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Abstract: Four variants of elastic optical data center network (DCN) architectures based on optical
circuit switching were proposed in an earlier study. The necessary and sufficient values of frequency
slot units (FSUs) per fiber required for these four DCNs in the sense of there being strictly nonblocking
(SNB) were derived, but no results in the sense of being rearrangeable nonblocking (RNB) were
presented. In reality, only limited bandwidths are available, and reducing the value of FSUs per
fiber has become a critical task to realize nonblocking optical DCN architectures in practice. In this
paper, we derive the sufficient value of FSUs per fiber required for the four DCNs to be RNB by two
multigraph approaches. Our results show that the proposed RNB conditions in terms of FSUs per
fiber for a certain two of the four DCNs reduce their SNB results down to at least half for most cases,
and even down to one-third.

Keywords: data center networks; elastic optical networks; rearrangeable nonblocking (RNB);
edge-coloring

1. Introduction

Recently, high transmission speed between the servers in data centers [1] has become an increasing
requirement to meet the needs of current applications such as cloud computing and data mining.
To support such high transmission speed, various data center network (DCN) architectures have
been proposed [1–4]. One among them integrates an electronic packet switching (EPS) network and
an optical circuit switching (OCS) network [1,2,4]. In such a hybrid electrical/optical architecture,
both the EPS and OCS networks connect to each top-of-rack (ToR) switch simultaneously, where EPS
serves small flows and OCS serves big flows. It has been shown that such a hybrid electrical/optical
architecture reduces the power consumption and the operating expense [5,6].

An elastic optical network (EON) [7–11] is a candidate for being the OCS part of a DCN [2]. In
EONs, flexible frequency grids proposed by ITU-T [12] are used, and a different number, say m, of
adjacent frequency slot units (FSUs) are assigned to an optical connection, where m is usually upper
bounded by a value, say mmax. The bandwidth of an FSU is 12.5 GHz [12], and a connection is called an
m-slot connection if it is assigned m adjacent FSUs. Four variants of optical DCN architectures based
on elastic optical switches, called DCN1, DCN2, DCN3 and DCN4, were proposed in [13]. The four
DCN architectures are similar to wavelength-space-wavelength (W-S-W) networks [8–10], which are
Clos-like architectures, but they do not adopt costly tunable wavelength converters as W-S-W networks
do. In addition, the maximum number of connections generated from each input fiber in the four DCNs
and W-S-W networks is limited due to the different components used. This leads to the nonblocking
conditions derived for these four DCNs being different from those derived for W-S-W networks.

When a network is called nonblocking, it is in reference to the nonblocking traffic assigned to
the network [14]. To prevent excessive blocking of connections, the network should be nonblocking.
A network is called strictly nonblocking (SNB) if a connection will never be blocked by existing
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connections, and a network is called rearrangeable nonblocking (RNB) if a new connection can be
accommodated by rearranging some existing connections [14]. An RNB network is also defined as one
where any set (or frame) of connections can be routed simultaneously. The necessary and sufficient
number of FSUs per fiber required for these four DCNs in the sense of their being SNB were given
in [13], but no results in the sense of being RNB were proposed.

The four DCNs usually require a great number of FSUs per fiber to be SNB, especially when mmax

is growing. However, the resource of FSUs per fiber in practical systems is limited since for the EON
switches, and the C-band has only around 350 available FSUs (1530–1565 nm). Reducing the value of
FSUs per fiber is a challenging task, and this issue has been studied in various research on EONs [8–11].
In order to reduce the value of FSUs per fiber to realize nonblocking optical DCN architectures in
practice, we studied the four DCNs in the sense of being RNB in this paper, and derived the sufficient
number of FSUs per fiber by adopting two multigraph approaches. Our results show that two of the
proposed RNB conditions reduced the SNB results significantly.

The rest of the paper is organized as follows: In Section 2, we give a brief review of the four DCN
architectures and introduce the notations used in the paper. In Section 3, we prove the RNB conditions
for the DCN1 and DCN3 networks. In Section 4, we prove the RNB conditions for the DCN2 and
DCN4 networks. Section 5 concludes the paper.

