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Abstract: The gas diffusion layer (GDL) typically consists of a thin layer of carbon fiber paper,
carbon cloth or nonwoven and has numerous pores. The GDL plays an important role that determines
the performance of the fuel cell. It is a medium through which hydrogen and oxygen are transferred
and serves as a passage through which water, generated by the electrochemical reaction, is discharged.
The GDL tissue undergoes a compressive loading during the stacking process. This leads to changes
in fiber content, porosity and resin content due to compressive load, which affects the mechanical,
chemical and electrical properties of the GDL and ultimately determines fuel cell performance. In this
study, the geometry of a GDL was modeled according to the compression ratios (10%, 20%, 30%, 40%
and 50%), which simulated the compression during the stacking process and predicted the equivalent
properties according to the change of GDL carbon fiber content, matrix content and pore porosity, etc.
The proposed method to predict the equivalent material properties can not only consider the stacking
direction of the material during stack assembling process, but can also provide a manufacturing
standard for fastening compressive load for GDL.

Keywords: effective properties; gas diffusion layer (GDL); homogenization; nonwoven;
proton-exchange membrane fuel cell (PEMFC)

1. Introduction

Fuel cells are electrochemical devices that convert chemical energy directly into electrical energy.
There are various types such as proton-exchange membrane fuel cells (PEMFCs), solid oxide fuel cells
(SOFCs) and molten carbonate fuel cell (MCFCs) depending on fuel and substances. Among them,
PEMFCs are the most attractive fuel cells due to their low operating temperature, compact structure
and fast startup and shutdown facilities [1–4]. In terms of structural and functional aspects, the fuel
cell can be divided into a separation plate, a gas diffusion layer (GDL), a membrane electrode assembly
(MEA) and a gasket. The porous structure of a GDL transfers the reactant gas (hydrogen and oxygen)
supplied through the separator to the MEA where the electrochemical reaction occurs and discharges
the water generated by the electrochemical reaction to the separator in the catalyst layer of the MEA.
There are many pores in the GDL that are the passages of the reaction gas and the generated water.
Through these numerous pores, the gases (hydrogen and oxygen) are transported, and the water
produced by the electrochemical reaction is discharged [5,6].
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The porous structure of the GDL typically consists of a thin layer of carbon fiber paper, carbon cloth
or nonwoven. The GDL plays an important role that determines the performance of the fuel cell.
Recently, in order to improve the efficiency of the flow characteristics inside the GDL, various studies
have been carried out from the viewpoint of the design such as the clamping pressure that is produced
in the stack assembly process, the assembling method and the optimum structural design method [7,8].
These studies aim to control the material characteristics and the design variables of fuel cells, such as
hydrophobic polymer content [9,10], pore-size distribution [11,12], temperature distribution [13],
humidity, differential pressure effects and compressive force effects of GDLs [14–23]. The amount of
compression ratio of the GDL affects the porosity, directionality and the fraction of the pore space
occupied by liquid water and affects the performance of a fuel cell. For example, Cheema et al. [24]
studied porosity characteristics of the composite porous GDLs due to manufacturing variations in
the manufacturing process. Hwang et al. [25] studied alternative methods to control the compression
ratio according to the design of the stack structure and thickness of the gasket. Jeong et al. [26]
predicted the pore structure according to the direction and geometrical changes of GDL structure by
compression load and then investigated the change of internal flow characteristics. Chippar et al. [27]
performed computational fluid dynamics (CFD) analysis on the intrusion effect of the gas diffusion
layer pushing into the channel, due to the compressive force of the separator and the deterioration
of the cell performance due to the thickness reduction of the GDL itself. Most of the above studies
are mostly for predicting the changes in GDL flow characteristics and fuel cell performance due to
the compressive force. Especially in order to analyze the performance of the fuel cell, it is essential
to identify the physical properties of the GDL. Since these properties vary greatly depending on
the compression ratio, it is necessary to study the prediction of GDL properties depending on the
compression ratio. For GDL tissues, both chemical and mechanical stability should be satisfied [28];
the prediction of effective mechanical properties of the GDL can give us the ability to consider the
orientation of the material stacking during the stack assembling process and manufacturing standard
for the compressive clamping load.

