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Abstract: This paper puts forward a projection-based adaptive command filtered fuzzy nonsingular
terminal sliding mode backstepping (PACFTB) control method for the speed control of the linear
induction motor (LIM) with unknown end effects. Firstly, the technique of fuzzy logic systems
(FLS) is investigated to approximate the nonlinear components of the LIM’s mathematical model,
which reduces the difficulty and cost of controller design. Then, a constrained command-filtered
backstepping controller is designed with a filtering compensator compensating for the inherent
error of constrained filter. Moreover, the nonsingular terminal sliding mode control method is
combined in the controller design for its advantages of finite-time convergence of the system, and the
projection-operator-based adaptive laws are established at the same time. Finally, the stability analysis
proves that the boundedness and stability of all signals can be ensured with the proposed PACFTB
controller, and the simulation results along with experiment results verify that the proposed control
strategy has better control performance than the conventional command filter backstepping and
PI controller.

Keywords: linear induction motor; command filter backstepping; fuzzy logic system; nonsingular
terminal sliding mode; projection operator; end effects

1. Introduction

Linear induction motor (LIM) traction system has been widely applied in rail transit in recent
years, due to its simple structure, low energy consumption, big start thrust and low cost [1–3]. The core
component of the system is LIM and it is on focus for its extensive engineering application value and
unique advantages like light weight, little noise, little pollution, good heat dissipation, strong climbing
ability and so on [4,5]. However, in terms of LIM’s structure, it has a large magnetic circuit break
and an initial gap, which makes its model more complicated than conventional induction motor.
Related studies have shown that dynamic changes of system parameters, such as fluctuations in the
air gap of linear motors, will lead to the first two levels of mutual inductance and LIM derivative
resistance deviation [4,5], and the dynamic end effect makes the air gap magnetic field greatly affected
by the inlet vortex in the high speed region of the motor [6]. These phenomena are serious at high
speed, which increases the complexity of tracking and compensation control.

In recent years, a model reference adaptive indirect vector control method based on rotor time
constant has been proposed and applied to LIM system with end effects to compensate for the bad
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influence brought by end effects in indirect vector control, achieving robust control of LIM speed [5,7,8].
To get better control performance, many nonlinear control methods are applied to LIMs, such as
backstepping control [8,9], adaptive control [10–12], fuzzy control, neural network control [13–15]
and sliding mode variable structure control [9,16,17]. Among them, backstepping is a useful tool for
dealing with uncertain nonlinear systems. Backstepping is widely paid attention to with its distinct
controller design principle and easy combination with modern control techniques to eliminate the
influence of time-varying parameter and external disturbances on the system performance. Scholars
have put forward many methods to solve the computational expansion problem such as dynamic
surface control [18,19] and constrained command filter [8,20,21]. In [8], the adaptive backstepping
control method is studied with fuzzy logic technique for LIM. However, it lacks measures to ensure the
robustness and dynamic performance when facing end effects in LIM. In [18], a disturbance-observer
based fast terminal sliding mode backstepping control is proposed for uncertain nonlinear systems,
where the first-order filter is introduced to solve the computational expansion problem in the high-order
backstepping control system. However, the design process and structure of the disturbance observer
is complex, which increases the cost of computation and difficulty of controller design for LIM with
end effects. Besides, the influence of the filtering error of the first-order filter on the system is not
considered. Hence, more work shall be implemented against these problems on the control of LIM.

Fuzzy logic system (FLS) has been widely concerned by researchers for its universal approximation
property and ingenious treatment of nonlinear terms, which makes the controller design process
simple and distinct [11,22,23]. Besides, the sliding mode control (SMC) method has low accuracy
and strong robustness to the model, which has a good control effect on parameter perturbation
and external disturbance [24,25]. Among several SMC methods, the nonsingular terminal SMC
has distinct advantages in finite convergence time [26,27]. It guarantees the robustness, dynamic
and static performance of the system. Comparing common terminal SMC, it can eliminate the
singularity of terminal SMC and achieve better performance [28,29]. When the system state gets
far from the origin, the convergence time will be still limited under nonsingular terminal SMC and the
dynamic characteristics of the system would be better [30,31]. Therefore, the fuzzy logic technique and
nonsingular terminal SMC method can be both integrated in the investigated adaptive backstepping
control strategy for better control performance of LIM.