2. Preliminaries and Notations

In this section, we will review the four elastic optical DCN architectures proposed in [13] and
introduce the notations used in this paper. The four elastic optical DCN architectures require
bandwidth-variable, waveband-selective switches (BV-WSSs) [15,16], bandwidth-variable space
switches (BV-SSs), passive combiners (PCs) and ToR switches. Both BV-WSSs and BV-SSs, the
latter of which consist of BV-WSSs and PCs, can switch wavebands with flexible bandwidths without
spectrum conversion capabilities. Each ToR switch consists of q bandwidth-variable transponders
(BVTs), which are divided into two parts: the transmission part, denoted by BVT-T, and the receiving
part, denoted by BVT-R. The part of each ToR switch consisting of q BVT-Ts (or BVT-Rs) and a PC (or
BV-WSS) is denoted by ToR-T (or ToR-R) (see Figure 1). A BVT-T can use any m consecutive FSUs of its
output; i.e., the frequency of its output is arbitrarily tunable. In addition, a BVT-T is connected to a
BVT-R in a strict one-to-one manner, and thus a BVT-T does not simultaneously send connections to
two or more BVT-Rs. All connections generated from the same ToR switch occupy different FSUs, so
that all of them can be sent through one fiber connecting the ToR-T (or ToR-R) to the OCS network.
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Figure 1. A ToR switch consisting of q BVTs. 

The DCN1 architecture, denoted by DCN1(r, q, k), is given in Figure 2a. A DCN1(r, q, k) network 
contains one r × r BV-SS and r ToR switches, each of which consists of q BVT-Ts (or BVT-Rs) and is 
attached to an input (or output) fiber with k FSUs of the BV-SS. The DCN2 architecture, denoted by 
DCN2(s, r, q, k), is a variant of DCN1(r, q, k) and is given in Figure 2b. A DCN2(s, r, q, k) network 
contains one r × r BV-SS and r groups of s ToR switches, which are combined by one PC into (or 
directed from one BV-WSS to) one input (or output) fiber connecting to the BV-SS. We use ToR-T (or 
ToR-R) u-i to denote the ith ToR-T (or ToR-R) in group u, where 1 ≤ u ≤ r and 1 ≤ i ≤ s. The DCN3 
architecture is denoted by DCN3(r, q, k, p), and it contains p r × r BV-SSs and r ToR switches (Figure 
3a). The output (or input) fiber of ToR-T u (or ToR-R v) is connected to one BV-WSS (or PC) which 
connects to the uth input (or vth output) of each BV-SS. Finally, the DCN4 architecture is denoted by 
DCN4(s, r, q, k, p), and it is obtained from a DCN2(s, r, q, k) network by adopting p BV-SSs to connect 
ToR-Ts and ToR-Rs (Figure 3b). 

Figure 1. A ToR switch consisting of q BVTs.

The DCN1 architecture, denoted by DCN1(r, q, k), is given in Figure 2a. A DCN1(r, q, k) network
contains one r × r BV-SS and r ToR switches, each of which consists of q BVT-Ts (or BVT-Rs) and is
attached to an input (or output) fiber with k FSUs of the BV-SS. The DCN2 architecture, denoted by
DCN2(s, r, q, k), is a variant of DCN1(r, q, k) and is given in Figure 2b. A DCN2(s, r, q, k) network
contains one r × r BV-SS and r groups of s ToR switches, which are combined by one PC into (or
directed from one BV-WSS to) one input (or output) fiber connecting to the BV-SS. We use ToR-T (or
ToR-R) u-i to denote the ith ToR-T (or ToR-R) in group u, where 1 ≤ u ≤ r and 1 ≤ i ≤ s. The DCN3
architecture is denoted by DCN3(r, q, k, p), and it contains p r × r BV-SSs and r ToR switches (Figure 3a).
The output (or input) fiber of ToR-T u (or ToR-R v) is connected to one BV-WSS (or PC) which connects
to the uth input (or vth output) of each BV-SS. Finally, the DCN4 architecture is denoted by DCN4(s, r,
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q, k, p), and it is obtained from a DCN2(s, r, q, k) network by adopting p BV-SSs to connect ToR-Ts and
ToR-Rs (Figure 3b).Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 8 

BV-SS

3 4 k...

3 4 k...

...

ToR-T 1

...

ToR-T r

...

ToR-R 1

...

ToR-R r

1 2

1 2

3 4 k...

3 4 k...

1 2

1 2

 

BV-SS

2 3 k...

2 3 k...

...
...

