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Abstract: This paper develops a totally new appointed-time integral barrier Lyapunov function-based
trajectory tracking algorithm for a hovercraft in the presence of multiple performance constraints and
model uncertainties. Firstly, an appointed-time performance constraint function is skillfully designed,
which proposes to pre-specify the a priori transient and steady performances on the system tracking
errors. Secondly, a new integral barrier Lyapunov function is constructed, which combines with
the appointed-time performance constraint function to guarantee that the performance constraints
on the system tracking errors are never violated. On this basis, an adaptive trajectory tracking
controller is derived using the appointed-time integral barrier Lyapunov function technique in the
combination of neural networks. According to Lyapunov’s stability theory, it can be shown that the
proposed controller is capable of ensuring transient and steady performances on the output tracking
errors. In particular, the position and speed tracking can be fulfilled in a user-appointed time without
requiring complex control parameters selection. Finally, results from a comparative simulation study
verify the efficacy and advantage of the proposed control approach.

Keywords: underactuated hovercraft; performance constraint; appointed-time constraint function;
integral barrier Lyapunov function; trajectory tracking

1. Introduction

Hovercraft as shown in Figure 1 is viewed as a kind of amphibious surface vessel. It has many
special performances such as low navigational resistance, high speed, superior trafficability, good
maneuverability, etc. Therefore, the hovercraft has been more and more attractive in the military and
civilian fields [1].

It is noteworthy that the hovercraft’s main actuators consist of the same two air propellers and the
vertical air rudder mounted behind every propeller. Thus, a hovercraft is a typical underactuated vessel.
The major difficulty for controlling of the underactuated vessels is how to apply two independent
actuators to regulate the vessel’s three or more degrees of freedom motion in the presence of system
nonlinear constraints and model uncertainties. In recent decades, for the purpose of overcoming the
aforementioned difficulties, many significant control methods to control the underactuated vessels
have been proposed through the efforts of researchers, and various achievements have been obtained.
For instance, the sliding mode control methods in [2–4] are used to perform the motion control for the
underactuated vessels; in [5–7], neural networks control methods are introduced to fulfill the tracking
control of the underactuated ships; in [8,9], the adaptive fuzzy tracking controllers are designed
to realize output feedback stabilization control and path tracking control, respectively; and robust
adaptive control methods are developed in [10,11]. Unfortunately, the aforementioned control methods
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did not consider an important issue: the transient and steady error performance constraints, which play
a significant role in the control process of the underactuated vessels.

Figure 1. Photo of the hovercraft.

Recently, the performance constraint technique, which can guarantee that the underactuated
vessel avoids collision hazards and provides stability simultaneously, is proposed to ensure that the
transient performance of tracking error converges at a prescribed exponential rate with a pre-designed
maximum overshoot [12–14]. The performance constraint technique has been applied to many practical
applications such as in aircraft [15] and robots [16]. For the tracking control of the underactuated vessel
with prescribed performance, [17] proposed a path following a controller for a surface vessel with
prescribed performance in the presence of input saturation and external disturbances. In [18], a robust
fault-tolerant controller is developed to ensure that the tracking errors of the underactuated ship
always remain within pre-specified performance ranges. Adaptive trajectory tracking controllers are
proposed for the unmanned surface ships in [19] and for the underwater vehicle in [20] with guaranteed
transient performance. However, the aforementioned performance constraint technique needs complex
error transformations and the tracking errors may only be regulated to the pre-specified residual sets
only as time tends to infinity. In order to simplify the design process of the controller and accelerate
convergence velocity, a new appointed-time performance constraint function is proposed for the first
time to ensure that the system state tracking is achieved in a user-appointed time while guaranteeing
the transient and steady performances of the tracking errors. In addition, the appointed-time control,
which can ensure that the convergence time is user-appointed arbitrarily, is different from the
traditional finite-time control [21] and fixed-time control [22].

On the other hand, in order to ensure the appointed-time performance constraint condition
on the system tracking error is always satisfied, we need to use the barrier Lyapunov function
technique [23–26]. In [25], a novel integral barrier Lyapunov function is presented to design the control
scheme which provides enhanced system stability and ensures output constraints. The state and input
constraints of a strict-feedback nonlinear tracking system are tackled by introducing an integral barrier
Lyapunov function into the backstepping procedure and extending the system input as a system state
in [27]. However, the aforementioned integral barrier Lyapunov function technique is only able to
handle the time-invariant constraints on the system states, namely this method neither constrains
system tracking errors nor handles time-varying constraints. Therefore, we need to improve the above
integral barrier Lyapunov function such that the time-varying appointed-time performance constraint
function can combine with it to deal with the performance constraints on the tracking errors.

Motivated by the above observations, an appointed-time time-varying integral barrier Lyapunov
function-based trajectory tracking control method for a hovercraft is proposed that guarantees an
appointed-time performance constraint on the tracking errors and addresses model uncertainties.
This paper proposing the appointed-time performance constraint function and time-varying integral
barrier Lyapunov function is unprecedented. Accordingly, the major contributions of this paper are
summarized as:
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(1) A new appointed-time performance constraint function is first proposed for the purpose
of ensuring the transient and steady performance of the tracking system. Different from the
existing prescribed performance bound technique [12–20], the appointed-time performance bound
technique does not need the complex error transformation. In addition, compared with the traditional
finite/fixed-time control [21,22], the trajectory tracking system in this paper can track the desired
targets within the appointed time, and the tracking time can be user-appointed arbitrarily subject to a
physically possible range of the controlled system’s actuators.

(2) Compared with the previous integral barrier Lyapunov function in [23–27], a new integral
barrier Lyapunov function, which can confine system tracking error and handle time-varying
constraints, is proposed to guarantee the tracking errors that would not exceed the time-varying
appointed-time performance constraint bounds.

(3) It is proven that, under the proposed controller, user-appointed-time convergence of the
tracking errors is ensured, despite the presence of the model uncertainties. The simulation results
represent the advantages of the proposed approach.

The remainder of this paper is arranged as follows: preliminaries and problem description
is introduced in Section 2. Section 3 is devoted to the appointed-time time-varying integral
barrier Lyapunov function-based trajectory tracking controller design for a hovercraft. In Section 4,
numerical simulation results are analyzed to evaluate the control performance of the proposed
approach. Finally, conclusions are drawn in Section 5.