Motivated by the above investigation on control methods of LIM, a projection-based adaptive
command filtered fuzzy nonsingular terminal sliding mode backstepping (PACFTB) control strategy is
proposed for better speed control performance of LIM. The controlled plant is the LIM with unknown
end effects and the control objective is to make the speed tracking have high precision and quick
response against variable trajectory. The main contributions of this paper are given as follows.

• The nonsingular terminal sliding mode control method is integrated with the adaptive fuzzy
backstepping control to enhance the robustness of the system and ensure to reach the equilibrium
point within a limited time.

• The fuzzy logic technique is introduced to estimate the nonlinear part of the system model to
make the controller design process more clear and easy, and the stability proof of the proposed
PACFTB control strategy is provided concretely.

• The simulations and experiments are both carried out and discussed to further prove the
effectiveness of the proposed PACFTB control strategy.

The structure of the article is arranged as follows. Section 2 describes the mathematical model
of LIM with unknown end effects and introduces the FLS and projection operators. In Section 3,
an FLS-based adaptive command-filtered backstepping control strategy combining nonsingular
terminal SMC is developed for LIM while detailed design process is given step by step, and the
stability analysis is given in Section 4. Section 5 provides the simulation and experimental results and
discussions to verify the progressiveness of the proposed control strategy. Finally, we summarize the
whole paper and draw conclusions in Section 6.
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2. Establishment of LIM Dynamic Model and Preliminaries

2.1. Establishment of LIM Dynamic Model

The sketch map of LIM can be seen in Figure 1. LIM is like a rotary induction motor (RIM)
that is tiled. The difference between LIM and RIM lies in the existence of end effect in LIM, and the
dimensionless coefficient Q represent the magnitude of end effect, it can be derived from the speed of
LIM calculated as [5,7,8]:

Q =
l · Rr

Lr · v
(1)

where l means the primary length; Rr, Lr represent secondary resistance and inductance, respectively;
v denotes the speed.
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Figure 1. Structure of linear induction motor (LIM).

In this paper, the main goal is to control LIMs like DC motors, while ensuring superior
performance. According to [7,10], the equivalent circuit and flux linkage in dq− axis are expressed
as follows.

Uds = Rsids + pψds −ωeψsq

Uqs = Rsiqs + pψqs −ωeψsd

Udr = Rridr + pψdr − (ωe −ωr)ψrq

Uqr = Rriqr + pψqr + (ωe −ωr)ψrd

(2)

ψds = Lsl ids + Lm(1− f (Q))(ids + idr)

ψqs = Lsl iqs + Lm(1− f (Q))(iqs + iqr)

ψdr = Lrl idr + Lm(1− f (Q))(ids + idr)

ψqr = Lrl iqr + Lm(1− f (Q))(iqs + iqr)

(3)

where f (Q) = (1− e−Q)/Q; Uds, Uqs, ids, iqs, ψds, ψqs denote the primary voltage, current and flux
linkage in d − q axis, and Udr, Uqr, idr, iqr, ψdr, ψqr denote the secondary voltage, current and flux
linkage in d − q axis, respectively. Notice that the d-q axis is relative to the rotor. For the motor,
the d-axis is the axis where the magnetic pole of the rotor is located while the q-axis is perpendicular to
the d-axis and rotates 90 degrees along the d-axis anticlockwise. Besides, Rs is the primary resistance;
ωe and ωr are the synchronous speed and secondary speed; p is the differential operator; Lsl and Lrl
are the primary and secondary leakage inductance.

By virtue of the indirect vector control (IVC) technique, the linear induction motor model is
transformed into a DC motor model, which is shown as follows [8,24].

ψqr = ψ̇qr = 0

Udr = Uqr = 0
(4)
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Then the LIM mathematical model can be described as [7,10]

i̇ds = −
Rs

L(Q)
ids +

Uds
L(Q)

+ ωeiqs (5)

i̇qs = −ωe

[
ids +

Lm (1− f (Q))

L(Q) (Lr − Lm f (Q))
ψdr

]
− Rs

L(Q)
iqs +

Uqs

L(Q)
(6)

ψdr =
Lm [1− f (Q)]

1 + [Tr − Lm f (Q) /Rr] p
ids (7)

ωsl = ωe −ωr =
Lm [1− f (Q)]

Tr − Lm f (Q)/Rr

iqs

ψdr
(8)

Fe = KTiqs = M · v̇ + D · v + FL (9)

where Tr = Lr/Rr; KT = 3
2 P π

h
Lm(1− f (Q))
Lr−Lm f (Q)

ψdr; L(Q) = Ls − Lm f (Q)− [Lm(1− f (Q))]2

Lr−Lm f (Q)
; ωsl denotes the slip

frequency; D denotes the viscous friction coefficient; M denotes the total mass of mover; P denotes the
number of pole pairs and h denotes the number of pole pitch; FL denotes the external force disturbance.

