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Abstract: Accurate intent detection-based chatbots are usually trained on larger datasets that are not
available for some languages. Seeking the most accurate models, three English benchmark datasets
that were human-translated into four morphologically complex languages (i.e., Estonian, Latvian,
Lithuanian, Russian) were used. Two types of word embeddings (fastText and BERT), three types
of deep neural network (DNN) classifiers (convolutional neural network (CNN); long short-term
memory method (LSTM), and bidirectional LSTM (BiLSTM)), different DNN architectures (shallower
and deeper), and various DNN hyperparameter values were investigated. DNN architecture and
hyperparameter values were optimized automatically using the Bayesian method and random
search. On three datasets of 2/5/8 intents for English, Estonian, Latvian, Lithuanian, and Russian
languages, accuracies of 0.991/0.890/0.712, 0.972/0.890/0.644, 1.000/0.890/0.644, 0.981/0.872/0.712,
and 0.972/0.881/0.661 were achieved, respectively. The BERT multilingual vectorization with the CNN
classifier was proven to be a good choice for all datasets for all languages. Moreover, in the majority
of models, the same set of optimal hyperparameter values was determined. The results obtained in
this research were also compared with the previously reported values (where hyperparameter values
of DNN models were selected by an expert). This comparison revealed that automatically optimized
models are competitive or even more accurate when created with larger training datasets.

Keywords: intent detection; fastText and BERT embeddings; CNN; LSTM; BiLSTM classifiers;
hyperparameter optimization; English; Estonian; Latvian; Lithuanian; Russian

1. Introduction

Our society is not imaginable without virtual assistants and chatbots such as Siri, Alexa, and Cortana.
The AI technology in chatbots is responsible for intelligent human–computer interaction [1]; chatbots
can answer vital questions 24/7 [2,3] and even assist in learning [4].

Usually, chatbots are composed of the following components: natural language understanding
(NLU; responsible for comprehension of user’s questions), dialog management (responsible for a fluent
conversation), content (responsible for chatbot’s properly selected answers), and custom data (that
helps to personalize conversations). The focus of this research is on the NLU module (specifically,
on the intent detection) because comprehension of the structure and meaning of user questions is the
core of smooth operation in any dialog system.

The intent detection task that is a typical example of text classification can be solved with the
rule-based or machine learning (ML) approaches. However, the creation of rules usually requires a lot
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of human labor; rules bind to the domain and scope of specific dialog systems [5–7] and, therefore,
are hardly transferable to new systems.

On the contrary to rule-based approaches, supervised ML (SML) techniques (especially the deep
neural network (DNN)-based techniques) can be chosen instead. In the case of SML, a model (equivalent
to a set of rules) is learned automatically from question–answer pairs as training instances [8,9].
Afterward, the learned model can be used to predict intents from the unseen user’s questions.

The intent detection task can be complicated due to a number of reasons. Language-independent
problems arise due to small training datasets (where intents are covered by only a few questions)
and too-short questions (carrying too little information to describe some intent clearly), whereas
language-dependent reasons (as free word-order in a sentence, inflection of words, grammatical errors,
jargon, abbreviations, or missing diacritics) are more complicated and more difficult to tackle.

In recent years, traditional SML approaches have almost been completely replaced with deep
learning (DL). Moreover, neural vectorization has helped to overcome many language-dependent
problems as well. Tremendous progress in this area has opened opportunities to apply DNNs for
various tasks: image recognition, price prediction, and processing of natural language. In the field
of NLP, DNNs are used for language generation, machine translation, text classification, named
entity recognition, and many other tasks. Moreover, the development of dialogue systems is not an
exception: DNN-based ML methods are used for end-user dialog systems [10–13] and their separate
components [14–17].

DNN methods represent an enormous group of methods, having in mind their different types,
architectures, and hyperparameter values. Therefore, a manual search for optimal DNN-based models
can be very time consuming; moreover, some parameter values simply cannot be investigated as they
are considered to be less effective in the English language. Due to these reasons, we assume that
automatic DNN parameter optimization is the right solution if seeking the most accurate models.
Hence, in this research, parameters of three DNN classifiers (convolutional neural network (CNN);
long short-term memory method (LSTM), and bidirectional LSTM (BiLSTM)), with two types of word
embeddings (fastText and BERT) on three different datasets (containing 2, 5, and 8 intents) for five
different languages (English (EN), Estonian (ET), Latvian (LT), Lithuanian (LV), and Russian (RU))
were tuned automatically. The obtained results are important from the scientific point of view because
(1) a huge number of different DNN modifications were tested to determine the most accurate model;
(2) the investigation was done on English and four more morphologically complex languages (from
the Finno-Ugric, Baltic, and Slavic branches); (3) comparative analysis was possible due to similar
experimental conditions and was performed across different datasets and languages.

2. Related Work

ELIZA is the first keyword-based chatbot invented in 1966 [18]. Instead of answering questions,
ELIZA acted more like a psychotherapist by questioning users based on their responses. Since then,
many different types of chatbots have been created: covering closed, general, or open knowledge
domains; with voice or text communication channels; providing interpersonal or intrapersonal
services; selecting and prompting or generating answers; created with rule-based, retrieval-based,
or ML-based methods.

One big group of chatbots generate answers instead of prompting them to the user. These chatbots
typically function in the machine translation manner, but instead of translating source language texts
into the target language, they “translate” questions to related answers [19–21]. Some of these chatbots
can consider the whole conversation (i.e., previous meaningful utterances) [22] and even mimic
the communication style of a user when generating responses [23]. Despite all the positive things,
generative chatbots are less accurate and require more training data to achieve sufficient accuracy.

