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Abstract: In this paper, we propose a methodology for generative enhancement of existing 3D image
classifiers. This methodology is based on combining the advantages of both non-generative classifiers
and generative modeling. Its purpose is to streamline the synthesis of novel deep neural networks by
embedding existing compatible classifiers into a generative network architecture. A demonstration
of this process and evaluation of its effectiveness is performed using a 3D convolutional classifier
and its generative equivalent—a 3D conditional generative adversarial network classifier. The
results of the experiments show that the generative classifier delivers higher performance, gaining
a relative classification accuracy improvement of 7.43%. An increase of accuracy is also observed
when comparing it to a plain convolutional classifier that was trained on a dataset augmented with
samples created by the trained generator. This suggests a desirable knowledge sharing mechanism
exists within the hybrid discriminator-classifier network.

Keywords: generative modeling; image classification; convolutional neural network; deep learning;
3D imaging

1. Introduction

Generative modeling has been successfully applied in order to solve a wide range of tasks,
including realistic data generation (numeric time-series [1], text [2], image [3], audio [4], video [5], etc.),
extrapolation [6], image super-resolution [7], inpainting [8], and many others. Data classification is
also one of those, even though it is usually not the main goal of designing a generative network.

Deep generative models have been proven to learn a salient representation of the data that
they had been trained on, which is ideal for the classification task. This latent representation is
perceptually significant on the generated output, which has been shown by various latent vector
arithmetic experiments [9,10].

Lately, the Generative Adversarial Network (GAN) is one of the most popular varieties of
generative models [11]. From the classification perspective, a GAN network’s ability to generate
highly realistic data indicates a potential for high performance in classification tasks, especially where
large training datasets are not available. Limited datasets are not uncommon in the domain of 3D
imaging. While GAN was not originally designed for classification, simple modifications exist to
enable this functionality, such as 3D-GAN [10]. One such modification is to use the discriminator itself
as a classifier. This can be achieved by extending the existing discriminator output with additional
units, one per class, and training the model (semi)supervisedly. [12] While mostly used with 2D image
data, a straightforward adjustment of the network (using 3D (de)convolution instead of 2D) enables
the use of 3D data in the form of voxel grids or point clouds.

State of the art generative [13–15] and non-generative [16–18] classifiers compete very closely
in terms of 3D image classification accuracy, as can be seen in the results of benchmarks, such as
ModelNet [19]. While models that utilize the two approaches differ significantly in structure, we
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see the potential for their combination by enhancing the non-generative classifiers with elements of
generative modeling. Aside from improving the classification accuracy, this could likely help with the
3D domain-specific problems, such as small datasets, too generic and synthetic training examples, etc.

This idea is lightly supported in [20], where the authors observe an occurrence of beneficial
interaction within the model when combining supervised and unsupervised loss while training a
feature matching GAN classifier. This hints towards a potential for such interactions within a generative
classifier, which allows further improvement of non-generative state-of-the-art models by embedding
them within a generative network architecture.

For these reasons, we propose a general methodology of generative enhancement, which aims
to enable any compatible classifier in order to utilize a generative modeling approach to improve its
classification accuracy. Although it is not theoretically limited to a particular type of data, this
methodology requires a fully differentiable trainable generator. We propose and evaluate this
methodology for voxel grid 3D format by applying it to a simple 3D convolutional classifier. We
investigate the reproducibility and measurability of the benefits of this transformation by comparing the
classification performance of the resulting conditional GAN network to the original 3D Convolutional
Neural Network (CNN) classifier, identical to the GAN discriminator. Experiments are also performed
in order to investigate possible explanations, such as the introduction of noise or data augmentation
by the generator.

The sections of this paper are structured in the following manner: following the introduction
in Section 1, Section 2 discusses related work and publications in the field relevant to this paper.
Section 3 describes the dataset that was used in the following experiments, as well as the details of
its preprocessing and transformation. Section 4 presents the proposed Generative Enhancement
methodology. In Section 5, three network architectures, designed to evaluate the proposed
methodology, are shown along with the training process. Section 6 contains results and discussion,
including classification, object generation, and computational performance evaluation. Finally,
Section 7 presents a summary of the paper with ideas for future work.

