Software, API, and Unity and

Unreal SDK for VR
-

NeusenW N/A 9-axis motion
sensors Bluetooth Wireless - - Up to 2 h

NeuroCube N/A 9-axis motion
sensors Bluetooth Wireless - - Up to 2 h

Emotiv

EPOC X N/A 9-axis motion
sensors Bluetooth Wireless - EmotivPRO

Emotiv BrainViz Up to 9 h

EPOC + N/A 3-axis
Accelerometer Bluetooth Wireless -

EmotivPRO
EmotivBCI

Emotiv BrainViz
Up to 12 h

MN8 N/A Motion sensors Bluetooth Wireless - - Up to 6 h
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Table 2. Cont.

Company Product Name Extra Sensors
(Optional) Motion Sensors Communication

Mode(s)
Bluetooth

Range Included Software Battery Life (When
Applicable)

INSIGHT N/A 9-axis Motion
sensors Bluetooth Wireless - - Up to 9 h

EPOC Flex N/A
3-axis

Accelerometer,
Magnetometer

Bluetooth
Wireless - EmotivPRO Up to 9 h

OPEN BCI
EEG Electrode Cap Kit N/A N/A Bluetooth Wireless - OpenBCI’s FREE open-source

software -

Ultracortex “Mark IV”
EEG headset

EMG
ECG

3-axis
Accelerometer Bluetooth Wireless - - -

OpenBCI Classroom
Bundle (5 kits)

EMG
ECG N/A Bluetooth Wireless - - -

Biosemi
ActiveTwo EMG

ECG N/A Wired - LabVIEW N/A

ActiveOne EMG
ECG N/A Wired - N/A

Advanced Brain
Monitoring

Sleep Profiler™
EOG
EMG
ECG

N/A Wireless - - Up to 30 h

Sleep Profiler PSG2TM
EEG
EOG
EMG

N/A Wireless - - Up to 30 h

Stat X-Series
ECG
EOG
EMG

Accelerometer Bluetooth Wireless 10 m B-AlertLive
LabX Up to 8 h

B-Alert X-Series
ECG
EOG
EMG

Accelerometer Bluetooth Wireless 10 m B-AlertLive
LabX Up to 8 h

InteraXon
Muse S PPG Accelerometer

Gyroscope Bluetooth Wireless - Muse App 10 h

Muse S Bundle PPG Accelerometer
Gyroscope Bluetooth Wireless - Muse App 10 h

Muse 2 PPG Accelerometer
Gyroscope Bluetooth Wireless - Muse App 5 h
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Table 2. Cont.

Company Product Name Extra Sensors
(Optional) Motion Sensors Communication

Mode(s)
Bluetooth

Range Included Software Battery Life (When
Applicable)

Neuroelectrics Enobio N/A 3-axis
Accelerometer Bluetooth Wireless -

Enobio API
Matlab (EEGLAB Plugin)

Python (Neyp library)
Up to 20 h

NeuroSky MindWave Mobile 2 ECG N/A Bluetooth Wireless 10 m MindWave Mobile apps 8 h

Wearable Sensing NeusenW EOG 9-axis motion
sensor Bluetooth Wireless - - -

ANT Neuro
EegoTM mylab N/A N/A Bluetooth Wireless - API Up to 5 h

EegoTM sports EMG N/A Bluetooth Wireless - API Up to 5 h

EegoTM mini-series EMG N/A Bluetooth Wireless - API Up to 5 h

G.tec

NAUTILUS FNIRS N/A 3-axis
accelerometer Bluetooth Wireless 10 m BSANALYZE Up to 10 h

Nautilus Research N/A 3-axis
accelerometer Bluetooth Wireless 0 m BSANALYZE Up to 6 h

Nautilus PRO N/A 3-axis
accelerometer Bluetooth Wireless 10 m BSANALYZE Up to 10 h