On the contrary, intent-detection-based (i.e., classification-based) chatbots do not require large
training datasets and are more accurate compared to generative ones. Intent detectors, like all classifiers,
can be trained using labeled instances in a supervised manner [24] and later be used to predict intents
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from unseen but domain-related questions (more details about various intent detection techniques
can be found in [25]). Supervised classifiers are trained with traditional SML or DL approaches.
Traditional ML methods are usually applied to discrete feature representations as textual (e.g., word
and character n-grams) or syntactic (e.g., part-of-speech tags) features (e.g., research with support
vector machines in [26]).

Nevertheless, major progress in addressing intent detection problems has been made due to DL.
Effective DL-based research presented knowledge distillation and a posterior regularization method to
detect a user’s intent of leaving a service for another service provider (known as a churn detection
problem) on an English microblog dataset [27]: the applied CNN method learns simultaneously from
logic rules and supervised data (represented as random, skip-gram, CBOW, and gloVe embeddings).
The churn detection problem was also successfully tackled in [28]: the CNN method, with bidirectional
GRU and bilingual German and English fastText embeddings, was applied to a conversational English
and German Twitter dataset. Another research direction covers topic-based intent detection problems.
Comparative topic-based intent detection experiments in the English, Estonian, Latvian, Lithuanian
and Russian languages, performed with two methods (i.e., the feed forward neural network and
fastText embeddings with CNN), demonstrated the superiority of CNN [29]. Authors used rather
small datasets (three English benchmark datasets that were also machine translated into Estonian,
Latvian, Lithuanian, and Russian languages) but claimed to achieve state-of-the-art performance.

Previously summarized research works focused on closed-set intent detection problems. However,
there have been some attempts to detect even those intents that have no training data, such as,
e.g., in [30]. Authors have tackled this problem for the English and Chinese languages by applying a
two-fold architecture based on BiLSTM, with multiple self-attention heads to discriminate existing
intents. However, if this cannot determine any intent, emerging intents are detected from the existing
ones (by specifying or generalizing them) using the knowledge transfer method based on a similarity
evaluation. Despite the fact that the majority of intent detection research relies on the assumption that
any intent can be predicted solely from a user’s question, some researchers have offered additional
measures to help clarify the meaning of some questions in further conversation. Such a problem
(which is called a multiturn response problem) is tackled in [31]. Authors use the deep attention
matching network, with stacked attention on text segments with different granularities, and then
extract-matched sentence pairs from the conversational context and the author’s responses. The authors
successfully applied their offered method on the English corpus containing conversations about system
troubleshooting and the Chinese social networking corpus.

In this research, a topic-based intent detection problem is tackled for the English, Estonian, Latvian,
Lithuanian and Russian languages. This work is a continuation of the research presented in [29,32].
In [32], similar DNN hyperparameter tuning was performed; however, it was done on one Lithuanian
dataset only. In contrast, in this research, three different datasets for five different languages are used.
Compared to [29], the purpose of this research is to test more types of DNNs, more architectures,
more options of DNN hyperparameter values, and more word-embedding types. Contrary to [29],
the parameters in our research are tuned automatically by using two hyperparameter optimization
strategies. In comparison to [32], a goal of this work is to determine (1) which choices of methods
(embedding types, classifier types, DNN architectures, and hyperparameter values) boost the most
accuracy for different datasets and languages, (2) if those choices are valid on a dataset-level and/or
a language-level; (3) if there are choices that are equally good for all languages. Compared to [29],
our goal is to determine (1) if the intent detection benefits from automatic hyperparameter optimization
and (2) if the achieved accuracies exceed previously reported ones.

3. Datasets

Tilde’s (www.tilde.com) research interests cover morphologically complex languages, e.g.,
Estonian, Latvian, Lithuanian, and Russian. Unfortunately, labeled datasets for the intent detection
problems are not publicly available or may not even exist for some of these languages. The problem
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was overcome by taking English benchmark datasets and manually translating them into target
languages. Similar datasets (having the same number of instances and intents; the same distribution of
instances among training/testing subsets) contribute to the equalization of experimental conditions
that, in turn, make comparative analysis possible for different languages. A detailed description of
English benchmark datasets can be found in [33]: (1) the chatbot dataset (presented in Table 1) contains
real users’ questions about public transport connections; (2) askUbuntu (Table 2) and (3) webapps
(Table 3) datasets are based on questions from the StackExchange (https://www.stackexchange.com)
platform. It is important to notice that training/testing splits for all these benchmark datasets were
kept the same as in [33], and it is the main reason why the cross-validation has not been performed.
Moreover, having several folds of the same dataset, it would be much more difficult to come up with
the summarized recommendations.

Table 1. Statistics about the chatbot dataset (numbers in brackets present numbers of distinct words).

Intent Numb. of Instances
Numb. of Words

EN ET LT LV RU

Training dataset

FindConnection 57 510 (115) 393 (186) 460 (137) 449 (145) 482 (123)

DepartureTime 43 328 (62) 223 (74) 255 (59) 245 (64) 250 (64)

Testing dataset

FindConnection 71 508 (99) 369 (154) 484 (113) 449 (120) 483 (104)

DepartureTime 35 241 (48) 168 (53) 201 (49) 193 (55) 192 (48)

Table 2. Statistics about the askUbuntu dataset.