According to (9), we can get the accelerated velocity of LIM as:

v̇ =
KT
M

iqs + Φv + F (10)

where Φ = −D/M, F = −FL/M.

2.2. Fuzzy Logic System (FLS)

In fact, all the parameters of the system cannot be correctly estimated because of many reasons.
Firstly, when measuring the values of resistance, inductance and capacitance, we cannot guarantee
the accuracy of the measuring tool. Secondly, when the LIM works, the temperature and other
environmental factors in the system will cause the parameters to change greatly or slightly. Thus, so as
to weaken or even eliminate the effects of uncertain nonlinear functions and parameters on speed
control, FLS is applied whose fuzzy rules are deduced as [11]:

IF x1 is Fj
1 and · · · and xn is Fj

n Then y is Aj

where j = 1, 2, · · · , N; x = [x1, x2, · · · , xn]T ∈ Rn is the input FLS while y ∈ R is the output; Fj
i and Aj

are the fuzzy sets. Thus, we can get the output of the FLS as:

y (x) =

N
∑

j=1
wj

n
∏
i=1

µ
j
i (xi)

N
∑

j=1

n
∏
i=1

µ
j
i (xi)

(11)

where wj is defined as the parameter of the consequent part Aj, µ
j
i (xi) the fuzzy membership function.

Let bj (x) =

n
∏

i=1
µ

j
i(xi)

N
∑

j=1

n
∏

i=1
µ

j
i(xi)

, B(x) = [b1(x), b2(x), · · · , bN(x)]T is fuzzy basis function vector, so the FLS

could be overwritten as:
y (x) = WT B (x) (12)

The following lemma can be guaranteed once all the fuzzy membership functions belong to
Gussian functions:



Appl. Sci. 2020, 10, 7405 5 of 17

Lemma 1. [11]: If function g(x) is on a compact set Λ, then the FLS gets the following property for any ς > 0:

sup
y∈Λ
|g (x)− y (x)| ≤ ς (13)

2.3. Projection Operator

In this subsection, we introduce projection operators to ensure boundedness of adaptive
estimates [12].

Here we use ϕ̂ and ϕ̃ to represent the estimated value and estimation error of ϕ, then the projection
opertaor adaptive law can be written as:

ϕ̂ = Projϕ̂ (τφ) (14)

where φ represents the designed traditional adaptive law and τ represents a positive constant. Referring

to [22], the projection mapping Projϕ̂ (τφ) =
[
Projϕ̂

1
(τφ1) , · · · , Projϕ̂k (τφk)

]T
is defined as:

Projϕ̂i (τφi) =


0, if ϕ̂i = ϕi max and τφi > 0
0, if ϕ̂i = ϕi min and τφi < 0
φi, otherwise

(15)

As for each adaptive function φ, the defined projection operation has the properties described
as [16]:

Property 1. ϕ̂ ∈ Ωθ
∆
= {ϕ̂ : ϕmin ≤ ϕ̂ ≤ ϕmax}

Property 2. ϕ̃T [Projϕ̂ (τφ)− τφ
]
≤ 0, ∀φ

3. Design Process of the PACFTB Controller

So as to ensure the following effect of LIM speed, a PACFTB method is designed. First,
corresponding to the backstepping method, the tracking errors could be written as:

e1 = v− vd (16)

e2 = iqs − ic
qs (17)

e3 = ids − id
ds (18)

where vd and id
ds are given velocity reference and d-axis primary current, ic

qs the given reference
from constrained command filter based on speed loop control. The command filter can reduce the
differential expansion problem in backstepping control and reduce the computational complexity of
the controller. Then, the mathematical form of command filter can be written as [8]:[

ż1

ż2

]
=

[
z2

2ξωn

[
SR

(
ω2

n
2ξωn

(SM(u)− z1)
)
− z2

] ] (19)

where u = xd; ξ denotes the dampling of the system while ωn denotes the bandwidth; SM(·) and SR(·)
represent the magnitude and rate boundedness, respectively. Through the application of command
filters, differential signal ẋc could be obtained by integration, and this would eliminate the magnified
interference problems caused by practical applications.