Several types of homogenization methods have been studied to predict the equivalent material
properties of composite materials on the information for microstructure, such as mean field and
full field approaches. Within the mean field approach, bounding and estimating methods can be
distinguished [29]. The former specifies the allowable range of the available equivalent properties.
For instance, Voigt et al. [30] assumed that strain fields or stress fields, respectively, are uniform
throughout the heterogeneous materials. Hashin [31] and Willis et al. [32] provided more extended
and specific bounds for anisotropic materials. Unlike the bounding method, the estimating methods
approximate the effective behavior. According to Mori-Tanaka [33], the generalized self-consistent
(SC) [34] and the interaction direct derivative (IDD) are representatives of mean field methods [35–37].
They have been applied to homogenize the multiphase composites, such as thermoelastic and
elastoplastic materials [38]. For full field approaches [39–42], several researchers introduced the
concept of a unit-cell called a representative volume element (RVE). After determining the local
domains in the RVE, the equivalent properties can be estimated by the volume average method of
the full field simulation [43]. Muller et al. [44] calculated linear elastic properties which predicted the
properties of randomly distributed GDL tissues without considering compression.

In this paper, the equivalent mechanical properties of the GDL were calculated by considering
the deformation due to compression ratio through the Fourier series-based, full field homogenization
method. For the nonwoven GDL structure, it was modeled before compression and implemented
the deformed geometry by compression ratio. The compression ratio was set to 10%, 20%, 30%, 40%
and 50%, respectively. The deformed shape of the GDL structure with the compression ratio was
implemented using the commercial program GeoDict. The porosity, fiber volume fraction (FVF) and
fiber anisotropy in the GDL were calculated with the compression ratio. In order to evaluate the
equivalent properties, the Fourier series-based homogenization technique was applied based on the



Appl. Sci. 2020, 10, 7407 3 of 13

same fiber volume ratio and orientation tensor in previous study [44]. A subroutine script for the
Fourier series-based homogenization method was created through a Python input file in Abaqus.

2. Fourier Series-Based Homogenization Method Materials

The actual stress tensor σ in the linear elastic unit-cell can be expressed as the strain tensors ε*
and ε, as follows [45–49]:

σ = C(ε − ε*) in D (1)

where C is elasticity tensor of the matrix, ε* is eigenstrain and ε is actual strain. Assume that the body
force is to zero, and the tensor σ should satisfy the following equilibrium conditions:

div σ = 0 in D (2)

Additionally, the Fourier series representation of u, ε and ε* can be considered, since the solid and
boundary condition displacements are periodic.

u(x) =
±∞∑
ξ

u(ξ) exp(iξx) (3)

ε(x) = sym(∇u(x)) =
±∞∑
ξ

ε(ξ) exp(iξx) (4)

ε∗(x) =
±∞∑
ξ

ε∗(ξ) exp(iξx) (5)

where ξ = (ξ1, ξ2, ξ3), ξ j = 2πn j/a j(n j = 0,±1,±2, . . . , j), ( j = 1, 2, 3).

u(ξ) =
∫

D
u(x) exp(−iξx)dx (6)

ε(ξ) =
i
2
[ξ⊗ u(ξ) + u(ξ) ⊗ ξ] (7)

ε∗(ξ) =

∫
D
ε∗(x) exp(−iξx)dx (8)

Combining Equations (1) and (2) provides

div C(ε − ε∗) = 0 in D (9)

Then, by using Equations (4), (5) and (7) in (9), the following expressions are obtained:

− ξ ·C(ξ⊗ u(ξ)) = iξ ·Cε∗(ξ) for every ξ , 0 (10)

where ⊗ and · represent the outer and inner products, respectively [46]; C is the elastic tensor of the
matrix, and the coefficients u(ξ) are represented by ε∗(ξ) as follows:

u(ξ) = −i(ξ ·C · ξ)−1
· ξ ·Cε∗(ξ) for every ξ , 0 (11)

and the Fourier coefficient of the strain from Equation (7) is

ε(ξ) = sym(ξ⊗ (ξ ·C · ξ)−1
⊗ ξ) : Cε∗(ξ) for every ξ , 0 (12)

finally denoting
P′(ξ) = sym(ξ⊗ (ξ ·C · ξ)−1

⊗ ξ) (13)
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Using Equations (4) and (8) to find the actual strain inside the inclusion from Equation (12):

ε(x) =
1
V

±∞
′∑

ζ

P′(ξ) : C
∫

D
ε∗(x) exp(−iξ(x′ − x)dx′ (14)