2. Related Work

As the training of a GAN network is very difficult in general, a substantial amount of research
focuses on the training process itself and examines various tweaks and hacks that improve the
convergence of the model during training Many of these were utilized in our research [20,21].

Generative networks have been used very successfully as a tool for data augmentation,
improving performance of existing (vanilla) classifiers. The benefit of GAN-based data augmentation
was shown to even exceed that of standard augmentation methods. This augmentation has proven
helpful, especially with small and/or unbalanced datasets. [22–24] It has been shown, that even fully
synthetic labeled datasets, generated by deep neural generators [25] or simple 3D renderers [26] can be
very beneficial for real-life applications.

Conditional generation combined with a classifying discriminator (auxiliary classifier) has been
shown to improve the quality of generated samples when trained on a labeled dataset using a model,
called Auxiliary Classifier GAN (ACGAN) [27]. This network includes separate discrimination and
classification terms in the objective function. Another approach, used in Balancing GAN (BAGAN) [28]
and also in our models, is to combine the terms in a way, where a sample cannot be classified as both
fake and of a particular class. This is achieved by creating a ‘fake’ class and discarding the fake-real
discrimination function. BAGAN is a generative network that was designed to restore the balance
of an unbalanced dataset by generating samples of the minority classes. Additionally, this network
tackles the mode collapse issue by initializing the parameters while using an autoencoder.

Data classification is also a domain, where generative models have found their application.
Many deep generative models, using both supervised and semi-supervised training, have been used
for various learning and classification tasks. The unsupervised training of generative models is also
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viable and various techniques exist to perform this task, such as Output Distribution Matching cost
function [29] or CatGAN [30].

A combination of GAN architecture and variational autoencoders (VAE) have found their use
in the classification and retrieval of 3D models, also being able to convert 2D images to 3D models
[10]. Similarly, these models are also useful for tasks concerning other types of data, such as spoken
language identification systems. [31]

The domain of 3D images introduces several specific use cases for generative networks. One of
these is a 3D model reconstruction from single, or multiple 2D images. Multiple architectures
have been proposed, being able to generate voxel [10] and point cloud [32] models of the objects
presented as a single 2D [10], single 2.5D (RGB-D) image [32], or a series of 2D images [33].
Similarly, 3D images can also be used as an input of a generative model for tasks, such as shape
inpaining [34]. Other applications with 3D input include object detection, semantic segmentation,
and instance segmentation, usually applied to point cloud scans of the environment [35,36].

Inspired by our findings of the significance of the spatial (depth) information during real-life object
classification and scene understanding [37], we decided to focus on the classification of 3D images.
Generally, these classification methods can be grouped into view-based and volume, or shape-based
techniques, depending on the form of data that are present at the input of the classifier. Many of
the most successful classifiers [16–18,38] are based on the multi-view approach, which renders or
acquires several views of the classified object and extract features from those 2D projections. Efficient
aggregation of the information from multiple views is the key to high classification accuracy. This
problem is explored in [17], where the authors process the views as an unordered graph by learning
a semantic feature mapping and aggregating the patterns using a novel pair-wise spatial pattern
correlation and a multi-attention model. Similarly, in [18], the authors learn global 3D features from
multiple views by segmenting the projections into semantically meaningful parts.

Volume and shape-based techniques are also widely used, as can be seen in the ModelNet [19]
benchmark leaderboard. The published results of different 3D object classifiers that were trained on
the dataset also show that generative models can achieve state-of-the-art performance and sometimes
also exceed it. VRN Ensemble [13], a generative model that is based on voxel variational autoencoders
and convolutional architecture, achieves one of the best results in the benchmark.