G. nautilus multi
purpose N/A 3-axis

accelerometer Bluetooth Wireless 10 m BSANALYZE -

imec - N/A - Bluetooth Wireless - Qt-based, MS & Android Up to 8 h

EB Neuro BE Micro - N/A Bluetooth Wireless - - Up tp 72 h

mBrain Train
SMARTING N/A 3 axis gyroscope Bluetooth Wireless 10 m API Up to 5 h

SMARTFONES N/A N/A Bluetooth Wireless - API -

SMARTING sleep
ECG
EMG
EOG

9 axis motion
sensor Bluetooth Wireless 10 m API Up to 15 h
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Table 2. Cont.

Company Product Name Extra Sensors
(Optional) Motion Sensors Communication

Mode(s)
Bluetooth

Range Included Software Battery Life (When
Applicable)

Cognionics (CGX) Quick

EOG
ECG
EMG
PPG
GSR

N/A Bluetooth Wireless - - -

Mobile

EOG
ECG
EMG
PPG
GSR

N/A Bluetooth Wireless - - -

Brain Product
actiCAP (Slim & Snap) N/A N/A - - - -

LiveAMP N/A N/A Bluetooth Wireless - - -
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In Table 3, publication numbers were found through an internet query of the name of the company
followed by the product name; the numbers provided in the “Company name” column are the
search results with only the company name. The relationship between the ‘company-only’ search
results alongside the ‘company-and-product’ search results is important to note, as the nature of some
company’s names are such that the search results do not accurately reflect their influence on the
research. To avoid searches that include individual words not reflective of the company or product
being searched for, quotation marks were added around the search term. Additionally, the “MD”
column indicates if the mentioned EEG device can be used for clinical research, meaning it has been
FDA approved. This is indicated either by an X, meaning that the device has not been officially
approved, or by a 4, indicating that the device has been approved.

Information about sampling rate, number of channels, set up time, and price is also provided. An
N/A indicates that the information does not apply, and a “-” symbol indicates that the searchers were
unable to ascertain the information.
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Table 3. List of EEG headsets.

Company Publications
(Company) EEG Headset/Caps No.

Publications MD 1 Sample Rate No. Channels Electrode
Connection Type

Set up Time:
Minutes(m)

or Seconds (s)
Price

Compumedics
Neuroscan

Quick_Cap Neo Net X Up to 256 Gel - -

Quick_Cap Silicone
Array X Up to 256 Saline - -

Quick_Cap Hydro
Net X Up to 256 Saline - -

Quick-Cap X Up to 256 Gel - -

Emotiv 8150

INSIGHT 362 X 128 Hz 5 Semi-dry polymer 1–2 m $299

EPOC X 1 X 128 Hz 14 Wet (Saline) 3–5 m $849

EPOC+ 4370 X 128 Hz 14 Saline soaked felt 3–5 m $699

EPOC FLEX KIT 0 X 128 Hz 32 Saline/Gel 15–30 m $1699

MN8 0 X - 2 (+4
reference) Dry 30 s -

OpenBCI 835 Ulracortex Mark IV 26 X 125 HZ or 250 Hz 8 or 16 Dry ~30 s

Print-It-Yourself
($299.99–399.99)

Unassembled
($499.99–599.99)

Pro-Assembled
($699.99–849.99)

EEG Electrode Cap
Kit 1 X 21 Gel ~30 s $399.99

BIOSEMI 10,300 ActiveTwo 2650 X 2, 4, 8, 16 kHz 280 Gel - € 14,840
€ 72,440

ActiveOne 15 - - Up to 144 Gel -

Advanced Brain
Monitoring 2030

B-Allert (X10 or
X24) 37 4 256 Hz 9 and 24 Dry - $1000–$25,000

Sleep Profiler 2 4 - Up to 8 Dry - -

Sleep Profiler
PSG2TM 0 4 - Up to 13 Dry - -

Stat X-Series 0 4 - Up to 20 Dry - -
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Table 3. Cont.