2. Preliminaries and Problem Description

2.1. Appointed-Time Performance Constraint Function

Appointed-time means that the time of system completion to track the targets can be pre-specified
offline in terms of mission-oriented demands. The appointed-time performance constraint function
can guarantee that trajectory tracking is achieved in a user-appointed time within the prescribed
convergence rates and maximum overshoot.

Definition 1. A first-order continuously differentiable function k(t) : R≥0 → R+ is described as an
appointed-time performance constraint function if there is an appointed time T > 0 such that the following two
properties are true:

(1) k(t) is a positive and decreasing function over the set t ∈ [0, T);
(2) k(t) ≡ kb for all t ≥ T, where kb is a positive constant.

According to Definition 1, a new first-order continuously differentiable appointed-time
performance constraint function is designed as:

k (t) =

{
k̄b−kb

T2 t2 − 2 k̄b−kb
T t + k̄b, t ∈ [0, T)

kb, t ∈ [T,+∞)
(1)

where T and kb denote the prescribed settling time and maximum steady error, respectively. Parameter
k̄b needs to be selected such that the initial tracking error e satisfies |e| < k̄b.

Remark 1. The appointed-time performance constraint function is inspired by the appointed-time performance
function in [28], with some differences. The biggest difference is that the appointed-time performance function is
a higher-order polynomial in [28], so that the proposed appointed-time performance constraint function has a
simple form and is easy to implement.



Appl. Sci. 2020, 10, 7381 4 of 21

2.2. A New Integral Barrier Lyapunov Function

In order to ensure the appointed-time performance constraint condition on tracking error is
always satisfied, a new time-varying integral barrier Lyapunov function is constructed as:

V =
∫ e

0

k2 (t) ς

k2 (t)− ς2 dς (2)

where e = x− xd is tracking error with x and xd being system state and desired trajectory, respectively.
We know that the candidate Lyapunov function V is positive definite, continuously differentiable,
and radially unbounded in the set Ω = {e : |e| < k (t), k (t) > 0}; therefore, V is a valid candidate
Lyapunov function.

Next, the useful Theorems for stability analysis of the control system are proposed.

Theorem 1. The candidate Lyapunov function V, defined in (2), is positive definite, continuously differentiable,
and radially unbounded in the set Ω. As for |e| < k (t), there is:

e2

2
≤ V ≤ k2 (t) e2

k2 (t)− e2 (3)

Proof of Theorem 1.
Step 1: We indicate that inequality e2

2 ≤ V holds. We define the following function:

g (e) =
∫ e

0

k2 (t) ς

k2 (t)− ς2 dς− e2

2
(4)

Calculating the first partial derivative of the g (e) with respect to e, the outcome is:

∂g (e)
∂e

=
k2 (t) e

k2 (t)− e2 − e =
e3

k2 (t)− e2 (5)

Case 1: e < 0, we have ∂g(e)
∂e < 0 in the set Ω.

Case 2: e > 0, we have ∂g(e)
∂e > 0 in the set Ω. Furthermore, since e = 0, g (e) = 0, we conclude

that g (e) ≥ 0, namely, e2

2 ≤ V.

Step 2: We prove that inequality V ≤ k2(t)e2

k2(t)−e2 holds. We define the following function:

p (e) =
k2 (t) e2

k2 (t)− e2 −
∫ e

0

k2 (t) ς

k2 (t)− ς2 dς (6)

Taking the first partial derivative of p (e) with respect to e yields:

∂p (e)
∂e

=
2ek2 (t)

(
k2 (t)− e2)− k2 (t) e2 (−2e)

(k2 (t)− e2)
2 − k2 (t) e

k2 (t)− e2

=
k2 (t) e

(
k2 (t) + e2)

(k2 (t)− e2)
2

(7)

Case 1: e < 0, we have ∂p(e)
∂e < 0 in the set Ω.

Case 2: e > 0, we have ∂p(e)
∂e > 0 in the set Ω. Furthermore, since e = 0, p (e) = 0, it is

straightforward to obtain p (e) ≥ 0, namely V ≤ k2(t)e2

k2(t)−e2 . This completes the proof of Theorem 1.

Remark 2. Unlike the existing works in [23–27], in this paper, the performance constraint boundary k (t) is a
time-varying function, and the new integral barrier Lyapunov function can directly handle the tracking errors of
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the nonlinear system. In addition, the proposed Theorem 1, which is different from previous theories, is devoted
to stability analysis of the control system.

Theorem 2. For any positive bounded function k (t), let χ := {x ∈ R : |x| < k (t)} ⊂ R and N := Rl × χ ⊂
Rl+1 as open sets. Consider the system:

η̇ = h (η, t) (8)

where the system states η := [ω, x]T ∈ N and function h : R+ ×N → Rl+1 is piecewise continuous in t
and locally Lipschitz in η, uniformly in t, on R+ ×N. Suppose that there are functions U : Rl → R+ and
Vx : χ→ R+ are positive definite and continuously differentiable in their corresponding domains of definition,
such that:

Vx (x)→ ∞ as |x| → k(t) (9)

γ1 (‖ω‖) ≤ U (ω) ≤ γ2 (‖ω‖) (10)

where γ1 and γ2 signify class k∞ functions. Define V (η) = Vx (x) + U (ω) and the initial state satisfies
x (0) ∈ χ. If the time derivative of V in |x| < k(t) satisfies:

V̇ =
∂V
∂η

h ≤ −µV + λ, η ∈ N (11)

where µ and λ are positive constant, then we have that ω is bounded and x (t) ∈ χ, ∀t ∈ [0, ∞).