The standard deconvolutional layer is not the only building block that the generator can be
constructed with. A novel factorized generative model in [15] generates the 3D models by first
building it with generic primitives and then refining the resulting shape. The resulting representation
was evaluated while using a classifier which achieved state-of-the-art results on ModelNet10 among
the unsupervised models.

A similar approach to our methodology, albeit in 2D, has been presented in [39], called VAC+GAN.
Authors took inspiration from ACGAN [27] and developed a versatile classifier, that can be “attached”
to any existing GAN network, forming a powerful classification model. This is similar to our reasoning
about combining generative and non-generative architectures, utilizing the strengths of both. However,
this approach differs from ours in the order of execution. While we propose a methodology of
enhancing a non-generative classifier, [39] presents a process of transforming an existing generator
into a classifier.

3. Dataset

All of the models presented in this paper have been trained and validated on the ModelNet
dataset [19]. Two subsets of the dataset exist, ModelNet10 and ModelNet40, which contain 3D meshes
from 10 or 40 classes. The examples in the dataset are already in canonical orientation, meaning that
every model’s vector of gravity is aligned to the vertical axis. Therefore, no manual adjustments of the
mesh objects were necessary.
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Preprocessing and Transformation

The ModelNet dataset (Supplementary Materials) contains examples represented as 3D CAD
meshes. To be usable as an input for 3D convolution-based networks, it has to be converted to a voxel
grid format. For this purpose, our data transformation pipeline has been used [40].

This pipeline utilizes a voxelization tool, called binvox by Patrick Min [41,42]. The pipeline then
fills the hollow voxel model and scales it down to reduce the amount of data, due to computational
performance considerations.

Filling the model is done by labeling the connected regions in the voxel grid and joining everything
except the largest connected region, which is usually the free space around the model. This is not
fault-proof, because some models are either not watertight or not aligned perfectly to one face of the
volume. While faulty results are rare, this is one of the possible areas of improvement in the processing
pipeline.

The scaling is performed by a combination of max pooling and interpolated subsampling.
This process removes small artifacts and holes that were introduced by the voxelization step while
preserving most of the information by using floating-point values in the subsampling pass. The
resulting size of one sample is 32× 32× 32 floating-point value voxels. The value of a single voxel
after pre-processing is the approximation of the fraction of the voxel volume occupied by the 3D object.
The voxel values, originally from [0, 1] range, are finally normalized in [−1, 1] range. There is no color
information available in the dataset.

For debugging and visualization of the dataset and generated examples, the voxel grids are drawn
while using our custom rendering pipeline [43]. The main parts of the pipeline are surface normal
estimation using 3D Sobel operators and texture mapping of an equirectangular lightmap to the voxels.
The resulting RGBA-valued voxel grid is rendered using the PyQtGraph library [44]. The volume is
rendered as a stack of textured planes that represent individual volume slices.

4. Generative Enhancement Methodology

In this study, we present a methodology for constructing novel generatively enhanced classifiers
by embedding existing well-performing neural network classifiers in a compatible generative network
architecture. By that, the classification performance of the original classifier is improved along with
its tolerance for small training datasets. The methodology is designed in order to streamline and
formalize this transformation process. The process of modification consists of several steps that are
shown in Figure 1.

First a conditional generator is designed, generating samples in a format that are identical to the
classified data type (same number of dimensions, size, number of channels, etc.) and from the desired
class. This is necessary because the output of the generator is fed into the input of the classifier during
training. For example, if the training dataset contains labeled voxel volumes, a generator producing
voxel volumes of the same size is required. To make the generator conditional, its input must include
the class information (e.g., by concatenating the input noise vector with a one-hot encoded class vector),
telling it which class the generated sample should belong to.

Subsequently, the classifier is extended in order to perform the discrimination task (e.g., by
appending a ‘fake’ class to the set of possible classifier outputs). Lastly, adversarial optimization of the
network is added to the training loop.