PC

PC

ToR-T 1-1 2 3 k...

...
ToR-T 1-s 2 3 k...

ToR-T r-1 2 3 k...

...
ToR-T r-s 2 3 k...

ToR-R 1-1...
ToR-R 1-s

ToR-R r-1...
ToR-R r-s

BV-
WSS

BV-
WSS

1

1

1

1

1

1

2 3 k...

2 3 k...

1

1

2 3 k...

2 3 k...

2 3 k...

2 3 k...

1

1

1

1

 
(a) (b) 
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ToR-R) consists of q BVT-Ts (or BVT-Rs), as given in Figure 1.

The four DCN architectures serve m-slot connections with m ≤ mmax. To guarantee that each fiber
occupying k FSUs is sufficient to carry connections served by all BVT-Ts, the value of k is assumed to
be k ≥ qmmax (or k ≥ sqmmax) for the DCN1 and DCN3 (or DCN2 and DCN4) architectures. An m-slot
connection from a BVT-T in ToR-T u (or ToR-T u-i) to a BVT-R in ToR-R v (or ToR-R v-j) in a DCN1 or
DCN3 (or a DCN2 or DCN4) is denoted by (u, v, m) (or (u-i, v-j, m)), where 1 ≤ u, v ≤ r and 1 ≤ i, j ≤ s.

FSUs in each fiber are numbered from 1 to k. To set up a connection (u, v, m) (or (u-i, v-j, m)), the
same sets of m adjacent FSUs must be found in both the fiber connecting ToR-T u (or ToR-T u-i) with
one BV-SS and the fiber connecting this BV-SS with ToR-R v (or ToR-R v-j). If those sets do not exist,
the connection is blocked. The necessary and sufficient values of k for DCN1 to DCN4 in the sense of
being SNB were given in [13]. We quote the SNB results for the DCN1 and DCN2 networks in Lemmas
1 and 2 for further comparison in Sections 3 and 4.

Lemma 1. A DCN1(r, q, k) network for m-slot connections with 1 ≤ m ≤ mmax is SNB if and only if

k ≥ kSNB = 2(q − 1)·(2mmax − 1) + mmax (1)

Lemma 2. A DCN2(s, r, q, k) network for m-slot connections with 1 ≤ m ≤ mmax is SNB if and only if
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k ≥ k′SNB = 2(sq − 1)·(2mmax − 1) + mmax (2)

3. RNB DCN1 and DCN3 Networks

In this section, we first consider the RNB DCN1 network and then the RNB DCN3 network. In
order to derive the sufficient value of k for a DCN1(r, q, k) network in the sense of being RNB, we
propose a multigraph approach and a routing algorithm in the following.

3.1. Multigraph Approach and Routing Algorithm

Given a DCN1(r, q, k) network and a frame F of connections, we propose Multigraph Approach A,
given below, to convert the DCN1(r, q, k) network for frame F into a multigraph GF.

Multigraph Approach A:
Let each left vertex u (or right vertex v) in multigraph GF be ToR-T u (or ToR-R v) of the DCN1(r,

q, k) network. In multigraph GF, there is an edge connecting vertexes u and v if there is an m-slot
connection from a BVT-T in ToR-T u and it is destined to a BVT-R in ToR-R v, i.e., (u, v, m) (see Figure 4a).
Note that we call GF a multigraph [17] because multiple connections between ToR-T u and ToR-R v are
allowed, and thus there could be more than one edge connecting vertexes u and v in GF.
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Figure 4. Given a DCN1(4, 3, 9) network and a frame F of connections (1, 1, 3), (1, 2, 3), (1, 3, 2), (2, 2, 2),
(2, 4, 3), (3, 1, 1), (4, 3, 2) and (4, 4, 2): (a) The corresponding multigraph GF constructed by Multigraph
Approach A. Note that GF is edge-colored by colors 1, 2, and 3 (marked in red), and left and right
vertices are marked in blue and black, respectively. (b) A routing of connections in frame F according
to Routing Algorithm A in association with the edge-coloring of GF.

In Property 1, we show that GF is q-edge-colorable.

Property 1. Given a DCN1(r, q, k) network and a frame F of connections, let GF be the corresponding
multigraph constructed by Multigraph Approach A. Multigraph GF is q-edge-colorable.