The exact representation of strain tensor ε(x) is not essential for obtaining the overall elastic tensor
C*, but its volume averages on Ω are denoted by

ε(x) =
1
V

±∞
′∑

ζ

P′(ξ) : C
(

go(ξ)

VΩ

)∫
D
ε∗(x) exp(−iξx′)dx′ (15)

VΩ is the volume of the inclusion, and ε* is considered in Ω.

g0(ξ) =

∫
Ω

exp(iξx)dx (16)

Then, replacing ε* with its volume average ε∗

ε(x) =
1
V

±∞
′∑

ξ

P′(ξ) : C
(

go(ξ)go(−ξ)

VΩ

)
ε∗ (17)

The denotation and combination of equations gives:

t(ξ) = f
(

go(ξ)

VΩ

)(
go(−ξ)

VΩ

)
(18)

P =
±∞
′∑

ξ

t(ξ)P′(ξ) (19)

ε = P : C : ε∗ in Ω (20)

To obtain the homogenization eigenstrain that simulates the presence of the periodic inclusion in
the body, an average strain tensor ε0 should be considered in the unit-cell [46–51].

C′ : (εo + P : C : ε∗) = C : (εo + (P : C− I(4)) : ε∗
)

(21)

where C represents the elastic tensor of the matrix, C′ represents the elastic tensor of the inclusion and
I(4) represents the identity fourth-order tensor. Note that ε0 is arbitrary, and the following equation for
the overall stiffness tensor of the composite material can be obtained:

C∗ = C− f ((C−C′)−1
− P)

−1
(22)

Since P, C and C′ are all symmetric to evaluate C* in Equation (22), an averaging process [45] is
used to obtain the average isotropic stiffness tensor including the reversal of the symmetric tensor.
For unidirectional fibers aligned in the x1-direction or x2-direction, the following equations are obtained
by the coefficients of the tensor C* [45–48,52,53].

EA = C∗11 −
C∗ 2

12

C∗22 + C∗23
(23)

ET =
(2C∗11C∗22 + 2C∗11C∗23 − 4C∗ 2

12 )(C
∗

22 −C∗23 + 2C∗44)

3C∗11C∗22 + C∗11C∗23 + 2C∗11C∗44 − 4C∗ 2
12

(24)
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GA = C∗66 (25)

GT =
C∗22

4
−

C∗23

4
+

C∗44

2
=

ET

2(1 + υT)
(26)

υA =
C∗12

C∗22 + C∗23
(27)

υT =
C∗11C∗22 + 3C∗11C∗23 − 2C∗11C∗44 − 4C∗ 2

12

3C∗11C∗22 + C∗11C∗23 + 2C∗11C∗44 − 4C∗ 2
12

(28)

3. Modeling and Analysis Method

3.1. Generating a Fiber Network for Verification of the Proposed Homogenization Technique

To verify the Fourier series theory, the modeling and verification for microstructure were firstly
performed based on the proposed fiber orientation tensors [44]. The overall fiber orientation tensor is
defined as [50]:

N =
1
N

N∑
α=1

nα ⊗ nα (29)

Since the fiber axis direction n is normalized, the trajectory of the fiber orientation tensor is always
a unity. It is defined as the operator, ⊗, which is the dyadic product. For all microstructures, the fibers
were modeled as circular rods with a length of l = 200 µm and a diameter of d = 10 µm. The resolution
is 100, corresponding to a voxel length of 2 µm. Fiber volume fraction was 13%. The domain size
was 125 × 125 × 125 voxels (250 µm × 250 µm × 250 µm), and the aspect ratio is 20. In addition,
the mechanical properties of the matrix and fibers were set to Em = 1.665 GPa, υm = 0.36, Ef = 73 GPa
and υf = 0.36, respectively. Based on the above information, fiber network modeling and overall fiber
orientation tensors are shown in Figure 1 and Table 1.
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Figure 1. Generated fiber network of unit-cell.

Table 1. Components of orientation tensors used for the generation of microstructures for verification
of Fourier series.