Intent Numb. of Instances
Numb. of Words

EN ET LT LV RU

Training dataset

Make Update 10 77 (42) 59 (39) 73 (40) 69 (42) 74 (40)

None 3 17 (16) 13 (12) 13 (12) 13 (12) 15 (14)

Setup Printer 10 109 (67) 77 (57) 85 (65) 83 (60) 93 (62)

Shutdown
Computer 13 96 (61) 67 (48) 78 (61) 74 (53) 87 (65)

Software
Recommendation 17 113 (77) 90 (66) 104 (85) 98 (78) 108 (80)

Testing dataset

Make Update 37 305 (116) 243 (139) 288 (117) 283 (120) 293 (116)

None 5 46 (39) 34 (28) 44 (37) 38 (33) 43 (39)

Setup Printer 13 99 (54) 77 (55) 78 (52) 81 (51) 85 (50)

Shutdown
Computer 14 103 (64) 75 (63) 73 (61) 81 (67) 93 (77)

Software
Recommendation 40 322 (197) 259 (174) 296 (206) 278 (201) 303 (204)

Make Update 37 305 (116) 243 (139) 288 (117) 283 (120) 293 (116)

https://www.stackexchange.com
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Table 3. Statistics about the webapps dataset.

Intent Numb. of Instances
Numb. of Words

EN ET LT LV RU

Training dataset

Change
Password 2 19 (15) 16 (15) 15 (13) 15 (12) 18 (15)

Delete Account 7 50 (20) 36 (19) 40 (19) 38 (17) 42 (21)

Download
Video 1 7 (7) 5 (5) 5 (5) 4 (4) 5 (5)

Export Data 2 16 (13) 13 (12) 17 (15) 13 (11) 19 (16)

Filter Spam 6 43 (36) 38 (37) 43 (39) 42 (38) 42 (37)

Find Alternative 7 40 (33) 35 (30) 34 (29) 35 (30) 38 (32)

None 2 12 (12) 11 (11) 11 (11) 17 (17) 14 (14)

Sync Accounts 3 29 (22) 23 (21) 26 (24) 26 (21) 26 (22)

Testing dataset

Change
Password 6 50 (37) 42 (34) 42 (31) 42 (33) 46 (37)

Delete Account 10 75 (36) 56 (36) 65 (35) 63 (36) 70 (36)

Export Data 3 35 (29) 23 (23) 32 (28) 28 (26) 30 (26)

Filter Spam 14 141 (83) 98 (76) 123 (86) 129 (92) 134 (88)

Find Alternative 16 104 (67) 99 (69) 94 (71) 87 (63) 89 (67)

None 4 35 (33) 26 (26) 32 (32) 31 (31) 34 (32)

Sync Accounts 6 61 (45) 49 (40) 53 (46) 50 (39) 58 (45)

Some language differences can already be seen directly from the tables. For example, the English
language usually has the largest average number of words per instance. English is then followed
by Russian, Lithuanian, and Latvian, whereas Estonian has the smallest (e.g., 510 and 393 of words
covering FindConnection in the training dataset for EN and ET, respectively). If analyzing the distinct
words, Estonian comes first as having the largest number, and English the last. All these observations
can be explained linguistically: the English language has the least complex morphology, and different
morphological forms are expressed with the help of functional words. Estonian and the other three
languages are morphologically complex. Estonian is an agglutinative language (having prefixes,
suffices, and infixes to express inflections); Lithuanian, Latvian and Russian are fusional languages
(allowing the word ending to have several categories depending on the inflection form); all this
contributes to a larger number of different words and their forms.

4. Methodology

4.1. Formal Description of the Task

The intent detection problem is a typical example of a supervised text classification task. Formally,
such a task is determined as follows:

Let D = {d1, d2, . . . , dn} be a set of documents (questions/statements—an input from a user).
Let C = {c1, c2, . . . , cm} be a set of intents (classes). In this research, a closed-set and single-label
classification problem is tackled because each di ∈ D can be labeled with only one cj ∈ C. Let function
η be a classification function that maps documents from the determined domain into their correct
classes: D → C. Let DL

⊂ D be a set of documents for which intents are known. Thus, (di, cj)
pairs are labeled instances used to train a model. Let Γ be a classification method (i.e., classifier, its
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architecture, parameter set) that, from labeled instances, can learn an accurate model (which is the
approximation of η).

The aim of our solving intent detection task is to offer a classification method Γ that can find the
best approximation of η, achieving as high an intent detection accuracy as possible on unseen instances,
i.e., on instances D–DT that were not used for training.

4.2. DNN-Based Classifiers

Training datasets (presented in Section 3) contain labeled instances and, therefore, can be used
to train classifiers in a supervised manner. A binary classification problem will be tackled with the
chatbot dataset (containing only two classes) and multiclass classification with the askUbuntu and
webapps datasets (containing more than two classes).

DL approaches used in various NLP tasks outperform traditional ML and, therefore, allow us to
expect the higher accuracy for our intent detection problems as well. From a whole group of SML
methods, the following DL approaches (that are considered to be the most suitable for text classification
problems) were selected:

• CNN (convolutional neural network; introduced by LeCun [34]) is a DNN used to seek fixed-size
patterns, so-called convolutions. The text has a one-dimensional structure in which sequences
of tokens matter because convolutions are expressed with a sliding window function over these
tokens. By resizing filters and linking their output to different sizes of patterns (consisting
of 2, 3, or more adjacent tokens, so-called n-grams), tokens can be detected and generalized.
The main advantage of the CNN method is that it learns to detect important patterns regardless
of their position in the text. In our experiments, the architecture of the CNN, similar to [35],
has been explored.