Therefore, this can be conceptualized as a neural network transformation, which turns a
traditional convolutional neural network classifier into a conditional GAN classifier. By applying this
transformation to different classifiers, entirely new architectures can be produced with potentially
improved properties.

The main constraint for this methodology is the classifier must be fully differentiable from one
end to the other, so that the gradients can be calculated for all layers, including the input layer. This is
required to optimize the generator, which is attached to the classifier’s input layer.
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Design a compatible Generator

Extend the classi�er with real-fake output

Add adversarial training to the training loop

CNNx ŷ

CNN + D

x

ŷ

Gz

Figure 1. Simplified flowchart showing the basic steps of the proposed Generative enhancement
methodology. The starting point is a network, which classifies training and testing samples x, assigning
them a predicted label ŷ. Using our methodology, the network is expanded to contain a generator (G),
producing original training examples from a Gaussian noise input vector z.

5. Models and Methods

In order to verify the viability of the proposed methodology, we evaluate its simplest application
case—the transformation of a convolutional classifier into a conditional GAN network. For this
purpose, three separate models have been designed. The first is a control model that is represented
by a plain 3D convolutional neural network (plain CNN) that is only trained on the training dataset
examples. The second model is another classifier, which shares the same structure as the control;
however, it is also trained on the output that is produced by the generator from a GAN network
(augmented CNN). This configuration essentially utilizes the generator as a dataset augmentation
mechanism, where new labeled examples with predetermined classes are generated and added to the
training set used to train the CNN classifier. The third model is the aforementioned 3D conditional
GAN network. Figure 2 shows a high-level diagram of the designed models.

ModelNet10 CNNx ŷ

ModelNet10

CNN

x

ŷ

Gz

ModelNet10

D

x

ŷ

Gz

a) b) c)

Figure 2. High-level architecture of the tree models designed for the proposed experiment. The first
model (a) is a plain 3D convolutional (CNN) classifier trained directly on ModelNet10. The other
CNN (b) is trained on an augmented dataset created by combining ModelNet10 examples and the
conditional generator (G) output. The generator output is labeled according to its input condition
vector. The last model (c) is a three-dimensional (3D) conditional Generative Adversarial Network
(GAN) network where the discriminator (D) is used as the classifier during the testing phase.

5.1. 3D Convolutional Neural Network Classifiers

The first two models are identical deep 3D convolutional networks consisting of three
convolutional layers. Stride is used instead of pooling layers for downsampling. Batch normalization
and Leaky ReLU activation function is applied after each convolutional layer. The output is produced
by a single fully-connected layer with a unit count of C, equal to the number of classes. A softmax
function is used in order to convert the output logits to class probabilities.
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The loss function used to train these classifiers is a categorical cross-entropy shown in (1).

LC = −
M

∑
i=1

C

∑
j=1

y(i)
j log(ŷ(i)

j ) (1)

In the equation, M stands for the number of examples (in a minibatch or total), C is the number
of classes in the dataset, y is a vector of one-hot encoded training data labels, and ŷ is the classifier
prediction of the class vector. The y(i)

j notation refers to the jth element of the vector that belongs to
the ith sample within the minibatch. The optimizer used to train these classifiers is RMSprop.

5.2. 3D Conditional Generative Adversarial Network

The last model is a 3D Conditional Generative Adversarial Network (3D CGAN), which consists
of a generator-discriminator pair connected in sequence and trained in opposition to each other.
The role of the generator is to transform a latent representation (vector) of an object to its visual
representation (voxel grid), while the discriminator tries to distinguish real samples (taken from the
training set) from the fake ones (created by the generator). The objective of the adversarial training is
to find the equilibrium, where the generator produces samples that are realistic enough to confuse the
discriminator [11]. A conditional GAN introduces a condition for the generator, specifying the desired
output by providing a one-hot encoded class vector or another form of specification (e.g., keywords or
description text), as originally shown in [45]. In our model, the conditioning is achieved by feeding
a one-hot encoded class vector to the generator input. However, the discriminator does not receive
this information, as it would trivialize its classification objective and make it unusable for classifying
unknown samples (as opposed to [45]). The starting point for this architecture has been the deep
convolutional 3D GAN model that was published in [10].