Proof of Theorem 2. According to the conditions on h, we know that the existence and uniqueness
of a maximal solution η (t) on the time interval [0, tmax) can be guaranteed. On the premise of
that x (0) ∈ χ, we have that Vx (x (0)) and V (η (0)) are existent. Solving the inequality (11) yields
V (η (t)) ≤ V (η (0)) + λ

/
µ, ∀t ∈ [0, tmax). In light of V (η) = Vx(x) + U(ω) and the fact that

Vx(x) is a positive function, we obtain that Vx(x) is bounded, ∀t ∈ [0, tmax). Based on the fact that
Vx(x) → ∞ only if x → k(t) and boundedness of Vx(x), we can deduce that x > k(t), ∀t ∈ [0, tmax).
Therefore, there exists a compact subset K ⊂ N such that the maximal solution of (8) satisfies η (t) ∈ K,
∀t ∈ [0, tmax). However, η (t) is defined in t ∈ [0, ∞). It is clear that x (t) ∈ χ, ∀t ∈ [0, ∞). The proof of
Theorem 2 is completed.

Remark 3. In Theorem 2, the state space consists of the constrained state x and free states ω. The state x needs
the integral barrier Lyapunov function Vx(x) to ensure it remains within the limits k(t) and −k(t), while the
free states may require only quadratic Lyapunov functions such as U (ω) = 1

2 ωTω.

2.3. Dynamic Model of a Hovercraft

According to [29], the following kinematic and dynamic model without consideration of the pitch
and heave motion are used to describe the motion of the hovercraft in Figure 1:

ẋ = u cos ψ− v sin ψ cos φ

ẏ = u sin ψ + v cos ψ cos φ

φ̇ = p
ψ̇ = r cos φ

u̇ = vr + FxD0
m0

+ fu +
τu
m0

v̇ = −ur +
FyD0
m0

+ fv

ṗ = MxD0
Jx0

+ fp

ṙ = MzD0
Jz0

+ fr +
τr
Jz0

(12)

where x, y, φ, and ψ denote positions and attitudes of the hovercraft in the earth-fixed frame,
respectively. u, v, p, and r signify speeds and angular velocities, respectively. m0, Jx0, Jz0 represent
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mass and moment of inertia, τu, τr are control inputs. FxD0, FyD0, MxD0, MzD0 represent the total drags
of the known model. Readers can refer to [29] for understanding the details of the drags. fu, fv, fp, fr

signify system uncertainties.

2.4. Problem Description

In order to describe conveniently the control problem of this paper, the desired trajectory tracked
by the hovercraft is defined as follows: ẋd

ẏd
ψ̇d

 =

 cos ψd − sin ψd 0
sin ψd cos ψd 0

0 0 1


 udset

vdset
rdset

 (13)

where xd, yd and ψd denote desired position and heading angle, udset, vdset, and rdset denote setting
speed and turn rate.

The position tracking errors are defined as:

xe = x− xd
ye = y− yd

(14)

Considering (12) and (13), the time derivative of position tracking errors is:[
ẋe

ẏe

]
=

[
cos ψ − sin ψ cos φ

sin ψ cos ψ cos φ

] [
u
v

]
−
[

ẋd
ẏd

]
(15)

In addition, the speed and turn rate tracking errors are defined as follows:

ue = u− αu

ve = v− αv

re = r− αr

(16)

where αu, αv and αr are the virtual control laws that will be designed later on.
According to Equations (12) and (16), the derivatives of the tracking error of speed and turn rate

are given by:
u̇e = vr + FxD0

m0
+ fu +

τu
m0
− α̇u

v̇e = −ur +
FyD0
m0

+ fv − α̇v

ṙe =
MzD0

Jz0
+ fr +

τr
Jz0
− α̇r

(17)

Assumption 1. The initial tracking errors defined by (14) and (16) satisfy the following inequality:

|ie(0)| < ki (t) , i = x, y, u, v, r (18)

where ki(t) are appointed-time performance constraint functions that will be specified later on.

The control objective in this paper can be formulated as follows:
Considering the hovercraft model (12) in the presence of model uncertainties and multiple

performance constraints, an adaptive appointed-time integral barrier Lyapunov function-based
trajectory tracking controller is designed to ensure that all the tracking errors converge to the small
region containing zero within user-appointed time while guaranteeing that the appointed-time
performance constraint conditions on the tracking errors are never violated.
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3. Control Design and Stability Analysis

3.1. Position Control

To guarantee that the position tracking errors always satisfy the appointed-time performance
constraint condition (1), the new integral barrier Lyapunov function combined with appointed-time
performance constraint function is constructed as:

Vp =
∫ xe

0

k2
xa (t) ς

k2
xa (t)− ς2 dς +

∫ ye

0

k2
ya (t) ς

k2
ya (t)− ς2 dς (19)

where

kia (t) =


k̄ib−kib

T2
ia

t2 − 2 k̄ib−kib
Tia

t + k̄ib, t ∈ [0, Tia)

kib, t ∈ [Tia,+∞)
(20)

with i = x, y and the definition of the parameters is similar to (1). We know that the candidate
Lyapunov function Vp is positive definite, continuously differentiable, and radially unbounded in the
sets |xe| < kxa (t) and |ye| < kya (t); therefore, Vp is a valid candidate Lyapunov function.

Taking the time derivative of Vp along (15) yields:

V̇p =
k2

xa (t) xe

k2
xa (t)− x2

e
ẋe +

(
kxa (t) log

k2
xa (t)

k2
xa (t)− x2

e
− kxa (t) x2

e
k2

xa (t)− x2
e

)
k̇xa (t)

+
k2

ya (t) ye

k2
ya (t)− y2

e
ẏe +

(
kya (t) log

k2
ya (t)

k2
ya (t)− y2

e
−

kya (t) y2
e

k2
ya (t)− y2

e

)
k̇ya (t)

=

 k2
xa(t)xe

k2
xa(t)−x2

e
k2

ya(t)ye

k2
ya(t)−y2

e


T [

ẋe

ẏe

]
+

 kxa (t) log k2
xa(t)

k2
xa(t)−x2

e
− kxa(t)x2

e
k2

xa(t)−x2
e

kya (t) log
k2

ya(t)
k2

ya(t)−y2
e
− kya(t)y2

e
k2

ya(t)−y2
e


T [

k̇xa (t)
k̇ya (t)

]

=

 k2
xa(t)xe

k2
xa(t)−x2

e
k2

ya(t)ye

k2
ya(t)−y2

e


T ([

cos ψ − sin ψ cos φ

sin ψ cos ψ cos φ

] [
u
v

]
−
[

ẋd
ẏd

])