• The LSTM (long short-term memory) method (presented by Hochreiter and Schmidhuber [36]) is
an improved version of the recurrent neural network (RNN). An advantage of RNNs over, e.g.,
feed forward neural networks is that RNNs have memory and, therefore, can be effectively applied
on the sequential data (i.e., text). Sometimes, the presence/absence of some patterns (as in a case of
CNN) does not play the major role, but rather, the order of tokens in sequences. However, RNNs
confront a vanishing gradient problem and, therefore, cannot solve tasks that require learning
long-term dependencies. In contrast, the LSTM method contains a “memory cell” that is able to
maintain memory for a longer period of time; integrated gates control what information entering
the “memory cell” is important, to which hidden state it has to be outputted, and when it has to
be forgotten. Hence, LSTM methods are superior to RNNs when applied to longer sequences.

• The BiLSTM (bidirectional LSTM) method (introduced by Graves and Schmidhuber [37]). Like the
LSTM classifier, the BiLSTM is suitable for tasks when a learning problem is sequential. If LSTMs
run an input forward, preserving information only from the past, BiLSTMs analyze sequences in
both directions, i.e., forward and backward; thus, in any hidden state, they preserve information
from the-past-to-the-future and from the-future-to-the-past, respectively.

Experiments with CNN, LSTM, and BiLSTM methods were performed using our implementations
in the Python programming language with the Keras library (Keras: the Python DL library; available
online: https://keras.io/; adjusted to create DL architectures) and the internal TensorFlow engine
(an end-to-end open source ML platform; available online: https://www.tensorflow.org/; used for
developing ML methods, managing large data flows, and performing mathematical operations).

4.3. Vectorization Types

The input/output of DNNs must be numerical. Calculated output neuron values (linked to
separate classes/intents) can indicate how likely each predicted class/intent is. Input neurons linked to
incoming text elements must be numerical in order to apply DNN classifiers (described in Section 4.2)
on top of them. For this reason, word embeddings (also called word vectors) that project words into

https://keras.io/
https://www.tensorflow.org/
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N-dimensional space are used. In our experiments, the highly recommended types of distributional
word embeddings that are able to catch semantic similarities between words were chosen:

• FastText embeddings [38] introduced by Facebook’s AI Research Lab. In our experiments,
separate English, Estonian, Latvian, Lithuanian and Russian fastText embedding models,
cc.en.300.vec, cc.et.300.vec, cc.lv.300.vec, cc.lt.300.vec, and cc.ru.300.vec (the fastText embeddings
were downloaded from https://fasttext.cc/docs/en/crawl-vectors.html), respectively, have been
used. These models are trained on continuous bag-of-words (CBOW) architecture with
position-weights, 300 dimensions, and character n-grams of a window size equal to 5 and
10 negatives [39]. Each fastText word embedding is a sum of sliding symbol n-gram embeddings
composing that word (e.g., the 5-g embeddings <chat, chatb, hatbo, atbot, tbot> compose the word
<chatbot>). Due to this reason, fastText word embeddings can be created even for misspelled
words; moreover, obtained vectors are close to their correct equivalents. It is especially beneficial
for languages having a missing diacritics problem in non-normative texts. Despite the fact that
the Estonian, Latvian, Lithuanian, and Russian languages have the missing diacritics problem in
non-normative texts, datasets in this research contain only normative texts.

• BERT (bidirectional encoder representations from transformers) [40] introduced by Google AI.
This neural-based technique (with multidirectional language modeling and attention mechanisms)
demonstrates state-of-the-art performance on a wide range of NLP tasks, including chatbot
technology. BERT embeddings are robust to disambiguation problems as homonyms are
represented by different word vectors based on their context. In our experiments, the BERT service
(available online: https://github.com/hanxiao/bert-as-service), with the base multilingual cased
12-layer, 768-hidden, 12-heads model for 104 languages (covering English, Estonian, Latvian,
Lithuanian, and Russian), has been used.

4.4. Hyperparameter Tuning

The NLU problem is considered an AI-hard problem (meaning that the created software should
be as intelligent as a human), and a lot of effort has been put into the optimization of DNN methods
(as, e.g., in [41]). DNN methods have many hyperparameters, and each hyperparameter may have
several determined choices (e.g., several types of activation functions) and discrete numeric (e.g.,
number of neurons) or real numeric (e.g., dropout from an interval [0, 1]) values. However, choosing
optimal hyperparameter values manually is a difficult task, even for human experts. To overcome
this problem, an open-source Python’s library, Hyperas (the information about Hyperas is in https:
//github.com/maxpumperla/hyperas), implemented to optimize hyperparameters in Keras models
automatically, has been used. The following options were experimentally investigated:

• Several DNN architectures (shallower and deeper), having different numbers of hidden layers
(i.e., series of convolutional layers in CNN, simple or stacked LSTM and BiLSTM versions).

• DNN hyperparameters: numbers of neurons (100, 200, 300, or 400), dropouts (values from an
interval [0, 1]), recurrent dropouts (from [0, 1]), activation functions (relu, softmax, tanh, elu or
selu), optimizers (Adam, SGD, RMSprop, Adagrad, Adadelta, Adamax or Nadam), batch sizes
(32 or 64), and numbers of epochs (20, 30, 40 or 50).