Whereas, due to the use of command filters, there will be filtering error µ = xc − xd which can
interfere with the following performance and that must be taken into consideration. An effective
method is by properly increasing ωn, the output xc can quickly coverage to xd, and the filtering error
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can be reduced. Furthermore, this paper uses a filter compensator signal to eliminate the filter error as
follows:

ε̇1 = −k1ε1 +
(

ic
qs − id

qs

)
(20)

where k1 > 0 is a positive constant, ε1 is the compensation signal of the filter.
Then, a redefined tracking error signal ē1 is given as:

ē1 = e1 − ε1 (21)

Define the nonsingular terminal sliding surface as follows:

Sd = e3 + kd

(∫ t

0
e3dt

)p1/q1

= e3 + kd Id
p1/q1 (22)

Sq = e2 + kq

(∫ t

0
e2dt

)p2/q2

= e2 + kq Iq
p2/q2 (23)

where Id =
∫ t

0 e3dt, Iq =
∫ t

0 e2dt, kd, kq > 0 are the designed constant of the nonsingular terminal
sliding surface, p1, p2, q1, q2 are the positive odd numbers and 1 < p1/q1 < 2, 1 < p2/q2 < 2.

Suppose that at tr, Sd converges to zero, then, according to (22),
∫ t

0 e3dt and e3 converges to zero
within a limited time which is [32]:

ts =
q1

kd (p1 − q1)
Id(tr)

q1
p1−q1 (24)

where Id (tr) = −
[
k−1

d e2 (tr)
]q1/p1

, thus, it is concluded that terminal sliding surface can make
the controlled system converge from any state to origin point in finite time ts + tr. Similarly,
the convergence time can be calculated when the system reaches the equilibrium point along with
terminal sliding surface Sq.

Step 1: So as to get the virtual control formula for id
qs, the following Lyapunov function is designed:

V1 =
1
2

ē2
1 (25)

Then, it is further calculated as:

V̇1 = ē1

(
KT
M

iqs + Φv + F− v̇d + k1ε1 − ic
qs + id

qs

)
= ē1

(
iqs − v̇d + k1ε1 − ic

qs + id
qs + f1 (X) + F

)
= −k1 ē2

1 + ē1

(
e2 − v̇d + id

qs + f1 (X) + F + k1e1

) (26)

where f1 (X) = KT
M iqs + Φv− iqs, and X =

[
v, iqs

]T is defined the input of the FLS. According to the
Lemma 1, we have the following FLS:

f1 (X) = WT
1 B1 (X) + ξ1 (X) (27)

where ξ1 (X) denotes the approximation error and satisfies the condition ‖ξ1 (X)‖ ≤ ς1.
Referring to (32) and Young’s inequality, the following inequality can be obtained:

ē1 f1 (X) = ē1WT
1 B1 (X) + ē1ξ1 (X)

≤ ē1WT
1 B1 (X) +

1
2

ē2
1 +

1
2

ς2
1

(28)
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Then, the V̇1 has the following unequal relation:

V̇1 ≤ −k1 ē2
1 +

1
2

ς2
1 + ē1

(
e2 − v̇d + id

qs + WT
1 B1(X) + F + k1e1 +

1
2

ē1

)
(29)

Therefore, the virtual controller id
qs can be chosen as:

id
qs = v̇d − Ŵ1

T B1 (X)− k1e1 −
1
2

ē1 − F̂− e2 (30)

where F̂ means the estimation value of F that is used to deal with the problem caused by load
disturbance, Ŵ1 the estimation value of weight vector W1, then the following inequations can be
obtained as:

V̇1 ≤ −k1 ē2
1 +

1
2

ς2
1 + ē1

(
W1 − Ŵ1

)T B1 (X)− ē1 F̃ (31)

where F̃ = F̂− F denotes the adaptive estimation error.
Step 2: In order to obtain the control law in q− axis, the Lyapunov function V2 is selected as:

V2 = V1 +
1
2

S2
q (32)

Then the derivative of V2 can be figured by:

V̇2 = V̇1 + SqṠq (33)

From (6) and (23), SqṠq is calculated as:

SqṠq = Sq

(
−ωe

[
ids +

Lm (1− f (Q))