Proof. Let ∆(GF) be the maximum degree of GF. Since each ToR switch consists of q BVT-Ts and q
BVT-Rs, at most q m-slot connections can be generated from a ToR-T (or destined to a ToR-R). Thus, we
have ∆(GF) ≤ q. From the construction of GF, we can see that GF is a bipartite multigraph. In addition,
GF is q-edge-colorable according to graph theory [17] if GF is a bipartite multigraph with ∆(GF) ≤ q. �

In a DCN1(r, q, k) network, we use Iu (or Ov) to denote the fiber connecting ToR-T u (or ToR-R v)
and the BV-SS, where k ≥ qmmax and 1 ≤ u, v ≤ r. In addition, we partition each fiber with k FSUs into
q parts, each of which consists of mmax consecutive FSUs. Each part is called a window, and these q
windows, denoted by Wl for 1 ≤ l ≤ q, are numbered from 1 from left to right. We use |Wl| to represent
the size of window Wl, and also use Iu,l (or Ov,l) to represent the lth window in fiber Iu (or Ov) for 1 ≤
u, v ≤ r and 1 ≤ l ≤ q.
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Recall that GF is q-edge-colorable (Property 1). Let colors 1, 2, . . . , q be adopted to edge color GF.
We route each (u, v, m) for the RNB condition [14] using Routing Algorithm A given below.

Routing Algorithm A:
Connection (u, v, m) is routed in windows Iu,c and Ov,c if color c is assigned to the corresponding

edge of (u, v, m) in GF (see Figure 4b).

3.2. RNB Sufficient Conditions

A sufficient value of k for a DCN1(r, q, k) network in the sense of being RNB is derived in
Property 2.

Property 2. A DCN1(r, q, k) network for m-slot connections with 1 ≤ m ≤ mmax is RNB if

k ≥ kRNB = q·mmax (3)

Proof. This property holds if Routing Algorithm A is feasible, and Routing Algorithm A is feasible if
each m-slot connection can be carried by the corresponding windows. Since m ≤ mmax, each m-slot
connection can be carried by any window Wl if |Wl| = mmax for 1 ≤ l ≤ q, which implies that each fiber
has k = q·mmax FSUs. Therefore, when Routing Algorithm A is applied, a DCN1(r, q, k) network with k
≥ q·mmax is RNB. �

Comparing Equation (3) with Equation (1), we have kRNB/kSNB ≤ 1/2 for mmax ≥ 2 and q ≥ 3.
Property 2 implies that kRNB reduces the SNB DCN1 result given in [13], namely, kSNB, down to at
least half for most cases. In addition, numerical results are given in Table 1 which show that kRNB can
reduce kSNB down to as low as one third, for example, the cases with mmax ≥ 6 and q = 4, and the cases
with mmax ≥ 4 and q ≥ 8.

Table 1. Numerical results of k required for being an SNB or RNB DCN1(r, q, k) network for m-slot
connections with q = 4, 8, 10 and 1 ≤ m ≤ mmax, where kSNB and kRNB are given in Equations (1) and
(3), respectively.

mmax
q = 4 q = 8 q = 10

kSNB kRNB kSNB kRNB kSNB kRNB

2 20 8 44 16 56 20

4 46 16 102 32 130 40

6 72 24 160 48 204 60

8 98 32 218 64 278 80

10 124 40 276 80 352 100

The sufficient condition for being an RNB DCN1(r, q, k) network (Property 2) is also the necessary
condition if only one connection rate mmax is considered (Property 3).

Property 3. Suppose only one connection rate, mmax, is considered. Then, the DCN1(r, q, k) network is
RNB if and only if k ≥ kRNB = q·mmax.

Proof. The sufficient condition of this property is true since it is a special case with one connection rate
of Property 2. In addition, the necessary condition holds when q connections (u, u, mmax) for 1 ≤ u ≤ r
are generated from each ToR-T u. �
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From the architectures of the DCN1 and DCN3 networks (see Figures 2a and 3a), we can see that
a DCN1(r, q, k) network for k ≥ q·mmax functions the same as a DCN3(r, q, k, p) network with p = 1.
Thus, we derive Property 4 immediately.

Property 4. A DCN3(r, q, k, p) network for m-slot connections with 1 ≤ m ≤ mmax and k ≥ q·mmax is
RNB if p ≥ 1.