+

 kxa (t) log k2
xa(t)

k2
xa(t)−x2

e
− kxa(t)x2

e
k2

xa(t)−x2
e

kya (t) log
k2

ya(t)
k2

ya(t)−y2
e
− kya(t)y2

e
k2

ya(t)−y2
e


T [

k̇xa (t)
k̇ya (t)

]

(21)

According to Lyapunov’s direct method, the virtual position control laws are designed as follows:[
αu

αv

]
=

[
cos ψ sin ψ

− sin ψ
/

cos φ cos ψ
/

cos φ

]

×

 ẋd − kxxe − k2
xa(t)−x2

e
k2

xa(t)

(
kxa(t)

xe
log k2

xa(t)
k2

xa(t)−x2
e
− kxa(t)xe

k2
xa(t)−x2

e

)
k̇xa (t)

ẏd − kyye −
k2

ya(t)−y2
e

k2
ya(t)

(
kya(t)

ye
log

k2
ya(t)

k2
ya(t)−y2

e
− kya(t)xe

k2
ya(t)−y2

e

)
k̇ya (t)

 (22)

where kx and ky are positive constants.

Remark 4. In the control process of the hovercraft, |φ| < 90◦ is always satisfied due to the effect of roll restoring
moment. In addition, using L’Hopital’s rule, we have:

lim
ie→0

kia (t)
ie

log
k2

ia (t)
k2

ia (t)− i2e
=

2kia (t) ie

k2
ia (t)− i2e

, i = x, y (23)
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Therefore, the virtual position control laws are well defined.

Substituting (22) into (21) yields:

V̇p =

 k2
xa(t)xe

k2
xa(t)−x2

e
k2

ya(t)ye

k2
ya(t)−y2

e


T ([

cos ψ − sin ψ cos φ

sin ψ cos ψ cos φ

] [
ue + αu

ve + αv

]
−
[

ẋd
ẏd

])

+

 kxa (t) log k2
xa(t)

k2
xa(t)−x2

e
− kxa(t)x2

e
k2

xa(t)−x2
e

kya (t) log
k2

ya(t)
k2

ya(t)−y2
e
− kya(t)y2

e
k2

ya(t)−y2
e


T [

k̇xa (t)
k̇ya (t)

]

=

 k2
xa(t)xe

k2
xa(t)−x2

e
k2

ya(t)ye

k2
ya(t)−y2

e


T [

cos ψ − sin ψ cos φ

sin ψ cos ψ cos φ

] [
ue

ve

]
+

 k2
xa(t)xe

k2
xa(t)−x2

e
k2

ya(t)ye

k2
ya(t)−y2

e


T [
−kxxe

−kyye

]

=− kx
k2

xa (t) x2
e

k2
xa (t)− x2

e
− ky

k2
ya (t) y2

e

k2
ya (t)− y2

e
+

 k2
xa(t)xe

k2
xa(t)−x2

e
k2

ya(t)ye

k2
ya(t)−y2

e


T [

cos ψ − sin ψ cos φ

sin ψ cos ψ cos φ

] [
ue

ve

]

=− kx
k2

xa (t) x2
e

k2
xa (t)− x2

e
− ky

k2
ya (t) y2

e

k2
ya (t)− y2

e

+ ue

(
cos ψ

k2
xa (t) xe

k2
xa (t)− x2

e
+ sin ψ

k2
ya (t) ye

k2
ya (t)− y2

e

)

+ ve

(
− sin ψ cos φ

k2
xa (t) xe

k2
xa (t)− x2

e
+ cos ψ cos φ

k2
ya (t) ye

k2
ya (t)− y2

e

)

(24)

3.2. Surge Control

The surge control law will be designed to guarantee that the surge speed tracking error converges
to a small range around zero within the appointed time while ensuring that the surge speed tracking
error remains within the predefined appointed-time constraint performance. Consider the following
new integral barrier Lyapunov function:

Vu =
∫ ue

0

k2
ua (t) ς

k2
ua (t)− ς2 dς +

1
2

W̃T
u Γ−1

u W̃u (25)

where W̃u = W∗u − Ŵu represents the estimation error with Ŵu representing the estimated value of W∗u
and Γu is a positive definite diagonal matrix. kua (t) is given by:

kua (t) =

{
k̄ub−kub

T2
ua

t2 − 2 k̄ub−kub
Tua

t + k̄ub, t ∈ [0, Tua)

kub, t ∈ [Tua,+∞)
(26)

We know that the candidate Lyapunov function Vu is positive definite, continuously differentiable,
and radially unbounded in the set Ωu = {ue : |ue| < kua (t)}; therefore, Vu is a valid candidate
Lyapunov function.

Remark 5. According to [30], we know that, for any unknown nonlinear function f (x): Rm → R, it can be
approximated by the neural networks over a compact set Ω ⊆ Rm as f (x) = W∗T H (x) + δ, where x ∈ Rm

stands for the input of the neural networks, and W∗ =
[
w∗1 , · · ·, w∗n

]T ∈ Rn denotes the ideal weight vector.
n is the number of hidden nodes, and δ represents the minimum approximation error. The bounded ideal
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weight value W∗ is given by W∗ = arg min
Ŵ

{
sup
x∈Ω

∣∣ f (x)− ŴT H (x)
∣∣}; where Ŵ denotes the estimation

of W∗. H (x) =
[
h1 (x) , · · ·, hn (x)

]T : Ω → Rn, hi(x) can be selected as hi = exp
(
−‖x− µi‖

/
η2

i
)

with
µi ∈ Rm and ηi ∈ R being the center and width of the radial basis function, respectively. In this paper,
since the model uncertainties fu, fv, fr in (12) are unknown, the model-based designed control law is not
feasible. To solve this problem, the neural networks ŴT

j Hj(Zj), j = u, v, r are used to approximate Ŵ∗Tj Hj(Zj)

such that f j ≈ ŴT
j Hj

(
Zj
)

with Hj(Zj) being the basis functions and Zj = [u, v, r]T being the input of the
neural networks.