Orientation Tensor 1 2 3

1 0.61 - -
2 - 0.36 -
3 - - 0.03
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3.2. Generating Fiber Network of Unit-Cell for Different Compression Ratios

The fiber network was generated by the commercial software GeoDict’s Fiber-guess module
through the random modeling process. The randomly distributed GDL fiber network was generated
using the voxel mesh technique. The star length distribution (SLD) method was used to obtain the
overall fiber orientation tensor for the unit-cell. The SLD approach analyzes a voxel’s length for
predefined directions. The components of the fiber orientation unit vector n = (nx, ny, nz) are calculated
by SLD [54–57]. The tensor was averaged over all voxels contained in the unit-cell. The overall
average tensor is derived to overcome the difficulty of considering the direction for each distributed
discontinuous carbon fiber. The fibers were modeled as circular rods with a length of l = 200 µm and a
diameter of d = 10µm. The resolution is 100, corresponding to a voxel length of 2µm. Initial fiber volume
fraction is 17.89%. The domain size is 100 × 100 × 100 (200 µm × 200 µm × 200 µm). Additionally,
the Young’s moduli and Poisson’s ratios of the matrix and of the fibers are set to Em = 3.12 GPa,
υm = 0.38, Ef = 230 GPa and υf = 0.2, respectively. The phase contrast of this combination amounts to
ς = 73.7.

When a fiber network was created with various compression ratios under the above conditions,
the carbon fibers were drained out of the unit-cell domain during the compression process. As a result,
a procedure was performed to exclude fibers and resin that deviated from the domain area. Figure 2
shows the variation of fiber volume fraction along the x-direction and y-direction according to the
GDL compression ratio. There are rapid changes in the fiber content at the two opposite parallel sides,
which are the boundaries of the domains, and this is due to the out-of-domain fibers and matrix.
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Figure 3 shows the GDL fiber network according to the compression ratio, which allows visual 
identification of changes in porosity, carbon fiber and epoxy content. Tables 2 and 3 indicate the 
results for the overall orientation tensor for carbon fiber as reinforcement, and geometric properties 
with the compression ratios, respectively. Figure 3 and Table 2 are the input values for calculating 
the equivalent properties in the commercial program ABAQUS. 
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Figure 2. Generated fiber volume fraction for different compression ratios: (a) Fiber volume fraction
(x-dir); (b) fiber volume fraction (y-dir).

Figure 3 shows the GDL fiber network according to the compression ratio, which allows visual
identification of changes in porosity, carbon fiber and epoxy content. Tables 2 and 3 indicate the results
for the overall orientation tensor for carbon fiber as reinforcement, and geometric properties with the
compression ratios, respectively. Figure 3 and Table 2 are the input values for calculating the equivalent
properties in the commercial program ABAQUS.
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Table 2. Components of orientation tensors used for the generation of the model microstructures

Orientation Tensor 1 2 3

Original GDL model
1 0.464 - -
2 - 0.464 -
3 - - 0.072

10% compressed GDL model
1 0.464 - -
2 - 0.467 -
3 - - 0.069

20% compressed GDL model
1 0.461 - -
2 - 0.471 -
3 - - 0.068

30% compressed GDL model
1 0.459 - -
2 - 0.461 -
3 - - 0.080

40% compressed GDL model
1 0.454 - -
2 - 0.454 -
3 - - 0.092

50% compressed GDL model
1 0.448 - -
2 - 0.451 -
3 - - 0.101

Table 3. Components of fiber volume fraction for the generation of the model microstructures.

Original 10% 20% 30% 40% 50%

Porosity 70.16 70.05
(∇0.11)

65.85
(∇4.2)

61.43
(∇4.42)

55.59
(∇5.84)

47.74
(∇7.85)

Fiber volume fraction 17.89 19.79
(∆1.9)

22.06
(∆2.27)

24.94
(∆2.88)

29.14
(∆4.2)

35.04
(∆5.9)

Resin volume fraction 11.95 10.16
(∇1.79)

12.09
(∆0.17)

13.63
(∆1.68)

15.26
(∆3.31)

17.22
(∆5.27)

3.3. Boundary Conditions in the Finite Element Model

As shown in Figure 4, the homogeneous boundary conditions applied to the surface of a
homogeneous object create a uniform field in the commercial software ABAQUS. These boundary
conditions are obtained by imposing displacements at the boundary as follows [45,52,53]:

ui(S) = ε0
i jx j (30)

where εi j are constant strains.
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Meshing constitutes a challenge for microstructural simulations of composite materials. To avoid
these difficulties with automated meshing, the simulations are usually performed on regular voxel grids.