The main difference from the standard GAN architecture in our model is the discriminator,
which is mostly identical to the plain and augmented CNN models mentioned above. The only
difference between the discriminator and two previously described convolutional classifiers is in the
output layer, which contains one extra output in addition to the class label, which indicates whether
the input is considered to be fake or not. Essentially, it distinguishes one additional “fake” class. The
layers of discriminator use the Leaky ReLU activation function, along with batch normalization.

The generative part of the CGAN network (generator), as shown in Figure 3, consists of three
deconvolutional (or transposed convolutional) layers with a descending amount of volumetric filters.
The upsampling of the activation volumes is achieved by kernel stride, which is equal to 2 in every
layer. ReLU activation function is used after each layer, followed by a batch normalization function.
The output layer uses tanh activation function instead to fit the output into the dataset value range
of [−1, 1].

The generator is conditioned by appending the desired one-hot encoded class vector to the latent
feature vector, containing 200 feature values that were sampled from a Gaussian distribution N (0, 1)
forming an input vector z. The input is first fed through a fully connected layer expanding it to the
shape required by the first deconvolutional layer. The dense layer is also followed by ReLU and batch
normalization functions.

The whole 3D CGAN classifier network, as shown in Figure 4, is constructed by connecting
the generator and discriminator in sequence. During training, the discriminator receives separate
batches of real samples from the training dataset and batches of fake models that were generated by
the generator network. During another step of the same training loop, the generator is trained to
produce realistic examples of the desired class. The generator loss is calculated at the output of the
discriminator, whose parameters are fixed.
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Deconvolution
1 x 323

Reshape
512 x 43

Dense
512 x 43

z
200 + 10

Deconvolution
256 x 83

Deconvolution
128 x 163

210 x 512 x 43
weights

256 x 43 filters
strides = 2

128 x 43 filters
strides = 2

1 x 43 filter
strides = 2

noise

class

Figure 3. Architecture of the generator network. Input vector z consisting of a gaussian noise vector
and a condition (class) vector is expanded in a fully connected stage and then is deconvoluted three
times with batch normalization and ReLU activation function in between.

ModelNet10

[z, class]

[fake, class]Generator

Discriminator / Classi�er

Dense Deconvolutions

Convolutions Dense

Figure 4. Architecture of the whole 3D conditional generative adversarial network classifier. Generator
and discriminator are connected sequentially. The discriminator is fed both real (green) and fake
(orange) examples during training.

The loss function chosen to train the discriminator, as shown in (2), is a standard
categorical cross-entropy.

LD = −
M

∑
i=1

C+1

∑
j=1

y∗(i)j log(ŷ∗(i)j ) (2)

An extended target (ground truth) vector y∗ is constructed in order to include both fake-real
discrimination error and classification error, as shown in (3). This is necessary for the adversarial
training of both the generator and the discriminator so that the generator is taught to produce realistic
samples. Without this extension, the generator is only trained to generate noise that will be categorized
into the desired class. While this was also found to improve the accuracy of the network, the benefit
was smaller when compared to the architecture using the extended ground truth vector. The idea
behind this methodology is that the generator assists the discriminator-classifier to learn to utilize
realistic features that are discovered and propagated from the generator network. Therefore, it is
necessary to make sure that the features learned by the generator are transferrable to the real samples
from the dataset.

y∗(i) =

{
[0, y(i)] real

[1, 0, 0, . . . , 0] f ake
(3)

For real samples, a single zero is prepended to the class label from the dataset. In the case of
generated samples, the target is a C + 1 long vector, with the first element (the "fake" class) set to one
and the rest to zero.
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For the generator, the loss function is chosen to minimize the "fake" output of the discriminator
as well as achieve the class output according to the conditioning vector provided to generate the
sample. The generator loss function formula is essentially identical to the discriminator loss with a real
example. The only difference is the true class vector, which is created randomly, instead of sampling it
from the dataset, and used both as generator input (concatenated with noise vector) and as the target
vector when compared with the discriminator output.