L(Q) (Lr − Lm f (Q))
ψdr

]
− Rs

L(Q)
iqs +

Uqs

L(Q)
− i̇c

qs + kq
p2/q2 e2 Ip2/q2−1

q

)
= Sq

(
f2 (X) + Uqs − i̇c

qs + kq
p2/q2 e2 Ip2/q2−1

q

) (34)

where

f2 (X) = −ωe

[
ids +

Lm (1− f (Q))

L(Q) (Lr − Lm f (Q))
ψdr

]
− Rs

L(Q)
iqs +

Uqs

L(Q)
−Uqs

= WT
2 B2 (X) + ξ2 (X)

(35)

with ‖ξ2 (X)‖ ≤ ς2. X =
[
ids, iqs

]T is defined the input of the FLS. Similarly, for given ς2 > 0,
the following inequality can be confirmed:

Sq f2 (X) ≤ SqWT
2 B2 (X) +

1
2

S2
q +

1
2

ς2
2 (36)

Substituting (34) and (36) into (33), then gets

V̇2 ≤ −k1 ē2
1 +

1
2

ς2
1 +

1
2

ς2
2 + ē1

(
W1 − Ŵ1

)T B1 (X)− ē1 F̃

+ Sq

(
WT

2 B2 (X) + Uqs − i̇c
qs +

1
2

Sq + kq
p2/q2 e2 Ip2/q2−1

q

) (37)

To meet the conditions SqṠq < 0, the exponential convergence law is adopted as the following:

Ṡq = −k2Sq − kqsign
(
Sq
)

(38)
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where k2 > 0 and kq > 0 are the designed positive constant, function sign (·) represents the symbolic
function which defined as:

sign (·) =
{

x̄/ |x̄| , if x̄ 6= 0
0, if x̄ = 0

(39)

Then, the controller Uqs can be chosen as:

Uqs = −Ŵ2
T B2 (X) + i̇c

qs −
1
2

Sq − k2Sq − kqsign
(
Sq
)
− kq

p2/q2 e2 Ip2/q2−1
q (40)

Afterwards, the derivative of V2 can be calculated as:

V̇2 ≤ −k1 ē2
1 − k2S2

q − kq
∣∣Sq
∣∣+ 1

2
ς2

1 +
1
2

ς2
2 − ē1 F̃ + ē1

(
W1 − Ŵ1

)T B1 (X)

+ Sq
(
W2 − Ŵ2

)T B2 (X)

(41)

Step 3: In order to design the control law of d-axis, the Lyapunov function V3 is chosen as:

V3 = V2 +
1
2

S2
d (42)

Then we can get the derivative of V3 as:

V̇3 = V̇2 + Sd

(
− Rs

L(Q)
ids +

Uds
L(Q)

+ ωeiqs − i̇d
ds + kd

p1/q1 e3 Ip1/q1−1
d

)
= V̇2 + Sd

(
Uds + f3 (X)− i̇d

ds + kd
p1/q1 e3 Ip1/q1−1

d

) (43)

where
f3 (X) = − Rs

L(Q)
ids +

Uds
L(Q)

+ ωeiqs −Uds

= WT
3 B3 (X) + ξ3 (X)

(44)

with ‖ξ3 (X)‖ ≤ ς3. X =
[
ids, iqs

]T is defined as the input of the FLS. Similarly to the front,
through Lemma 1, (46) and Young’s inequality, the following inequality can be obtained:

Sd f3 (X) ≤ SdWT
3 B3 (X) +

1
2

S2
d +

1
2

ς2
3 (45)

where ς3 > 0 is any given constant.
Substituting (45) into (43), one obtain:

V̇3 ≤ V̇2 +
1
2

ς2
3 + Sd

(
Uds + WT

3 B3 (X)

+
1
2

Sd − i̇d
ds + kd

p1/q1 e3 Ip1/q1−1
d

) (46)

Similarly, the exponential convergence law is adopted as follows:

Ṡd = −k3Sd − kdsign (Sd) (47)

where k3 > 0 and kd > 0 are the designed positive constant.
Then, the real controller for Uds can be chosen as:

Uds = −Ŵ3
T B3 (X)− 1

2
Sd + i̇d

ds − k3Sd − kdsign (Sd)− kd
p1/q1 e3 Ip1/q1−1

d (48)
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Thus, we can reach V̇3 as

V̇3 ≤ −k1 ē2
1 − k2S2

q − k3S2
d − ē1 F̃− kd |Sd| − kq

∣∣Sq
∣∣+ 1

2

3

∑
i=1

ς2
i − ē1W̃1

T B1 (X)

SqW̃2
T B2 (X)− SdW̃3

T B3 (X)

(49)

where W̃i = Ŵi −Wi, (i = 1, 2, 3) represent the adaptive estimation errors.
Step 4: This step is used to get the precise adaptive law for FLS, then select the following Lyapunov

function V as:

V = V3 +
3

∑
i=1

W̃T
i W̃i

2γi
+

F̃2

2γ4
(50)

where γ1, γ2, γ3, γ4 > 0 are self-defined gain constant. The derivative of V can be easily deduced
by (51) which is shown as follows.