4. Results and Discussion

4.1. Verification Results for Fourier Series-Based Homogenization Theory

To verify the proposed the Fourier series (FS)-based homogenization theory, the numerical analysis
was performed for the unit-cell established in Section 3.1. Here, the fiber volume fraction, phase
contrast combination amount and resolution were 13%, ς = 44 and 125, respectively. Muller et al. [44]
confirmed that the higher the resolution, the smaller the phase contrast ratio and the smaller the
deviation range of the result. For the GDL fiber network of this paper, the phase contrast combination
amount satisfies the condition that the reliability is secured with ς = 73.7 and resolution = 100.

Numerical analysis was performed based on FS theory for the unit-cells using the commercial
software ABAQUS. The user run-script was developed using a homogenization technique based on
the FS to compute equivalence properties. Figure 5 compares the equivalent properties obtained
from the Fourier series-based homogenization method developed in this paper, with the results from
the conventional homogenization methods which have been already verified by several studies [44]
such as the fast Fourier transformation (FFT), the mean field generalized self-consistent (MF-SC) and
mean field interaction direct derivative (MF-IDD). Assuming that the result obtained by the FS-based
homogenization theory is 100%, the degree error of the results from the conventional methods can
be identified by comparing the referenced results [44] with the longitudinal elastic moduli (E11 and
E22). The results of the FS-based homogenization theory are relatively intermediate of the properties
obtained from the FFT, MF-IDD and MF-SC theories.
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4.2. Evaluation of Equivalent Properties of GDL for Different Compression Ratios

The homogenization analysis for the GDL unit-cell was performed to identify the equivalent
mechanical properties with the compression ratios based on FS-based homogenization theory verified
in previous section. Figure 6 indicates the stress distributions for the GDL unit-cell at compression
ratios of 30% and 50%, respectively, under the compression load of 100 N. In the figure, the 50%
compressed GDL shows a denser fiber distribution and much higher stress distribution than the 30%
compressed GDL, as expected. As the stress distribution is identified to be affected compression ratios,
the effective physical properties are also considered to be influenced by the compression ratios. Figure 7
shows the resulting effective mechanical properties with compression ratios. From Figure 7a, it can
be seen that the effective physical properties of the GDL increase in proportion to the compression
ratios. The E11 and E22 are increasing rapidly at a compression ratio of 30% or more, and the E33 is
remarkably small at a noncompression state but is greatly increased with increasing compression ratio.
This is because the FVF of Table 3, which has the greatest effect on the longitudinal elastic modulus,
increases sharply at a compression ratio of 30% or more. On the other hand, the shear moduli have
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different behavior with the compression ratio. Further understating the effect of the compression
ratio on the mechanical properties, each mechanical property is summarized with the compression
ratios and shown in Figure 7b. In the figure, the longitudinal elastic moduli (E11, E22 and E33) show
a rapid increase according to the compression ratio, and the shear moduli have a relatively small
effect. From these results, it can be stated that the change of fiber volume fraction according to the
compression ratio has a great effect on the longitudinal elastic moduli but relatively little effect on the
shear elastic moduli.
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5. Conclusions 

In this study, we developed a technique using the FS method to predict the effective mechanical 
properties for discontinuous nonwoven GDLs under compressive loading conditions. The following 
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1. A user run-script was developed using a homogenization technique based on the Fourier series 
to compute effective mechanical properties of GDLs with various compress ratios; 

2. Among the several homogenization theories, the homogenization theory with the Fourier series 
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longitudinal elastic moduli but relatively little effect on the shear elastic moduli; 

4. The fiber volume fraction increases sharply at the compression ratios of more than 30%, and 
then the effective mechanical properties and the stress/force behaviors rapidly change. 
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5. Conclusions

In this study, we developed a technique using the FS method to predict the effective mechanical
properties for discontinuous nonwoven GDLs under compressive loading conditions. The following
conclusions were obtained.
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1. A user run-script was developed using a homogenization technique based on the Fourier series
to compute effective mechanical properties of GDLs with various compress ratios;

2. Among the several homogenization theories, the homogenization theory with the Fourier series
method is suitable to predict the effective mechanical properties of GDLs;

3. The change of fiber volume fraction according to the compression ratio has a great effect on the
longitudinal elastic moduli but relatively little effect on the shear elastic moduli;

4. The fiber volume fraction increases sharply at the compression ratios of more than 30%, and then
the effective mechanical properties and the stress/force behaviors rapidly change.
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