Proof. This property is true for two reasons: i) a DCN3(r, q, k, p) network with p = 1 functions as well
as a DCN1(r, q, k) network, and ii) a DCN1(r, q, k) network for k ≥ q·mmax is RNB (Property 2). �

For a DCN1(r, q, k) (or DCN3(r, q, k, p)) network, recall that the resource of FSUs per fiber in
practical systems is limited, namely, k ≤ 350. This implies that to have an RNB DCN1(r, q, k) (or DCN3(r,
q, k, p)) network for m-slot connections with 1 ≤ m ≤ mmax in the real word, we also need q·mmax ≤ 350
due to Property 2 (or Property 4).

4. RNB DCN2 and DCN4 Networks

Similar to Section 3, we first consider the RNB DCN2 network and then the RNB DCN4 network.
For the DCN2 network (Figure 2b), Iu-i (or Ov-j) is used to represent the fiber connecting ToR-T u-i (or
ToR-R v-j) and the uth PC (or vth BV-WSS), and I’u (or O’v) is used to represent the fiber connecting the
uth PC (or vth BV-WSS) and the BV-SS for 1 ≤ u, v ≤ r and 1 ≤ i, j ≤ s. Next, we will propose Multigraph
Approach B and Routing Algorithm B for the DCN2 network in the sense of being RNB by modifying
Multigraph Approach A and Routing Algorithm A, respectively.

Multigraph Approach B:
Given a DCN2(s, r, q, k) network and a frame F of connections, multigraph G’F is constructed in

the following way. Let each left vertex u (or right vertex v) in G’F be the uth (or vth) group of s ToR-Ts
u-i (or ToR-Rs v-j) for 1 ≤ i, j ≤ s. An edge is added between two vertexes u and v in G’F if there is an
m-slot connection from the uth ToR-T group destined to the vth ToR-R group (see Figure 5a).
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Figure 5. Given a DCN2(2, 2, 2, 8) network and a frame F of connections (1-1, 2-1, 2), (1-1, 2-2, 1), (1-2, 
1-1, 2), (1-2, 1-2, 1), (2-1, 1-1, 2) and (2-2, 1-2, 2): (a) The corresponding multigraph G’F generated by 
Multigraph Approach B. Note that G’F is edge-colored by colors 1, 2, 3 and 4 (marked in red font), and 
left and right vertices are marked in blue and black, respectively. (b) A routing of connections in frame 
F according to Routing Algorithm B in association with the edge-coloring of G’F. 
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Figure 5. Given a DCN2(2, 2, 2, 8) network and a frame F of connections (1-1, 2-1, 2), (1-1, 2-2, 1), (1-2,
1-1, 2), (1-2, 1-2, 1), (2-1, 1-1, 2) and (2-2, 1-2, 2): (a) The corresponding multigraph G’F generated by
Multigraph Approach B. Note that G’F is edge-colored by colors 1, 2, 3 and 4 (marked in red font), and
left and right vertices are marked in blue and black, respectively. (b) A routing of connections in frame
F according to Routing Algorithm B in association with the edge-coloring of G’F.
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Since each group of ToR switches can generate at most sq m-slot connections, we derive that ∆(G’F)
≤ sq, and thus G’F is sq-edge-colorable [17]. Let colors 1, 2, . . . , sq be used to edge-color G’F. We adopt
Routing Algorithm B, shown below, to route each (u-i, v-j, m) in association with the edge-coloring of
G’F for the RNB condition.

Routing Algorithm B:
Connection (u-i, v-j, m) is routed in windows Iu-i,c, I’u,c, O’v,c and Ov-j,c if color c is assigned to the

corresponding edge of (u-i, v-j, m) in G’F (see Figure 5b).
Similar to Properties 2–4, we have Properties 5–7, as follows.

Property 5. A DCN2(s, r, q, k) network for m-slot connections with 1 ≤ m ≤ mmax is RNB if

k ≥ k’RNB = sq·mmax (4)

Proof. The proof is similar to that of Property 2. �

Property 6. Suppose only one connection rate, mmax, is considered. Then a DCN2(s, r, q, k) network is
RNB if and only if k ≥ k’RNB = sq·mmax.

Proof. The proof is similar to that of Property 3. �

Property 7. A DCN4(s, r, q, k, p) network for m-slot connections with 1 ≤ m ≤ mmax and k ≥ sq·mmax is
RNB if p ≥ 1.