Calculating the time derivative of Vu yields:

V̇u =
∂Vu

∂ue
u̇e +

∂Vu

∂kua(t)
k̇ua(t)− W̃T

u Γ−1
u

˙̂Wu

=
k2

ua (t) ue

k2
ua (t)− u2

e
u̇e + ue

[
kua

ue
log

k2
ua (t)

k2
ua (t)− u2

e
− kuaue

k2
ua (t)− u2

e

]
k̇ua − W̃T

u Γ−1
u

˙̂Wu

(27)

Substituting u̇e into (27), we have:

V̇u =
k2

ua (t) ue

k2
ua (t)− u2

e

(
vr +

FxD0

m0
+ fu +

τu

m0
− α̇u

)
+ ue

[
kua

ue
log

k2
ua (t)

k2
ua (t)− u2

e
− kuaue

k2
ua (t)− u2

e

]
k̇ua − W̃T

u Γ−1
u

˙̂Wu

(28)

According to Lyapunov’s direct method, the surge control law and the adaptive updating law are
designed as:

τu =m0

(
−kuue + α̇u −

FxD0

m0
− vr− ŴT

u Hu (Zu)− δ̄usgn (ue)

− k2
ua (t)− u2

e
k2

ua (t)

(
cos ψ

k2
xa (t) xe

k2
xa (t)− x2

e
+ sin ψ

k2
ya (t) ye

k2
ya (t)− y2

e

)

− k2
ua (t)− u2

e
k2

ua (t)

(
kua

ue
log

k2
ua (t)

k2
ua (t)− u2

e
− kuaue

k2
ua (t)− u2

e

)
k̇ua

) (29)

˙̂Wu = Γu

(
k2

ua (t) ue

k2
ua (t)− u2

e
Hu (Zu)− σuŴu

)
(30)

where ku, δ̄u, and σu are positive constants.

Remark 6. Using L’Hopital’s rule, we have:

lim
ue→0

kua (t)
ue

log
k2

ua (t)
k2

ua (t)− u2
e
=

2kua (t) ue

k2
ua (t)− u2

e
(31)

Therefore, the surge control law τu is well defined.
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Substituting (29) and (30) into (28) yields:

V̇u =
k2

ua (t) ue

k2
ua (t)− u2

e

(
−kuue + W̃T

u Hu (Zu) + δu − δ̄usgn (ue)
)

− ue

(
cos ψ

k2
xa (t) xe

k2
xa (t)− x2

e
+ sin ψ

k2
ya (t) ye

k2
ya (t)− y2

e

)

− W̃T
u Γ−1

u

(
Γu

(
k2

ua (t) ue

k2
ua (t)− u2

e
Hu (Zu)− σuŴu

))
≤ −ku

k2
ua (t) u2

e
k2

ua (t)− u2
e
+ σuW̃T

u Ŵu − ue

(
cos ψ

k2
xa (t) xe

k2
xa (t)− x2

e
+ sin ψ

k2
ya (t) ye

k2
ya (t)− y2

e

)
(32)

3.3. Sway Control

The hovercraft is a kind of typical underactuated surface vessel due to the lateral axis not
being directly actuated. Thus, the virtual sway control law will be designed to stabilize the sway
velocity tracking error within a user-appointed time while guaranteeing that the sway speed tracking
error remains within the predefined appointed-time performance constraint boundary. Consider the
following candidate Lyapunov function:

Vv =
∫ ve

0

k2
va (t) ς

k2
va (t)− ς2 dς +

1
2

W̃T
v Γ−1

v W̃v (33)

where W̃v = W∗v − Ŵv represents the estimation error with Ŵv representing the estimated value of W∗v
and Γv is a positive definite diagonal matrix. kva (t) is given by:

kva (t) =

{
k̄vb−kvb

T2
va

t2 − 2 k̄vb−kvb
Tva

t + k̄vb, t ∈ [0, Tva)

kvb, t ∈ [Tva,+∞)
(34)

We know that the candidate Lyapunov function Vv is positive definite, continuously differentiable,
and radially unbounded in the set Ωv = {ve : |ve| < kva (t)}; therefore, Vv is a valid candidate
Lyapunov function.

Calculating the time derivative of Vv yields:

V̇v =
∂Vv

∂ve
v̇e +

∂Vv

∂kva
k̇va − W̃T

v Γ−1
v

˙̂Wv

=
k2

va (t) ve

k2
va (t)− v2

e
v̇e + ve

(
kva

ve
log

k2
va (t)

k2
va (t)− v2

e
− kvave

k2
va (t)− v2

e

)
k̇va − W̃T

v Γ−1
v

˙̂Wv

(35)

Substituting v̇e into (35), we have:

V̇v =
k2

va (t) ve

k2
va (t)− v2

e

(
−ur +

FyD0

m0
+ fv − α̇v

)
+ ve

(
kva

ve
log

k2
va (t)

k2
va (t)− v2

e
− kvave

k2
va (t)− v2

e

)
k̇va − W̃T

v Γ−1
v

˙̂Wv

(36)
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According to Lyapunov’s direct method, the virtual sway control law, and the adaptive updating
law are designed as:

rd =
1
u

(
kvve +

FyD0

m0
− α̇v + ŴT

v Hv (Zv)− δ̄vsgn (ve)

+
k2

va (t)− v2
e

k2
va (t)

(
kva

ve
log

k2
va (t)

k2
va (t)− v2

e
− kvave

k2
va (t)− v2

e

)
k̇va

+
k2

va (t)− v2
e

k2
va (t)

(
− sin ψ cos φ

k2
xa (t) xe

k2
xa (t)− x2

e
+ cos ψ cos φ

k2
ya (t) ye

k2
ya (t)− y2

e

)) (37)

˙̂Wv = Γv

(
k2

va (t) ve

k2
va (t)− v2

e
Hv (Zv)− σvŴv

)
(38)

where kv, δ̄v, and σv are positive constants.

Remark 7. Using L’Hopital’s rule, we have:

lim
ve→0

kva (t)
ve

log
k2

va (t)
k2

va (t)− v2
e
=

2kva (t) ve

k2
va (t)− v2

e
(39)

In addition, the surge speed u is always set to a positive value in the control process. Therefore, the virtual sway
control law rd is well defined.