Company Publications
(Company) EEG Headset/Caps No.

Publications MD 1 Sample Rate No. Channels Electrode
Connection Type

Set up Time:
Minutes(m)

or Seconds (s)
Price

InteraXon 1140
Muse 2

158
X 220 Hz or 500 Hz 4 Dry - $224.99

Muse S Bunddle X - 4 Dry - $444.98

Muse S X - 4 Dry - $344.99

Neuroelectrics 1200 Enobio 59 4 500 SPS 8, 20, 32 Dry/Wet - -

G·tec 4950

Nautilus Research

16

X 250 Hz or 500 Hz 8, 16, 32, 64 Gel - $1000–$25,000

NAUTILUS FNIRS X 250 Hz or 500 Hz 8, 16, 32, 64 Wet - -

Nautilus PRO 4 500 Hz 8, 16, and 32 Dry/Wet - -

Nautilus multi-
purpose X 250 Hz or 500 Hz 8, 16, 32, 64 Wet - -

Cognionics (CGX) 497
QUICK 49 X 500 Hz or 1000 Hz 8, 20, 30 Dry - $1000–$25,000

Mobile 21 X 500 Hz or 1000 Hz 64, 128 Gel - -

ANT Neuro 1110
eego mylab 8 X 16 kHZ 32–256 Dry/Gel - $1000–$25,000

EegoTM sports 10 X - - - - -

EegoTM mini-series - X - - - 20 m -

Brain Products 11,700 LiveAmp 31 X 250–1000 Hz 8–64 Dry/Gel $1000–$25,000

ActiCAP 899 X - - - - -

Wearable Sensing 1220

Dry Sensor
Interface Series 0 X 300–600 Hz 2–21 Dry ~5 min. $1000–$25,000

VR300 - X 300 Hz 7 Dry 1–3 min -

NeusenW - - Up to 16 kHz 8–64 Wet - -

NeuroCub - - 16 kHz 8 Wet - -

DSI 24 18 - 300 Hz 21 Dry active hybrid 3–5 min -

DSI 7 Flex - - 300–600 Hz - Dry - -

DSI 7 5 - 300–600 Hz 2–6 Dry 1–3 min -

NeuroSky 4910 MindWave Mobile 2 1510 - 150 Hz 2 Dry - -
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Table 3. Cont.

Company Publications
(Company) EEG Headset/Caps No.

Publications MD 1 Sample Rate No. Channels Electrode
Connection Type

Set up Time:
Minutes(m)

or Seconds (s)
Price

BrainWave Bank 7 - - - - 16 - ~5 m -

imec 92,200 2 (1690) EEG Headset 17 - 128, 256, 1028 Hz 8 Dry - -

EBNeuro 367 BE Micro 57 - - - - - -

mBrainTrain 159
SMARTING 99 - 250–500 Hz 24 - - -

SMARTFONES 1 - Up to 1000 Hz 11 Semi-dry - -

SMARTING sleep - - 250–500 Hz 17 Dry - -
1 MD certified might be for diagnostic or for Clinical Treatment. 2 The results for the “imec” query were deemed too vague to be of use, so the term “EEG” was added outside of the
quotation marks; the parenthetical number is the result of this search.
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5. Discussion

To select an EEG device, it is necessary to look at a variety of factors, some of which are listed
below:

• Designing Technology Dry/Wet (saline or gel): Unfortunately, there are few studies done on
this area. Recently, some researchers [35,37] compared a dry and wet headset for their research
and they concluded that although the selected dry EEG headset was more robust to line noise,
it contained more artifacts;

• Setup time: Regardless of the connection type being used, the setup time for EEG electrodes tends
to be longer than for most physiological sensors. Saline-based sensors are usually selected for their
ease of use and quick setup time, relative to gel-based sensors. Gel based EEG devices demand a
larger amount of time, relative to other connection methods, to apply, while the saline headset
does not take much time to set up. Cleaning saline headsets after using them takes less time than
gel-based sensors. The gel also sticks to the hair of participants, which could be uncomfortable
and inconvenient for users;