Proof. From the topology of the DCN4 architecture (see Figure 3b), we can see that a DCN4(s, r, q, k,
p) network with p = 1 and k ≥ sq·mmax functions as well as a DCN2(s, r, q, k) network. According to
Property 5, the property holds immediately. �

Comparing Equation (2) with Equation (4), we have k’RNB/k′SNB ≤ 1/2 for mmax ≥ 2 and sq ≥ 3.
Property 5 implies that k’RNB reduces the SNB DCN2 result given in [13], namely, k’SNB, down to at
least half for most cases, and even down to one third. In addition, numerical results are given in
Table 2, which shows that k′RNB can reduce k′SNB down to as low as one third, for example, all the
cases with mmax ≥ 4, s = 3 and q ≥ 4. Again, due to the limited resource of FSUs per fiber in practical
systems, to have an RNB DCN2(s, r, q, k) (or DCN4(s, r, q, k, p)) network for m-slot connections with 1
≤ m ≤ mmax in the real word, we need sq·mmax ≤ 350 due to Property 5 (or Property 7).

Table 2. Numerical results of k required for being an SNB or RNB DCN2(s, r, q, k) network for m-slot
connections with s = 3, q = 4, 8, 10 and 1 ≤ m ≤ mmax, where k’SNB and k’RNB are given in Equations (2)
and (4), respectively.

mmax
s = 3, q = 4 s = 3, q = 8 s = 3, q = 10

k’SNB k’RNB k’SNB k’RNB k’SNB k’RNB

2 68 24 140 48 176 60

4 158 48 326 96 410 120

6 248 72 512 144 644 180

8 338 96 698 192 878 240

10 428 120 884 240 1112 300
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5. Conclusions

Four variants of elastic optical DCN architectures, called DCN1, DCN2, DCN3 and DCN4, were
proposed in [13]. The four DCNs in the sense of being SNB usually require a large number of FSUs per
fiber. To reduce the value of FSUs, we considered the four DCNs in the sense of their being RNB in this
paper. We proposed two multigraph approaches to firstly prove the sufficient number of FSUs per
fiber for these four DCNs in the sense of there being RNB. Our results show that the proposed RNB
conditions in term of FSUs per fiber for the DCN1 and DCN2 networks reduce their SNB results down
to at least half in most scenarios, and even down to one third. In addition, we show that the sufficient
condition for an RNB DCN3 (or DCN 4) network is exactly the same as that derived for an RNB DCN1
(or DCN 2) network. The proposed multigraph approaches can be applied to all Clos-like architectures
for studying RNB conditions.

Funding: This work was supported by the Ministry of Science and Technology, Taiwan, under Contract
MOST 108-2221-E-024-002-MY2.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kachris, C.; Tomkos, I. A survey on optical interconnects for data centers. IEEE Commun. Surv. Tutor. 2012,
14, 1021–1036. [CrossRef]

2. Yoo, S.J.B. Integrated photonic-electronic technologies for next generation data centers and the future internet.
In Proceedings of the 2012 International Conference on Photonics in Switching (PS), Ajaccio, France, 11–14
September 2012.

3. Fiorani, M.; Aleksic, S.; Casoni, M. Hybrid optical switching for data center networks. J. Electr. Comput. Eng.
2014, 2014, 1–13. [CrossRef]

4. Hamza, A.S.; Deogun, J.S.; Alexander, D.R. Wireless communication in data centers: A survey. IEEE Commun.
Surv. Tutor. 2016, 18, 1572–1595. [CrossRef]

5. Ji, P.N.; Kachris, C.; Tomkos, I.; Wang, T. Energy efficient data center network based on a flexible bandwidth
MIMO OFDM optical interconnect. In Proceedings of the 4th IEEE International Conference on Cloud
Computing Technology and Science Proceedings, Taipei, Taiwan, 3–6 December 2012.

6. Kachris, C.; Ji, P.N.; Wang, T.; Tomkos, I. Energy efficient flexible bandwidth OFDM-based data center
network. In Proceedings of the 2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET),
Paris, France, 28–30 November 2012.

7. Lopez, V.; Velasco, L. Elastic Optical Networks: Architectures, Technologies, and Control; Springer International
Publishing: Cham, Switzerland, 2016.
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