V̇ ≤ −k1 ē2
1 − k2S2

q − k3S2
d − kd |Sd| − kq

∣∣Sq
∣∣+ 1

2

3

∑
i=1

ς2
i +

W̃1
T

γ1

(
˙̂W1 − γ1 ē1B1 (X)

)
+

W̃2
T

γ2

(
˙̂W2 − γ2SqB2 (X)

)
+

W̃3
T

γ3

(
˙̂W3 − γ3SdB3 (X)

)
+

F̃
γ4

(
˙̂F− γ2 ē1

) (51)

In order to avoid the situation of output divergence due to parameter instability, we designed the
following adaptive control law as:

˙̂W1 = ProjŴ1

(
γ1 ē1B1 (X)−m1Ŵ1

)
˙̂W2 = ProjŴ2

(
γ2SqB2 (X)−m2Ŵ2

)
˙̂W3 = ProjŴ3

(
γ3SdB3 (X)−m3Ŵ3

) (52)

˙̂F = ProjF̂
(
γ4 ē1 −m4 F̂

)
(53)

where m1, m2, m3, m4 > 0 are self-design parameters. According to Property 1, the following two
adaptive estimation errors can be both bounded as: |Ŵi| ≤ Ω, |F̂| ≤ Ξ, where Ω and Ξ mean the
known compact sets. Thus, the controller is completely designed.

4. Stability Analysis

According to Property 2 as described previously, the following inequality can be easily obtained:

W̃1

[
ProjŴ1

(
γ1 ē1W̃T

1 B1 (X)−m1Ŵ1

)
− γ1 ē1W̃T

1 B1 (X) + m1Ŵ1

]
≤ 0

W̃2

[
ProjŴ2

(
γ2SqW̃T

2 B2 (X)−m2Ŵ2

)
− γ2SqW̃T

2 B2 (X) + m2Ŵ2

]
≤ 0

W̃3

[
ProjŴ3

(
γ3SdW̃T

3 B3 (X)−m3Ŵ3

)
− γ3SdW̃T

3 B3 (X) + m3Ŵ3

]
≤ 0

(54)

F̃
[
ProjF̂

(
γ2 ē1 −m4 F̂

)
− γ4 ē1 + m4 F̂

]
≤ 0 (55)

Then, substituting (53)–(56) into (52), we get

V̇ ≤− k1 ē2
1 − k2S2

q − k3S2
d − kd |Sd| − kq

∣∣Sq
∣∣+ 1

2

3

∑
i=1

ς2
i −

3

∑
i=1

(
miW̃i

TŴi
γi

)
− m4 F̃F̂

γ4
(56)
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From Young’s inequality, we get

−W̃i
TŴi = −W̃i

T (W̃i + Wi
)

≤ −W̃i
TW̃i +

W̃i
TW̃i
2

+
Wi

TWi
2
− W̃i

TW̃i
2

+
Wi

TWi
2

(i = 1, 2, 3)
(57)

− F̃F̂ ≤ − F̃2

2
+

F2

2
(58)

then we have the conclusion (59) which is shown as follows.

V̇ ≤ −k1 ē2
1 − k2S2

q − k3S2
d − kd |Sd| − kq

∣∣Sq
∣∣+ 1

2

3

∑
i=1

ς2
i −

3

∑
i=1

(
miW̃i

TW̃i
2γi

− miWi
TWi

2γi

)
− m4 F̃2

2γ4
+

m4F2

2γ4

≤ −k1 ē2
1 − k2S2

q − k3S2
d +

1
2

3

∑
i=1

ς2
i −

3

∑
i=1

(
miW̃i

TW̃i
2γi

− miWi
TWi

2γi

)
− m4 F̃2

2γ4
+

m4F2

2γ4

≤ −αV + β

(59)

herein
α = min {2k1, 2k2, 2k3, m1, m2, m3, m4}

β =
1
2

3

∑
i=1

ς2
i +

3

∑
i=1

(
miWi

TWi
2γi

)
+

m4F2

2γ4

Thus, we can get the following inequation from (59) that

V (t) ≤
(

V (t0)−
b
a

)
e−a(t−t0) +

b
a

≤ V (t0) +
b
a

, ∀t ≥ t0

(60)