An alternative loss function we experimented with is a modified Wasserstein loss function [46]
shown in (4) and (5).

Lw
D =

1
M

M

∑
i=1

D(x(i))− 1
M

M

∑
i=1

D(G(z(i)))−

− γ
M

∑
i=1

C

∑
j=1

y(i)
j log(ŷ(i)

j )

(4)

Lw
G =

1
M

M

∑
i=1

D(G(z(i)))− γ
M

∑
i=1

C

∑
j=1

y(i)
j log(ŷ(i)

j ) (5)

In these formulas, M stands for the number of samples (in a minibatch or total), C is the number
of classes in the dataset, x is a vector of training data samples, y is a vector of one-hot encoded training
data labels, ŷ is the classifier prediction, and γ is a hyperparameter that is used to tune the weight
of the classification loss term during training. D is the discriminator and G the generator function.
The output of the discriminator function referred to as D is the logit value of the "fake" class output of
the discriminator. This formula further decouples the discrimination and classification objectives and
allows for more competition, which can be tweaked by the γ parameter. The ADAM optimizer [47] is
used to train both generator and discriminator.

5.3. Training

The training is concurrently performed for all three models. In each training epoch, the training
data from the ModelNet10 dataset containing all 10 classes are shuffled and split into minibatches of
16 samples. Each minibatch is then fed into the plain and augmented CNN classifiers, as well as the
discriminator. The discriminator is supervisedly trained in two stages, first with the training data and
then with generated ’fake’ data. In each stage, it is trained for both of its objectives—discrimination
and classification in one weight update step (the loss function takes both objectives into account).
This fake-real separation of gradient calculation has been shown to improve training stability [21].
Experiments using both approaches (separating or mixing real and fake data) have been conducted;
however, no significant difference has been observed. One-sided label smoothing is also utilized to
improve the model’s resistance to overfitting.

6. Results and Discussion

The classification accuracy on the ModelNet10 dataset is the main evaluation criterion of the
designed models. We also examine the generative performance of the GAN model in order to verify
whether the performance benefit is not caused by some other effect unrelated to the learned latent
representation.

6.1. Classification

All three models have been evaluated while using the test data from the ModelNet10 dataset.
Classification accuracy, as well as mean average precision, have been calculated. The results are shown
in Table 1. Several other modern models utilizing generative modeling with published ModelNet10
results are also included in the table. The results show that generative enhancement of a very simple
convolutional classifier (plain CNN) brings its average precision close to the state-of-the-art classifiers.
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The augmented CNN classifier also shows improvement over the plain CNN, but the difference is
not as significant as between the plain CNN and GAN. This suggests that the benefits of generative
enhancement do not only stem from its augmentative effect on the dataset. Some of the features
learned to discriminate between fake and real examples are also likely utilized during the classification,
which improves accuracy. An experiment (labeled as ’no-fake’) shows a slightly lesser improvement
of accuracy when training the model without using the extended ground truth vector shown in (3),
therefore non-adversarially.

Table 1. Comparison of classification accuracy and mean average precision (Mean AP) score of
generative modelling-based classifier architectures validated on the ModelNet10 dataset [19]. These are
the results from the public ModelNet leaderboard. Some of the models do not publish their Mean AP.