Tuning of the DNN models (i.e., their hyperparameters) was performed automatically. The training
of some models was done on the training split (which contains 80% of instances from the shuffled
training set), and the validation was done on the rest (20% of instances from the training set).
The hyperparameter optimization was done to increase the validation accuracy, and, for this reason,
the following two optimization algorithms were used:

• Random.suggest performs a random search over a set of hyperparameter values in 100 iterations
(the experimental investigation revealed that 100 iterations are enough to find the optimal
hyperparameter value set that gives maximum accuracy on the validation dataset). When seeking

https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/hanxiao/bert-as-service
https://github.com/maxpumperla/hyperas
https://github.com/maxpumperla/hyperas
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the most accurate combination, it explores the hyperparameter value space by randomly checking
different combinations.

• Tpe.suggest (tree-structured Parzen estimator) [42] performs a Bayesian-based iterative search
(for the schematic representation of TPE, see Figure 1). The search strategy of TPE contains
two phases. During an initial warm-up phase, it randomly explores a hyperparameter value
space. These hyperparameter values can be conditional (additional layer in the architecture),
sampled from an interval (as, e.g., for a dropout), or chosen from a determined list of values
(e.g., activation functions). The chosen hyperparameter value combinations are used to train a
model (with the training dataset split), which is evaluated with the validation split to see each
chosen hyperparameter value combination impact on the accuracy. The warm-up phase lasts for
n_init iterations (n_init = 20 in our experiments) and builds a function based on the Bayesian rule
presented in Equation (1).

P(acc|param) =
P(param

∣∣∣acc) × P(param)

P(acc)
(1)
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P(acc|param) is the probability of some validation accuracy (acc) to be achieved with a determined
set of hyperparameter values (param). Based on this accuracy, hyperparameter value combinations
are distributed into good and bad splits. The parameter γ allows us to determine the size of a good
split. In our experiments, γ = 0.25, which means that 25% of all hyperparameter value combinations
belong to a good split, and the rest (75%) belong to a bad split. Based on how hyperparameter value
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combinations are distributed, the accuracy threshold (denoted as acc′) is calculated. Thus, P(acc|param)
is expected to give an improvement only if acc ≥ acc′. P(param|acc) is presented in Equation (2).

P(param|acc) =

Pbad(param) i f acc < acc′

Pgood(param) i f acc ≥ acc′
(2)

A goal of the second TPE phase is to maximize the expected improvement (EI) ratio in Equation (3).

PEI =
Pgood(param)

Pbad(param)
(3)

The maximization of EI can be done by choosing the hyperparameter values param, with high
probability under Pgood(param) and low probability under Pbad(param). It is done by sampling n_EI
hyperparameter value combinations (n_EI = 24 in our experiments) and choosing the best one with
the largest EI improvement. Then, the combination with the biggest improvement is memorized and
used in the next iteration. In the next iteration, TPE calculates the validation accuracy and distributes
the hyperparameter value combinations into good and bad splits, but this time, it uses all previous
combinations together with the recent one. The process is repeated until the determined number
of trials n_trials is reached (n_trials = 100 in our experiments). In our experiments, the default TPE
parameters (n_init = 20, γ= 0.25, n_EI = 24), together with n_trials set to 100, have been used. The reason
for not experimenting with other values is that these specified parameter values allowed the trained
model to reach 100% accuracy on the validation dataset, which resulted in finding the optimal set of
hyperparameter values.

5. Experiments and Results

Experiments were carried out with datasets, DNN methods (i.e., CNN, LSTM, and BiLSTM),
and vectorization techniques (i.e., fastText and BERT) described in Section 3, Section 4.2, and Section 4.3,
respectively. Moreover, DNN Keras models were optimized with the tpe.suggest and random.suggest
algorithms presented in Section 4.4. Models were tuned to achieve as high an accuracy on the
validation dataset as possible for each language, dataset, and classifier, with word embedding type
tuned separately, and later evaluated in the testing phase.

The performance of each model was evaluated with the accuracy metric, as presented in
Equation (4).

accuracy =
Ncorrect

Nall
, (4)

where Ncorrect and Nall stands for correctly predicted and all tested instances, respectively.
The model is considered reasonable if its accuracy on the testing dataset is above random

Equation (5) (assigning labels to instances according to their probabilities in the testing set) and majority
Equation (6) (assigning all instances to a class having the largest probability in the training set) baselines
(see Table 4).

random_baseline =
∑

P2
(
c j
)
, (5)

where P(cj) is a probability of a class (intent).

majority_baseline = max
(
P
(
c j
))

, (6)

The testing results for English, Estonian, Latvian, Lithuanian, and Russian are summarized in
Tables 5–9.
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Table 4. Calculated random and majority baselines for different datasets.