From the above analysis, we know that ē1, e2, e3 are bounded. Furthermore, due to ε̇1 is also
bounded (according to [21]), then e1 = ē1 + ε1 is bounded for sure. Therefore, all signals in the system
can be guaranteed to be bounded. Besides, so as to let the tracking error smaller, the value of γ1, γ2,
γ3, γ4 are chosen a little large and the value of µ and ςi are chosen a little small after determining the
value of m1, m2, m3, m4, kd, kq and ki (i = 1, 2, 3).

The structure diagram is shown in Figure 2 to help facilitate understanding of the whole PACFTB
design process.
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Loop Control

dsU

q-axis Current 

Loop Control

qsU

d

dsi
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Control 
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Command 

Filter

-

d
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c

qsi
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Filter Error 

compensation 

dv

dq
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ò
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+ rw
ew

h

p

eq
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Adaptive Law

v dsi qsi
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q̂ Fuzzy Logic 
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Controllered Plant

+

Linear 

Induction

 Motor

Figure 2. Proposed PACFTB block diagram.
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5. Simulation and Experiment Study

5.1. Simulation Study

In this section, the proposed PACFTB control strategy was simulated in MATLAB/Simulink
environment to examine its effectiveness. All the parameters in simulation are listed in Table 1
based on finite element analysis. The values of parameters of the proposed controller were: k1 = 40,
k2 = 1000, k3 = 10,000, kd = 1, kq = 1, γ1 = 0.1, γ2 = 0.1, γ3 = 0.1, γ4 = 5× 106, m1 = 0.001,
m2 = 0.001, m3 = 0.001, m4 = 0.001, p1 = p2 = 5 and q1 = q2 = 3. The values of parameters
in command filter were chosen as: ξ = 0.707, ωn = 300, the magnitude and rate constraints were
200 A and 20,000 A/s. As shown in Figure 3, the designed fuzzy membership functions were:
µ

j
i = exp

[
−(x + l × 2)2/7

]
, where l ∈ Z and l ∈ [−2, 2]. The initial values of vector Wi(i = 1, 2, 3)

were defined as Wi = (0.1, 0.1, . . . , 0.1︸ ︷︷ ︸
52

). Notice that all the state variables input to the FLS should be

included in fuzzy membership functions. That is to say, all the state variables input to the FLS must be
normalized.

Table 1. Parameters of the investigated LIM.

Parameter Value Parameter Value

Rs(Ω) 0.0709 Rr(Ω) 0.1311
Ls(mH) 4.8 Lr(mH) 4.8
Lm(mH) 3.9 M(kg) 351.264
D(kg/s) 40.95 h(m) 0.2

P 4 l(m) 2

x
-10 -5 0 5 10

M
em

be
rs
hi
p 
fu
nc
tio

n 
de
gr
ee

0

0.2

0.4

0.6

0.8

1

Figure 3. The fuzzy membership functions.

In order to test the effectiveness of the proposed PACFTB, the conventional command-filtered
backstepping controller (CBC) and PI controller were applied as comparisons to demonstrate the better
performance of the designed controller. In simulation, the given d-axis current is 80 A, and the given
velocity was set as follows:

vd
1 =


4, 0 ≤ t < 3
10, 3 ≤ t < 8
0, 8 ≤ t < 14

Meanwhile, external disturbances FL = 200 sin (πt) were added in 6 s. The signal curves in the
simulation are shown in Figures 4–9. By comparing the diagrams of Figures 4 and 5, the PACFTB had
faster convergence than CBC and PI controller, which declared the better dynamic performance of
PACFTB. In addition, it can be found that PACFTB had better static and dynamic performance than
CBC and PI controllers when external load disturbance changed. From the point of view of indices,
the response time of our designed controller was 87.5% shorter than that of PI controller, and 83.3%
shorter than that of traditional CBC controller. Moreover, the chattering rate of PI caused by external
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load disturbances was about 2.5% while that of PACFTB is nearly 0.05%, which expressed the better
performance of PACFTB as well.