Accuracy [%] Mean AP [%]

VRN Ensemble [13] 97.14

Achlioptas et al. [14] 95.40

VIPGAN [48] 94.05 90.69

Primitive-GAN [15] 92.20

3D-GAN [10] 91.00

Plain CNN (ours) 83.04 83.75

Augmented CNN (ours) 84.58 86.31

GAN Classifier (ours) 89.21 89.18

GAN Classifier no-fake (ours) 87.11 90.04

The ROC plot in Figure 5 shows another comparison of classification performance of our three
models and the confusion matrix in Figure 6 provides some additional insight into classification
performance.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Linear ROC curves of the compared classifiers

GAN Classifier, AuC = 0.9823
Plain CNN, AuC = 0.9714
Augmented CNN, AuC = 0.9795

10 4 10 3 10 2 10 1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Semilogarithmic ROC curves of the compared classifiers

GAN Classifier, AuC = 0.9823
Plain CNN, AuC = 0.9714
Augmented CNN, AuC = 0.9795

Figure 5. Linear and semilogarithmic ROC curves for each of the three designed models. These curves
are calculated by micro-averaging the curves for each class.
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Figure 6. Confusion matrix of the GAN classifier evaluated on the ModelNet10 testing set. The values
are normalized in [0, 1] range per each true label. It shows the most misclassified classes are desks,
tables, and nightstands. This can most likely be attributed to low resolution and non-identical scale of
the voxel models caused by the voxelization tool scaling the mesh models to fit the voxel grid volume.

Although the accuracy of the designed models is not superior to the state of the art, the results
show that training a classifier inside a GAN model can produce a significant accuracy improvement
when compared to conventional training. In our case, the relative improvement from plain CNN to
the GAN-trained classifier was 7.43%. This is likely one of the simplest types of classifiers that is
compatible with this methodology, clearly demonstrating its principle and benefits. However, the
advantage of this methodology is that it is general enough to be applicable to many of the existing
compatible classifiers that already achieve significantly better performance than the models used in
our demonstration. The improvement of 7.43% that is shown on the simple 3D CNN is obviously not
guaranteed in every case; however, it is likely that some of the more sophisticated classifiers can also
benefit from this enhancement, albeit with a lower relative performance increase.

Comparing the augmented CNN to the GAN classifier, the difference is smaller (5.47% relative
improvement), however still significant. This suggests that the improvement is caused not only by
introducing noise to the dataset. It also means that the generator is not just a data augmentation
mechanism, because, in that case, the augmented CNN and GAN classifier should achieve similar
performance. The results suggest that there exists some form of interaction between the generative and
classifying part of a conditional GAN network that improves the classification accuracy of the model.

The interactions also likely improve the generative performance, as other researchers recommend
using class labels, if available when training a GAN network in general [21].

Additionally, a series of experiments was performed in order to verify the justification of the γ

hyperparameter in loss functions (4) and (5) and to find the ideal value. Despite the lower resulting
performance of the models that were trained using the Wasserstein loss function, the results (shown
in Figure 7) suggest that a slight bias towards classification objective can improve the classification
performance. The ideal value of the hyperparameter was found to be around 10. Figure 8 shows the
plots of discriminator and generator Wasserstein loss functions (4) and (5).
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Figure 7. Classification performance of the 3D Conditional Generative Adversarial Network (3D
CGAN) classifier trained using the Wasserstein loss function shown in (4) and (5) with different values
of γ.

Discriminator Loss (Wasserstein) Generator Loss (Wasserstein)

Figure 8. Plots of discriminator and generator loss trained using the Wasserstein loss functions with
γ = 10.The x axis shows number of training steps. The darker lines in the plots show the exponential
moving average of the actual values represented by the lighter lines.

6.2. Object Generation

We also examined the output of the generator in order to verify the model is working as expected.
Although the quality of the generated examples was not our primary goal, it can be an indicator of
errors within the architecture design or implementation. Figure 9 shows several generated examples.
Mode collapse, a common pitfall for generative models, has been a major problem during our
experimentation. It is a situation, when the generator only learns to produce a small subset of
the real sample distribution. It manifests itself as low diversity of generated samples, where changes
in the input vector z have almost no effect on the output of the generator. Several solutions have been
tested, such as using the Wasserstein loss function; however, the most significant improvement of
both mode collapse and general convergence of the network was caused by initializing the ADAM
optimizer with a very low learning rate α ≈ 10−4. As can be seen, there is visible intra-class variance
in the output of the generator. Although some noise and artifacts are also produced, it apparently does
not cause any adverse effects during classification aside from the lower visual quality of the output.