Dataset Random Baseline Majority Baseline

chatbot 0.558 0.670
askUbuntu 0.283 0.367

webapps 0.186 0.271

Table 5. Evaluated accuracies on the English testing datasets with optimized models. The best accuracy
values are in bold; values not statistically significant, differing from the best, are underlined.

fastText embeddings

chatbot askUbuntu webapps

CNN LSTM BiLSTM CNN LSTM BiLSTM CNN LSTM BiLSTM

tpe.suggest 0.981 0.981 0.991 0.725 0.642 0.826 0.373 0.424 0.661

rand.suggest 0.972 0.953 0.981 0.798 0.817 0.872 0.712 0.237 0.712

BERT embeddings

chatbot askUbuntu webapps

CNN LSTM BiLSTM CNN LSTM BiLSTM CNN LSTM BiLSTM

tpe.suggest 0.991 0.962 0.943 0.853 0.826 0.817 0.508 0.542 0.559

rand.suggest 0.981 0.953 0.915 0.890 0.853 0.844 0.678 0.458 0.661

Table 6. Evaluated accuracies on the Estonian testing datasets with optimized models. For the other
notation, see Table 5.

fastText embeddings

chatbot askUbuntu webapps

CNN LSTM BiLSTM CNN LSTM BiLSTM CNN LSTM BiLSTM

tpe.suggest 0.943 0.943 0.953 0.780 0.706 0.633 0.508 0.475 0.542

rand.suggest 0.953 0.943 0.943 0.771 0.670 0.771 0.627 0.356 0.508

BERT embeddings

chatbot askUbuntu webapps

CNN LSTM BiLSTM CNN LSTM BiLSTM CNN LSTM BiLSTM

tpe.suggest 0.953 0.943 0.943 0.872 0.752 0.761 0.644 0.407 0.508

rand.suggest 0.972 0.934 0.943 0.890 0.706 0.780 0.254 0.525 0.492

Table 7. Evaluated accuracies on the Latvian testing datasets with optimized models. For the other
notation, see Table 5.

fastText embeddings

chatbot askUbuntu webapps

CNN LSTM BiLSTM CNN LSTM BiLSTM CNN LSTM BiLSTM

tpe.suggest 0.962 0.934 0.943 0.761 0.706 0.798 0.559 0.475 0.593

rand.suggest 0.330 0.896 0.953 0.771 0.697 0.826 0.542 0.322 0.559

BERT embeddings

chatbot askUbuntu webapps

CNN LSTM BiLSTM CNN LSTM BiLSTM CNN LSTM BiLSTM

tpe.suggest 1.000 0.972 0.953 0.826 0.780 0.835 0.644 0.458 0.525

rand.suggest 0.981 1.000 0.962 0.890 0.798 0.881 0.610 0.492 0.508
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Table 8. Evaluated accuracies on the Lithuanian testing datasets with optimized models. For the other
notation, see Table 5.

fastText embeddings

chatbot askUbuntu webapps

CNN LSTM BiLSTM CNN LSTM BiLSTM CNN LSTM BiLSTM

tpe.suggest 0.972 0.962 0.972 0.780 0.752 0.853 0.356 0.508 0.508

rand.suggest 0.915 0.972 0.981 0.844 0.339 0.853 0.153 0.390 0.492

BERT embeddings

chatbot askUbuntu webapps

CNN LSTM BiLSTM CNN LSTM BiLSTM CNN LSTM BiLSTM

tpe.suggest 0.981 0.972 0.962 0.844 0.651 0.771 0.661 0.542 0.492

rand.suggest 0.972 0.972 0.962 0.872 0.706 0.761 0.712 0.508 0.525

Table 9. Evaluated accuracies on the Russian testing datasets with optimized models. For the other
notation, see Table 5.

fastText embeddings

chatbot ask Ubuntu webapps

CNN LSTM BiLSTM CNN LSTM BiLSTM CNN LSTM BiLSTM

tpe.suggest 0.934 0.943 0.943 0.771 0.743 0.798 0.610 0.542 0.610

rand.suggest 0.830 0.934 0.962 0.780 0.752 0.780 0.271 0.593 0.627

BERT embeddings

chatbot ask Ubuntu webapps

CNN LSTM BiLSTM CNN LSTM BiLSTM CNN LSTM BiLSTM

tpe.suggest 0.962 0.962 0.934 0.844 0.798 0.826 0.661 0.593 0.644

rand.suggest 0.972 0.943 0.953 0.881 0.761 0.844 0.576 0.610 0.576

When comparing different evaluation results, it is important to determine if those differences are
statistically significant. For this purpose, the McNemar test [43], with 95% confidence (α = 0.05), has
been used. Differences were considered statistically significant if the calculated p-value was below
α = 0.05.

6. Discussion

This research assumes that DNN hyperparameter optimization can be done without manual
intervention. However, there are a few things that set this process in the right direction: the usage of the
most promising word embedding types (i.e., fastText and BERT) and the most suitable classifiers (CNN,
LSTM, and BiLSTM), adjusted to deal with the text. Moreover, two hyperparameter optimization
algorithms have been applied: random search (rand.suggest) and TPE (tpe.suggest) that combines
exploration (reaching new regions of hyperparameter values) and exploitation (searching for optimal
solutions in a given region of hyperparameter values) strategies.

Zooming into Tables 5–9 allows us to make the following statements. With some rare exceptions,
all obtained results are reasonable because they exceed random and majority baselines (presented in
Table 4).

The best results on testing splits for each dataset and each language (English (EN), Estonian (ET),
Latvian (LV), Lithuanian (LT), and Russian (RU)) are summarized in Figure 2.
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Figure 2. The best results achieved on different datasets with different languages.

As it can be seen from Figure 2, the best and more stable results across different languages are
achieved with fewer intents but more training instances (i.e., the chatbot dataset), and the worse
results are with more intents and less training instances (webapps). The validation split (which is 20%
from the shuffled training dataset) of the webapps dataset is extremely small (i.e., only 6 instances);
moreover, these randomly selected instances do not necessarily overlap for different languages. All it
means is that for some languages, the validation split happened to be less representative (and less
consistent with the testing dataset) than for the others. Despite the fact that the DNN hyperparameter
optimization algorithm was able to find very accurate models on the validation splits, these models
performed poorly on the testing datasets. From this experimental investigation, it can be concluded
that automatic hyperparameter optimization is suitable only for the larger and more representative
datasets (as, in our case, for chatbot or askUbuntu).