Time(s)
0 2 4 6 8 10 12
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Figure 4. LIM speed tracking effect with different controller.
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Figure 5. LIM speed tracking error with different controller.
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Figure 6. The output of d-axis control current.
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Figure 7. The q-axis current without filtering and with filtering.
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Figure 8. The filter compensating signal.
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Figure 9. Adaptive estimation for unknown parameters. (a) The estimation of f1(X); (b) The estimation
of f2(X); (c) The estimation of f3(X); (d) The estimation of load disturbance.

Figure 6 shows the d-axis current, which can imply that the proposed controller could stabilize
magnetic field. The input and output signals of the command filter are shown in Figure 7, which shows
that the output signal ic

qs could effectively track the input signal id
qs availably and we could get the

differential of the input signal directly from the output of the filter. At the same time, by the use of
constraint command filter, the output signal was well bounded. The compensator signal is shown in
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Figure 8, which compensated for the inherent error of the command filter so that the input saturation
problem was figured out.

The output signal of FLS is shown in Figure 9a–c. Because of the FLS, it had more extensive and
practical significance than CBC and PI controller in practical application without the need of model
parameters, and its control performance was obviously better than them in practice. The adaptive
disturbance estimation is shown in Figure 9d.

The simulation verified the advanced nature of the designed controller. When the system
parameters, model information and external disturbance could not be accurately obtained, the LIM
could still track the reference speed precisely via the proposed PACFTB controller. In addition,
the controller also kept the system in good working condition when there were unknown parameters
and external disturbances.

5.2. Experiment Study

Apart from the simulation study, the proposed PACFTB control strategy was also verified in
hardware experiment platform based on dSPACE DS1104 control board, which is shown in Figure 10.
As can be seen from Figure 10, the platform contained a LIM with encoder, a drive board, a dSPACE
DS1104 control board and a PC. When the experiment platform began to operate, the Simulink model
of the proposed controller was compiled and loaded to the control board which realized the function
of calculation and generation of three-phase PWM signals. The deadband was set as 5 µs and the
sample period of speed and current control was 400 µs and 200 µs, respectively.

Drive 

Board

LIM

PCdSPACE
Encoder

Figure 10. Hardware experimental platform based on dSPACE.

The desired speed was set as 0.8 m/s and the control objective was to track the desired speed
with quick response and little error. The parameters of the controller were set as: k1 = 2000, k2 = 200,
k3 = 700, kd = kq = 1, γ1 = γ2 = γ3 = 0.2, γ4 = 5× 106, m1 = m2 = m3 = m4 = 0.001.

Based on the adjustment parameters, the control performance could be achieved, which is shown
in Figures 11 and 12. It is shown in Figure 11 that the speed of PACFTB tracked the reference well with
quick response and little tracking error. In contrast, the PI control was applied to the experiment as
well for speed tracking of LIM. It can be seen that the speed under PI control reached the reference first
after 0.1 s while the speed under PACFTB mae it before 0.1 s, which showe better dynamic performance
of the proposed PACFTB controller. Furthermore, the chattering at the stable state of PI control was
a little more than that of PACFTB controller, which demonstrated better static performance of the
proposed PACFTB controller. Thus, the proposed PACFTB control strategy possessed sound static and
dynamic performance according to the discussion of experimental results.
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Figure 11. Speed tracking performance of LIM.
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Figure 12. Speed tracking error of LIM.

6. Conclusions

In this paper, considering the uncertain parameters and external load disturbances in the LIM,
the PACFTB controller is designed for the LIM with end effects, which achieves the precise control of
the LIM’s velocity. Concretely, the steady state tracking precision and response speed of the system
are improved and the system converges at a finite time using the proposed controller. The following
conclusions can be drawn.

1. The problem of insufficient modeling, unknown nonlinear components and uncertain parameters
in the LIM is solved by the FLS combined with an adaptive law.

2. The introduction of the command filter solves the differential expansion problem in the
conventional backstepping algorithm, and the inherent filter error is compensated via the
proposed compensation algorithm.

3. The introduction of projection operator guarantees the boundedness of estimated parameters
and FLS.

4. The simulation results and experimental results indicate that the proposed PACFTB control
strategy has remarkable speed tracking performance of the LIM with end effects.

In the future work, the sensor fault or actuator fault would be considered and the corresponding
control strategy would be investigated.
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