While we mostly focused on the classification of the samples, the network could be modified in
order to support other tasks, such as instance identification. In our case, the conditional generator is
only trained to generate a sample from a particular class, without other requirements. However, by
introducing a loss term comparing the input of the generator with, for example, one of the hidden
layers of the classifier, we could similarly create a generatively enhanced identifier. Such a network
would not only classify a sample, but would also produce a "recipe" (latent vector) for the generator
to re-create it. It would allow, for example, generating multiple original examples looking similar to
a provided model by applying slight perturbations to the extracted latent vector. Such an approach
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could be used to enhance other kinds of deep-learning networks, such as those used for instance
identification, inpainting, or shape completion.

Figure 9. Output of the conditional generator using random input noise. The class condition vector
has been constructed so that the rows contain examples from these ModelNet10 classes (top to bottom):
toilet, bed, chair, and sofa. The first column contains a random example from the training set. The
output of the generator is a 323 voxel grid visualized using our voxel rendering pipeline [43].

6.3. Performance and Timing

We also investigated the computational performance of the proposed models. As training has
been performed concurrently, we can compare the accuracy evolution over training steps or epochs
instead of time. This reveals the data efficiency of the models instead of computing efficiency. On our
hardware (Intel i7 6700 K CPU, 16 GB RAM, Nvidia GeForce GTX 1080), the plain CNN classifier
achieved its peak performance at around step 15 k. The augmented CNN classifier took 40 k steps to
reach its peak. The GAN classifier reached its maximum around step 88 k. This would not translate
proportionately to training time if the models were trained separately, however it shows the complexity
gained by generative enhancement incurs a significant hit to the training speed.

Inference speed has been separately measured and the results confirm the expected outcome:
the generative enhancement does not significantly modify the classifier and its complexity does
not increase enough to measurably impact the inference computational performance. The testing
set containing 908 samples has been classified in 830 ms (plain CNN), 826 ms (augmented CNN),
and 786 ms (CGAN). This translates to 1092, 1098, and 1153 samples per second, respectively.

7. Conclusions and Future Work

This paper proposes a methodology for synthesizing novel 3D image classifiers by generative
enhancement of existing non-generative classifiers. We experimentally verified its viability and
evaluated its performance in a basic application scenario.

The results of the performed experiments support the initial idea, that a supervisedly trained
conditional GAN network (i.e., generatively enhanced convolutional classifier) enables knowledge
transfer between the generator and a classifying discriminator that significantly improves its
classification accuracy. The underlying mechanism of these interactions is not clear and it could
be the subject of further theoretical research.
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One of the possible explanations for the classification performance improvement is that the
generator introduces noise to the training process of the discriminator/classifier and, therefore, makes
it more robust. This explanation is not completely sufficient as the same effect occurs in the augmented
CNN model which does not indicate the same improvement. The same applies to another explanation,
which points to the data augmentation that is caused by the generator producing realistic but not
identical training examples and, therefore, improving the robustness of the classifier. This should
also manifest in the augmented CNN model which, however, falls short of the CGAN classifier
performance.

The results of this study suggest a potential for the generative enhancement methodology,
enhancing other existing well-performing classifiers by embedding them within a generative
architecture. Our next efforts will focus on exploring other candidates for this transformation and
evaluating the resulting architectures. Additionally, we plan to perform a physical experiment in order
to verify the real-life application potential of the newly created models. For this purpose, a custom
rotary table 3D scanner is being designed to acquire scans of real-life objects, which will be used for
the model evaluation. These efforts, including the existing hardware and software solutions, are part
of the Technicom project [49].

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. The datasets analyzed
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