Substituting (37) and (38) into (36) yields:

V̇v =
k2

va (t) ve

k2
va (t)− v2

e

(
−ure −

(
kvve + ŴT

v Hv (Zv)− δ̄vsgn (ve)
)
+ fv

)
− ve

(
− sin ψ cos φ

k2
xa (t) xe

k2
xa (t)− x2

e
+ cos ψ cos φ

k2
ya (t) ye

k2
ya (t)− y2

e

)

− W̃T
v

(
k2

va (t) ve

k2
va (t)− v2

e
Hv (Zv)− σvŴv

)
≤− kv

k2
va (t) v2

e
k2

va (t)− v2
e
− k2

va (t) ve

k2
va (t)− v2

e
ure + σvW̃T

v Ŵv

− ve

(
− sin ψ cos φ

k2
xa (t) xe

k2
xa (t)− x2

e
+ cos ψ cos φ

k2
ya (t) ye

k2
ya (t)− y2

e

)
(40)

3.4. Yaw Control

The yaw control law will be designed to guarantee that the yaw angular velocity finishes
tracking the desired trajectory within a user-appointed time while ensuring that the yaw angular
velocity tracking error remains within the predefined appointed-time performance constraint boundary.
Consider the following integral barrier Lyapunov function combining an appointed-time performance
constraint function:

Vr =
∫ re

0

k2
ra (t) ς

k2
ra (t)− ς2 dς +

1
2

W̃T
r Γ−1

r W̃r (41)

where W̃r = W∗r − Ŵr represents the estimation error with Ŵr representing estimated value of W∗r and
Γr is a positive definite diagonal matrix. kra (t) is given by:

kra (t) =

{
k̄rb−krb

T2
ra

t2 − 2 k̄rb−krb
Tra

t + k̄rb, t ∈ [0, Tra)

krb, t ∈ [Tra,+∞)
(42)
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We know that the candidate Lyapunov function Vr is positive definite, continuously differentiable,
and radially unbounded in the set Ωr = {re : |re| < kra (t)}; therefore, Vr is a valid candidate
Lyapunov function.

Calculating the time derivative of Vr yields:

V̇r =
∂Vr

∂re
ṙe +

∂Vr

∂kra (t)
k̇ra (t)− W̃T

r Γ−1
r

˙̂Wr

=
k2

ra (t) re

k2
ra (t)− r2

e
ṙe + re

(
kra (t)

re
log

k2
ra (t)

k2
ra (t)− r2

e
− kra (t) re

k2
ra (t)− r2

e

)
k̇ua (t)

− W̃T
r Γ−1

r
˙̂Wr

(43)

Substituting ṙe into (43), we have:

V̇r =
k2

ra (t) re

k2
ra (t)− r2

e

(
MzD0

Jz0
+ fr +

τr

Jz0
− α̇r

)
+ re

(
kra (t)

re
log

k2
ra (t)

k2
ra (t)− r2

e
− kra (t) re

k2
ra (t)− r2

e

)
k̇ua (t)

− W̃T
r Γ−1

r
˙̂Wr

(44)

According to Lyapunov’s direct method, the yaw control law and the adaptive updating law are
designed as:

τr =Jz0

(
−krre −

MzD0

Jz0
− ŴT

r Hr (Zr)− δ̄rsgn (re) + α̇r

− k2
ra (t)− r2

e
k2

ra (t)

(
kra (t)

re
log

k2
ra (t)

k2
ra (t)− r2

e
− kra (t) re

k2
ra (t)− r2

e

)
k̇ua (t)

+
k2

ra (t)− r2
e

k2
ra (t)

k2
va (t) ve

k2
va (t)− v2

e
u
) (45)

˙̂Wr = Γr

(
k2

ra (t) re

k2
ra (t)− r2

e
Hr (Zr)− σrŴr

)
(46)

where kr, δ̄r, and σr are positive constants.

Remark 8. Using L’Hopital’s rule, we have:

lim
re→0

kra (t)
re

log
k2

ra (t)
k2

ra (t)− r2
e
=

2kra (t) re

k2
ra (t)− r2

e
(47)

Therefore, the yaw control law τr is well defined.

Substituting (45) and (46) into (44) yields:

V̇r =
k2

ra (t) re

k2
ra (t)− r2

e

(
fr − krre − ŴT

r Hr (Zr)− δ̄rsgn (re)
)

+
k2

va (t) ve

k2
va (t)− v2

e
reu− W̃T

r

(
k2

ra (t) re

k2
ra (t)− r2

e
Hr (Zr)− σrŴr

)
≤− kr

k2
ra (t) r2

e
k2

ra (t)− r2
e
+

k2
va (t) ve

k2
va (t)− v2

e
ure + σrW̃T

r Ŵr

(48)

3.5. Stability Analysis

In this paper, the major results are summarized as:
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Theorem 3. Considering the hovercraft models (12) in the presence of model uncertainties and multiple
performance constraints, if Assumption 1 is satisfied, the appointed-time integral barrier Lyapunov
function-based trajectory tracking controllers are obtained by (22), (29), (37), and (45), and the adaptive
updating laws are expressed by (30), (38), and (46), then all the tracking errors can converge to a small region
containing zero within a user-appointed time while guaranteeing that the appointed-time performance constraint
conditions on the tracking errors are never violated.

Proof of Theorem 3. Assign the complete Lyapunov function as:

V =Vp + Vu + Vv + Vr

=
∫ xe

0

k2
xa (t) ς

k2
xa (t)− ς2 dς +

∫ ye

0

k2
ya (t) ς

k2
ya (t)− ς2 dς +

∫ ue

0

k2
ua (t) ς

k2
ua (t)− ς2 dς +

1
2

W̃T
u Γ−1

u W̃u

+
∫ ve

0

k2
va (t) ς

k2
va (t)− ς2 dς +

1
2

W̃T
v Γ−1

v W̃v +
∫ re

0

k2
ra (t) ς

k2
ra (t)− ς2 dς +

1
2

W̃T
r Γ−1

r W̃r

(49)

In virtue of (24), (32), (40), and (48), the time derivative of V is:

V̇ ≤− kx
k2

xa (t) x2
e

k2
xa (t)− x2

e
− ky

k2
ya (t) y2

e

k2
ya (t)− y2

e

+ ue

(
cos ψ

k2
xa (t) xe

k2
xa (t)− x2

e
+ sin ψ

k2
ya (t) ye

k2
ya (t)− y2

e

)