When comparing our best results with the results reported in [29], it can be concluded that
our DNN hyperparameter optimization method, unfortunately, underperforms [29] on webapps
for all languages. The reason is that the DNN hyperparameter optimization method is not suitable
for smaller datasets. Our approach is competitive (giving the same or very similar accuracy) on
the askUbuntu dataset for all languages, and it is better on the chatbot dataset. Hence, automatic
hyperparameter optimization was able to surpass methods that had DNN hyperparameters selected
by experts; therefore, the automatic DNN hyperparameter optimization is the right way to seek the
most accurate DNN models for intent detection problems.

As can be seen from Tables 5–9, it is hard to make a conclusion on which of the hyperparameter
optimization algorithms (rand.suggest or tpe.suggest) is more suitable for our tasks. Thus, both methods
are equally good if a large enough number of iterations (100 in our experiments) is selected for
the optimization.
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In the past, text classification tasks with morphologically complex languages could not reach
the same accuracy levels as with English, but the results for English in Figure 2 do not fall out of the
picture. Since experimental conditions are equalized for all languages (the same number of intents,
the same distribution of instances among different classes, the same classifiers, the same optimization
algorithms), the only difference lies in the language processing, i.e., vectorization. However, with neural
vectorization, none of these languages have an advantage due to a smaller vocabulary (because the
vector space dimensionality is the same for all languages) or less variety in inflection forms (because
word embeddings are not discrete but distributional). However, some differences between the
choices of word embedding types still exist. As seen from Figure 2, BERT vectorization is a better
choice compared to fastText for all morphologically complex languages for all datasets, and this
is not surprising. Morphologically complex languages (especially fusional languages) suffer from
disambiguation problems, but BERT has mechanisms that are able to vectorize even those words that
are written the same but have different meanings, depending on their context, differently. Despite the
fact that fastText embeddings are also trained to consider a context around the target word, that context
is restricted to only a few words. Despite this, fastText is a suitable vectorization solution for languages
(such as English) with strict word order in a sentence. In contrast, BERT is able to consider a much
broader context (words, sentences, their order) compared to fastText and is, therefore, more suitable
for languages that have a relatively free word order in a sentence (such as Latvian, Lithuanian,
and Russian).

Despite LSTM, BiLSTM classifiers can sometimes be very accurate (especially on the chatbot
dataset, having only two intents and enough representative training data); the domination of the CNN
classifier is obvious (see Figure 2). Since we are solving the topic-based intent detection problem
(where different intents are related to different topics), the contextual words or their n-grams seem to
play a more important role than the sequential nature of the text.

Furthermore, our focus is on the DNN architectures (the most accurate DNN architectures are
visualized using the plot_model utility function in Keras) and the hyperparameter values of the most
accurate models. The architecture of the most accurate CNN method happens to be the same for
all datasets and languages (see Figure 3). Here, a notation WE defines a dimensionality of word
embeddings (WE = 300 with fastText and 768 with BERT), and C stands for the number of classes
(i.e., 2, 5, and 8 in the chatbot, askUbuntu, and webapps datasets, respectively). The None dimension
in shape tuples refers to a batch size, which, in our case, is variable (because it is among optimized
parameters). Moreover, the None value is presented automatically by plot_model and means that the
layer can accept input of any size.

Next to the CNN method architecture, architectures of LSTM and BiLSTM methods, which happen
to be equally accurate, are presented: i.e., BiLSTM on the chatbot and webapps datasets with English
(see Figure 4); LSTM on the chatbot dataset with Latvian (Figure 5); BiLSTM on the webapps dataset
with Lithuanian (Figure 6).
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Figure 6. The optimal BiLSTM model architecture on chatbot for the Lithuanian language.

Since the plot_model function presents only partial information about hyperparameter values,
the missing values are summarized in Appendix A. For many datasets and languages, not only the same
CNN classifier and the same CNN architecture (in Figure 3) but also the same set of hyperparameter
values allows us to reach the best performance. This set is presented in Appendix A with the English
language, the askUbuntu dataset, and BERT vectorization. Since this set happened to be optimal in
almost half of the best-determined models, it is recommended for various intent detection problems.
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7. Conclusions

In this research, we were solving a supervised intent detection problem for the English language and
four morphologically complex languages, i.e., Estonian, Latvian, Lithuanian, and Russian. This problem
has been tackled by seeking the most accurate models via automatic DNN hyperparameter optimization.
In our research, two types of word embeddings (fastText, BERT), three types of DNNs (CNN, LSTM,
BiLSTM), their different architectures (shallower and deeper), and various hyperparameter values
(e.g., activation functions, numbers of neurons, dropouts) have been explored. The optimization was
performed on three English benchmark datasets (containing 2, 5, and 8 intents) that were also manually
translated into other languages.

Despite the fact that very strict conclusions cannot be drawn due to a lack of statistical significance
in the result differences, some trends are apparent: (1) DNN hyperparameter optimization is the right
solution when seeking accurate models for the larger training datasets; (2) the BERT embeddings
type is an especially good vectorization choice for morphologically complex languages, whereas
English can benefit from fastText as well; (3) the CNN classifier allows us to reach high accuracy levels
despite the dataset or language; the other classification techniques are equally good only with enough
training data.