• Signal quality and stability: Quality of the captured EEG data depends on several factors:
connection stability, losing connection with the scalp, and wireless, which are described below:

1. Losing Connection with the Scalp: The quality of the recorded EEG data highly depends
on the connection between electrodes and the scalp. Gel-based sensors are usually chosen
for their stability of connection and longevity, as the wet or gel-based sensors maintain
a more stable connection for several hours, while wet and dry EEG headsets may lose
humidity during an experiment, which can lead to a decline in signal quality. To have stable,
high-quality and reliable EEG data, it is necessary to make sure that all relevant electrodes
are connected and do not lose their connection during experiments by reapplying the saline
solution to the electrodes, as the solution evaporates over time. In order to maintain a stable
connection over long periods, it is necessary to reapply the saline solution to the electrodes,
as the solution evaporates over time;

2. Wireless Connectivity: Wireless EEG devices can pose a security risk to the data of the
participant, as any movement of cables could potentially induce the data during transfer.
Because of this, wireless EEG devices should necessarily require encryption of the data prior
to wireless transfer.

• Headset Size: Most EEG devices are limited in their size adjustability, and may thus require
multiple different caps or headsets in order to fit experiments and studies which collect data of
individuals with large head-size discrepancies, increasing the overall price;

• Battery Life: Wireless EEG devices are most often battery-operated and, as such, are subject
to potential loss of data if the current battery charge falls below threshold levels. Ensuring
that batteries will be operational throughout long studies can be difficult, and the necessity of
ensuring batteries are charged increases the complexity of data-gathering using EEG devices.
Battery life has a negative correlation with the amount of sensory information they provide; as
more information is given, the battery time decreases, which means that the research focused on
long-term study of brain activities should try to rely on less sensory information, if possible;

• Sensitivity to external noise/artifacts: When collecting EEG data, it is important to ask the
participants to sit in a relaxed manner because any movement of the body can cause artifacts in the
data. To obtain high-quality data and better results, artifacts such as muscle and eye movement,
eye blink, and line noise need to be pre-processed and artifacts should be omitted before doing
any data analysis;

• Price: Most of the EEG devices designed for medical purposes like Neurofeedback and
neuroscience are expensive;
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• API/Software Used by Device: The software which accompanies an EEG headset can be
complicated for researchers without prior extensive knowledge about brain activity, as well
as knowledge of filtering and analysis techniques. The software, which is utilized by an EEG
device, can have adverse effects on the ease and reliability of experiments, as well as the overall
cost. In addition to research on the quality of the EEG device itself, care should be taken to
understand if the software it makes use of is within acceptable cost and quality levels. Open
Source software tends to be more secure, but has less built-in support for newer users, whereas
integrated proprietary software tends to have better support, but is more costly. Depending on the
EEG software, users may be given access to raw EEG data that has not been modified, processed
data that has been modified after recording by the software in some way, or to both raw and
processed data;

• Comfort to user: Wireless dry or saline solution EEG devices are more convenient for the user
because of their flexibility of movement, lower setup time, and no need for cleaning the user hairs
after the experiment like in gel-based solution;

• CE/FDA approved: Most of the listed commercial EEG sensors have not been CE/FDA approved.
A list of EEG headsets that can be utilized for clinical treatments is given in the “MD” column of
Table 3.

6. Conclusions and Future Research

EEG devices are quickly becoming less expensive and more accessible to the open market, which
should allow for more commercial and personal use of the data. Because of their widespread availability,
many considerations should be made before a decision is made to purchase and use a device. Along
with price, other factors that need to be considered are the battery life of an EEG device, available
software for data analysis, and common uses of the device in research areas, especially where your
own research may apply.

For future research, areas like biometrics and neuro-marketing currently have very little related
research, and thus may be good avenues for further study.
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