+ ve

(
− sin ψ cos φ

k2
xa (t) xe

k2
xa (t)− x2

e
+ cos ψ cos φ

k2
ya (t) ye

k2
ya (t)− y2

e

)

− ku
k2

ua (t) u2
e

k2
ua (t)− u2

e
+ σuW̃T

u Ŵu − ue

(
cos ψ

k2
xa (t) xe

k2
xa (t)− x2

e
+ sin ψ

k2
ya (t) ye

k2
ya (t)− y2

e

)

− kv
k2

va (t) v2
e

k2
va (t)− v2

e
− k2

va (t) ve

k2
va (t)− v2

e
ure + σvW̃T

v Ŵv

− ve

(
− sin ψ cos φ

k2
xa (t) xe

k2
xa (t)− x2

e
+ cos ψ cos φ

k2
ya (t) ye

k2
ya (t)− y2

e

)

− kr
k2

ra (t) r2
e

k2
ra (t)− r2

e
+

k2
va (t) ve

k2
va (t)− v2

e
ure + σrW̃T

r Ŵr

≤− kx
k2

xa (t) x2
e

k2
xa (t)− x2

e
− ky

k2
ya (t) y2

e

k2
ya (t)− y2

e
− ku

k2
ua (t) u2

e
k2

ua (t)− u2
e
− kv

k2
va (t) v2

e
k2

va (t)− v2
e

− kr
k2

ra (t) r2
e

k2
ra (t)− r2

e
− σu

2
W̃T

u W̃u −
σv

2
W̃T

v W̃v −
σr

2
W̃T

r W̃r +
σu

2
W∗Tu W̃∗u

+
σv

2
W∗Tv W̃∗v +

σr

2
W∗Tr W̃∗r

(50)

According to Theorem 1, the time derivative of V can be expressed as:

V̇ ≤ −λ1V + λ2 (51)

where
λ1 = min

{
kx, ky, ku, kv, kr, σuλmin (Γu) , σvλmin (Γv) , σrλmin (Γr)

}
(52)

λ2 =
σu

2
W∗Tu W̃∗u +

σv

2
W∗Tv W̃∗v +

σr

2
W∗Tr W̃∗r (53)
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Solving the inequality (51) yields:

0 ≤ V ≤
(

V (0)− λ2

λ1

)
e−λ1t +

λ2

λ1
(54)

Invoking Theorem 1 again yields:

i2e
2
≤ V ≤

(
V (0)− λ2

λ1

)
e−λ1t +

λ2

λ1
, i = x, y, u, v, r (55)

1
2

W̃T
j Γ−1

j W̃j ≤
(

V (0)− λ2

λ1

)
e−λ1t +

λ2

λ1
, j = u, v, r (56)

For given ∆λ ≥
√

2λ2/λ1, there is a constant Tλ > 0 such that the tracking errors |ie| ≤ ∆λ,

i = x, y, u, v, r, and
∥∥W̃j

∥∥ ≤ ∆λ

/√
λmin

(
Γ−1

j

)
, j = u, v, r for all t > Tλ. Therefore, all the tracking

errors are ultimately uniformly bounded. We know that the decrease of (V (0)− λ2/λ1) e−λ1t + λ2/λ1

can be achieved by increasing λ1 or decreasing λ2. Hence, the tracking errors can be adjusted to
arbitrarily small through selecting appropriately the design parameters kx, ky, ku, kv, kr and σjλmin

(
Γj
)
.

According to the boundedness of V, we know that there is a positive constant km such that
V < km. Then, in light of the definition of the proposed new integral barrier Lyapunov function, we
have V → ∞ only if |xe| → kxa(t) or |ye| → kya(t) or |ue| → kua(t) or |ve| → kva(t) or |re| → kra(t).
Therefore, we have |xe| 6= kxa(t), |ye| 6= kya(t), |ue| 6= kua(t), |ve| 6= kva(t) and |re| 6= kra(t). In virtue
of Theorem 2 and the initial conditions in Assumption 1 in this paper, it is straightforward to obtain
that |xe| < kxa (t), |ye| < kya (t), |ue| < kua (t), |ve| < kva (t) and |re| < kra (t). The proof of Theorem 3
is completed.

Remark 9. Compared with the existing control method based on the integral barrier Lyapunov function
technique in [23–27], the improved time-varying integral barrier Lyapunov function proposed in this paper is
capable of handling the time-varying constraint on the system tracking error—for instance, the time-varying
constraints on the tracking errors of the underactuated hovercraft. The time-varying constraint technique
is more universal and complex than the time-invariant constraint technique in addition to having a wider
application range.

Remark 10. Compared with the previous integral barrier Lyapunov function technique in [23–27],
an appointed-time constraint function is proposed to incorporate into the integral barrier Lyapunov function,
which can guarantee that all the tracking errors converge to a small range containing zero while ensuring that
all the tracking errors remain within the pre-specified transient and steady performance. In addition, unlike the
traditional finite/fixed-time control in [21,22], the tracking errors under the proposed controller can converge to
a small range around zero within the appointed time, which can be user-appointed arbitrarily.

Remark 11. It is worth noting that the log-type and tan-type barrier Lyapunov function techniques in [31,32]
only guarantee that the constrained tracking errors ei, i = 1, 2... never cross the constrained boundaries ki,
namely, the tracking errors are satisfied |ei| < ki. The proposed method in this paper not only guarantees the
tracking errors are satisfied |ei| < ki but also are made arbitrarily small by suitably selecting design parameters.

Remark 12. In [33], the log-type barrier Lyapunov function technique was used to constrain the position
and speed tracking errors of the hovercraft and only guaranteed that the tracking errors remain within the
time-invariant constraint boundaries. However, in this paper, the proposed integral barrier Lyapunov function
combining the appointed-time constraint function not only deals with the time-varying constraints but also
guarantees that the tracking errors can converge to any small region around zero.
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4. Numerical Simulations

The comparison with the finite-time terminal sliding mode control method in [21] is implemented
to demonstrate the advantages and effectiveness of the proposed method. In simulations, the major
parameters of the hovercraft can be found in [29].