The best accuracies were achieved on three testing datasets with 2/5/8 intents and are equal to
0.991/0.890/0.712, 0.972/0.890/0.644, 1.000/0.890/0.644, 0.981/0.872/0.712, and 0.972/0.881/0.661 for the
English, Estonian, Latvian, Lithuanian, and Russian languages, respectively. Moreover, compared to
the previously reported results in [29], our achieved accuracies are competitive on the askUbuntu
dataset and better on the chatbot dataset.

This research is important from the scientific perspective due to (1) the automatic hyperparameter
optimization of DNN models for various intent detection problems and (2) the comparison of obtained
results for different languages: i.e., for English and morphologically complex languages from the
Finno-Ugric (for Estonian), Baltic (Latvian and Lithuanian), and Slavic (Russian) branches. Moreover,
some solutions work across datasets and even languages. It allows us to anticipate that similar results
can also be expected for other languages of the same branches.

The research is important due to practical reasons. The optimal parameters are here revealed and,
therefore, can be used to train other intent detection-based chatbots for the English, Estonian, Latvian,
Lithuanian and Russian languages. However, higher accuracy can be expected only with larger and
more representative training datasets.

In future research, it would be useful to experiment with larger datasets, try other classification
methods such as BERT fine-tuning, and even go beyond intent detection problems (by focusing on
generative chatbots).
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Appendix A

The best determined DNN hyperparameter values for the English (EN), Estonian (ET), Latvian (LV),
Lithuanian (LT), and Russian (RU) languages:
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Language + Dataset
Word Embedding
Type + Classifier

Hyperparameter Values

EN + chatbot

fastText + BiLSTM
(Figure 4)

Activation function (activation_1): elu
Activation function (activation_2): relu
Activation function (activation_3): selu
Activation function in Dense (dense_3): softmax
Batch size: 64
Epochs: 40
Optimizer: Adamax

BERT + CNN
(Figure 3)

Activation function in Conv1D: softmax
Activation function in Dense: softmax
Batch size: 64
Epochs: 40
Optimizer: Adamax
Dropout rate: 0.437

EN + askUbuntu
BERT + CNN
(Figure 3)

Activation function in Conv1D: softmax
Activation function in Dense: softmax
Batch size: 64
Epochs: 40
Optimizer: Adam
Dropout rate: 0.437

EN + webapps

fastText + CNN
(Figure 3)

Activation function in Conv1D: tanh
Activation function in Dense: softmax
Batch size: 64
Epochs: 40
Optimizer: Adagrad
Dropout rate: 0.089

fastText + BiLSTM
(Figure 4)

Activation function (activation_1): tanh
Activation function (activation_2): relu
Activation function (activation_3): tanh
Activation function in Dense (dense_3): softmax
Batch size: 64
Epochs: 20
Optimizer: Adagrad

ET + chatbot
ET + askUbuntu
ET + webapps

BERT + CNN
(Figure 3)

Activation function in Conv1D: softmax
Activation function in Dense: softmax
Batch size: 64
Epochs: 40
Optimizer: Adam
Dropout rate: 0.437

LV + chatbot

BERT + CNN
(Figure 3)

Activation function in Conv1D: softmax
Activation function in Dense: softmax
Batch size: 64
Epochs: 40
Optimizer: Adam
Dropout rate: 0.437

BERT + LSTM
(Figure 5)

Activation function (activation_1): tanh
Activation function (activation_2): relu
Activation function in Dense (dense_2): softmax
Batch size: 64
Epochs: 20
Optimizer: Adagrad
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Language + Dataset
Word Embedding
Type + Classifier

Hyperparameter Values

LV + askUbuntu
BERT + CNN
(Figure 3)

Activation function in Conv1D: softmax
Activation function in Dense: softmax
Batch size: 64
Epochs: 40
Optimizer: Adam
Dropout rate: 0.437

LV + webapps
BERT + CNN
(Figure 3)

Activation function in Conv1D: relu
Activation function in Dense: softmax
Batch size: 32
Epochs: 30
Optimizer: Adam
Dropout rate: 0.276

LT + chatbot

fastText + BiLSTM
(Figure 6)

Activation function (activation): elu
Activation function in Dense (dense): softmax
Batch size: 64
Epochs: 40
Optimizer: Adamax

BERT + CNN
(Figure 3)

Activation function in Conv1D: softmax
Activation function in Dense: softmax
Batch size: 64
Epochs: 40
Optimizer: Adam
Dropout rate: 0.437

LT + askUbuntu
BERT + CNN
(Figure 3)

Activation function in Conv1D: selu
Activation function in Dense: elu
Batch size: 64
Epochs: 40
Optimizer: Adagrad
Dropout rate: 0.734

LT + webapps
BERT + CNN
(Figure 3)

Activation function in Conv1D: softmax
Activation function in Dense: softmax
Batch size: 64Epochs: 40
Optimizer: Adam
Dropout rate: 0.437

RU + chatbot
RU + askUbuntu

BERT + CNN
(Figure 3)

Activation function in Conv1D: softmax
Activation function in Dense: softmax
Batch size: 64Epochs: 40
Optimizer: Adam
Dropout rate: 0.437

RU + webapps
BERT + CNN
(Figure 3)

Activation function in Conv1D: selu
Activation function in Dense: softmax
Batch size: 32Epochs: 30
Optimizer: Nadam
Dropout rate: 0.148
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