The initial values of the hovercraft under the condition of Assumption 1 are selected as ψ(0) = 30,
u(0) = 30, v(0) = 0 and r(0) = 0. The control parameters are designed as kx = 0.02, ky = 0.068,
ku = 1.999, kv = 2.5 and kr = 0.99. The parameters of the virtual vessel are chosen as xd(0) = 0,
yd(0) = 0, ψd(0) = 45, udset(t) = 35 and vdset(t) = 0. The hovercraft’s initial position x(0), y(0)
and the parameter rdset(t) of the virtual vessel are given in two cases to show the advantages of the
proposed method.

Case 1: The hovercraft’s initial position is selected as x(0) = −50, y(0) = 50 and the parameter
rdset(t) of the desired trajectory is given by:

rdset (t) =

{
0 t < 100
sat (krset (t− 100) , 0.5,−0.5) t ≥ 100

(57)

Case 2: The hovercraft’s initial position is selected as x(0) = −60, y(0) = 60 and the parameter
rdset(t) of the desired trajectory is given by:

rdset (t) =


0 t < 100
sat (−krset (t− 100) , 0.5,−0.5) 100 ≤ t < 460
sat (krset (t− 100) , 0.5,−0.5) t ≥ 460

(58)

where

sat(x, x_max, x_min) =


x_max, x > x_max
x, x_min ≤ x ≤ x_max
x_min, x < x_min

(59)

The parameters of the performance constraint function are designed as k̄xb = k̄yb = 100, kxb =

kyb = 10, k̄ub = 20, k̄vb = 5, k̄rb = 5, kub = 0.6, kvb = 0.6, krb = 0.6, Txa = Tya = 20 and Tua = Tva =

Tra = 60. Since ARBFNN is used to approximate the model uncertainties fu, fv, and fr, the hidden
node numbers for ŴT

u Hu (Zu), ŴT
v Hv (Zv) and ŴT

r Hr (Zr) are set to n = 13, with centers of the radial
basis functions φl1 (l1 = 1, · · ·, n), φl2 (l2 = 1, · · ·, n) and φl3 (l3 = 1, · · ·, n) evenly spaced in [−1.5, 1.5],
[−1, 1] and [−2, 2], respectively. The widths of the radial basis functions are chosen as ε l1 = 30, ε l2 = 20
and ε l2 = 25, respectively.

The model uncertainties and external disturbances are described by the following formula: fu

fv

fr

 =


2 sin(0.05t)

m0
0.2 cos(0.03t)

m0
cos(0.02t)

Jz0


 b1

b2

b3

 (60)

where b =
[

b1 b2 b3

]T
∈ R3, ḃ = −T−1b + Awn is the first-order Markov process, wn ∈ R3 is the

vector of zero-mean Gaussian white noises, the other parameters of the first-order Markov process are
set as:

b(0) = [2× 104, 2× 104, 2× 104]T

T = diag(103, 103, 103)

A = diag(1× 104, 1× 104, 1× 104)

(61)

The simulation results of the two different methods with and without appointed-time performance
constraints under cases 1 and 2 are shown in Figures 2–10 and labeled as proposed method and sliding
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mode control, respectively. It can be known from Figures 2 and 6 that the hovercraft can track the
desired trajectory in ideal accuracy under the two different control methods. The desired trajectory is
composed of a straight line and a quasi-circle which can represent somewhat realistic performance
in the problem of path following or trajectory tracking. It is obvious from Figures 3 and 7 that the
proposed method guarantees the pre-specified transient and steady performance boundaries kia(t),
i = x, y of the position tracking errors, in which the appointed-time performance constraints are
never violated. The speed and turn rate tracking curves are depicted in Figures 4 and 8, from whose
embodied subplot the speed and turn rate tracking errors can always remain within the pre-specified
transient and steady performance boundaries kia(t), i = u, v, r. From further observation in Figures 3, 4,
7, and 8, the performance constraints on the position and sway speed tracking errors for the finite-time
terminal sliding mode control method, however, have clearly been violated.
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Figure 2. Trajectory of the hovercraft under case 1.
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Figure 3. Position tracking errors of two methods under case 1.
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Figure 4. Speed and turn rate tracking errors of two methods under case 1.
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Figure 5. Control inputs of two methods under case 1.
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Figure 6. Trajectory of the hovercraft under case 2.
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Figure 7. Position tracking errors of two methods under case 2.
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Figure 8. Speed and turn rate tracking errors of two methods under case 2.

0 100 200 300 400 500 600 700

−5

0

5

10

15

20

x 10
4

τ u(N
)

0 100 200 300 400 500 600 700

−5

0

5
x 10

5

τ r(N
m

)

time(s)

 

 

proposed method
sliding mode control

Figure 9. Control inputs of two methods under case 2.

In addition, compared with the finite-time sliding mode control method in [21], the proposed
method can guarantee that the position and speed tracking errors converge to a small range around zero
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within the user-appointed time Tia(t), i = x, y, u, v, r. Thus, the proposed method accelerates clearly
convergence time of the control system. The control inputs under these two methods are shown in
Figures 5 and 9. It can be observed that the amplitude of the yaw control input τr under the proposed
control method varies rapidly in the initial period in order to track the desired trajectory quickly.
The model uncertainties and corresponding estimation values are shown in Figure 10. Accordingly,
by analyzing the simulation results under cases 1 and 2, the proposed control method can provide
better transient and steady performances and faster convergence speed than the finite-time terminal
sliding mode control method in [21].
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Figure 10. Model uncertainties and their estimation values.

5. Conclusions

In this paper, we have proposed the control designs for underactuated hovercraft with multiple
performance constraints and model uncertainties. A new time-varying appointed-time integral barrier
Lyapunov function technique is developed, which is capable of fulfilling position and speed tracking
in a user-appointed time while ensuring the evolution of the tracking errors of the position and speed
along with the predefined performance constraint bounds. Moreover, compared with existing works,
the proposed control method can not only deal with the time-varying constraint on the errors but
also ensure that all the tracking errors converge to a small range around zero within user-designing
time. Simulation results were carried out to indicate the efficiency and advantages of the proposed
method. In future work, the input saturation will be taken into account in the proposed integral barrier
Lyapunov function.
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