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Abstract: The antidepressant-like activity of ethanol extract of Ziziphus jujuba Mill var. spinosa seeds
(Semen Ziziphi Spinosae, SZS) was investigated by behavioral tests, such as a forced swimming
test (FST), a tail-suspension test (TST), and an open field test (OFT), using mice exposed to chronic
unpredictable mild stress (CUMS). In the TST, immobility times of the extract-treated groups E100
and E300 (CUMS + 100 and 300 mg/kg extract, respectively) were significantly decreased in a
dose-dependent manner compared with the negative control (CUMS; p < 0.01, though those of E100
and E300 were higher than those of the positive control (CUMS + 15 mg/kg fluoxetine). In the
FST, immobility times of E100 and E300 were decreased compared to the normal control. In the
OFT, total and zone distances of E100 and E300 were significantly higher than those of negative
controls (p < 0.01) with a dose dependency. In liquid chromatography-tandem mass spectrometry
(LC-MS/MS) analysis after behavioral tests, norepinephrine (NE) and 5-hydroxytryptamine (5-HT)
levels in the hippocampus tissues of E100 and E300 were significantly higher than those of negative
controls. Brain-derived neurotrophic factor (BDNF) levels in the hippocampus tissues of E100 and
E300 were higher than those of negative controls. From these results, the SZS ethanol extract exhibited
significant antidepressant-like effects via immobility decrease, distance increase, hippocampal NE
and 5-HT increase, and BDNF expression. These results suggest that the extract could be a potential
antidepressant agent.

Keywords: Ziziphus jujuba Mill var. spinosa; ethanol extract; antidepressant-like effect; CUMS; FST;
TST; OFT; LC-MS/MS; BDNF

1. Introduction

Depression is expanding to become a global health problem and its exact cause has not been
identified, although much has been reported on its etiology [1,2]. Several drugs have been used for the
treatment of depression, such as monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants
(TCAs), selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors
(SNRIs), norepinephrine-dopamine reuptake inhibitors (NDRIs), and N-methyl-D-aspartate receptor
(NMDAR) antagonists [3,4]. These inhibitors increase monoamine neurotransmitters such as
norepinephrine (NE), 5-hydroxytryptamine (5-HT, serotonin), and dopamine (DA). Among the
MAOIs, moclobemide and toloxatone (selective MAO-A) and selegiline (selective MAO-B) have
been used in the market as antidepressants. On the other hand, depression treatments such as
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antidepressants were found to increase the expression of brain-derived neurotrophic factor (BDNF) in
the brain [5].

Semen Ziziphi Spinosae (SZS), the dried seeds of Ziziphus jujuba Mill var. spinosa (Bunge) Hu ex H.F.
Chou, has traditionally been used for the treatment of insomnia and anxiety in oriental countries such
as Korea and China [6,7]. SZS has been found to have neuroprotective [6], sedative and hypnotic [8],
hepaprotective [9], wound-healing [10], anti-aging [11], and cognitive [12,13] effects, as well as
antioxidant [14], anti-inflammatory [15], anti-hypertensive [16,17], anti-bacterial [18], cytoprotective
(antioxidant) [19], anti-genotoxic [20], hematopoietic [21], anti-cancer [22], immunological and
anti-complementary [23], synaptic transmission [24], and anti-anxiety [25] activities.

During the on-going study to search for antidepressant materials, we selected SZS as an experiment
source based on its diverse biological activities and possible activities on the central nervous system
(CNS) as described above. In this study, the antidepressant activity of ethanol extract of Z. jujuba
Mill var. spinosa seeds was investigated using a tail-suspension test (TST), a forced swimming test
(FST), and an open field test (OFT) with mice. In addition, MAO-A, MAO-B, acetylcholinesterase
(AChE), and butyrylcholinesterase (BChE) activities in the brain were assayed, levels of the monoamine
neurotransmitters were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS),
and the level of BDNF was analyzed by Western blotting.

2. Materials and Methods

2.1. Plant Material and Extract Preparation

SZS (permitted by Korea Food and Drug Administration, KFDA), the dried seeds of Z. jujuba Mill
var. spinosa (Bunge) Hu ex H.F. Chou, derived from the Rhamnaceae species, was purchased from a
local market (http://nonglim.co.kr/). The SZS was immersed in 4 volumes of 70% ethanol and boiled
for 6 h at 85 ◦C. This was done twice. The solution was then filtered, concentrated up to 20 Brix at
60 ◦C by depressurized evaporation, and stored at 4 ◦C before use.

2.2. Chemicals and Enzymes

Fluoxetine, dimethyl sulfoxide (DMSO), methanol (MeOH), ethyl acetate (EA), acetic acid,
chloroform, toluene, dioxane, dichloromethylene (DCM), NE, epinephrine (EP), DA, 5-HT,
3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dimethoxybenzoic
acid (DMBA),γ-amino butyric acid (GABA), glutamic acid, kynuramine, benzylamine, acetylthiocholine
iodide (ACTI), butyrylthiocholine iodide (BCTI), and 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Spinosin was purchased from ChemFaces
(CFN99600, Wuhan, China). High-performance liquid chromatography (HPLC)-grade water (DW)
and acetonitrile (ACN) were purchased from J.T. Baker Inc. (Phillipsburg, NJ, USA). LC-MS-grade
formic acid (FA) was purchased from Thermo Fisher Scientific Inc. (Rockford, IL, USA). Recombinant
human MAO-A and MAO-B, AChE from Electrophorus electricus, and BChE from equine serum were
purchased from Sigma-Aldrich.

2.3. Animals and Administration

Naïve male ICR mice (six weeks old, 30 ± 1 g) were obtained from RaonBio Inc. Yongin, Republic
of Korea and maintained under standard conditions as described previously [26]. Experiments for
animals were carried out according to protocols approved by Sunchon National University Institutional
Animal Care and Use Committee (SCNU IACUC, permit number: SCNU IACUC-2020-07). On arrival,
animals were allowed to acclimatize for 7 days and were supplied with standard chow and water
ad libitum. Mice were then randomly divided into 5 groups (n = 7/group) and treated with chronic
unpredictable mild stress (CUMS), except for the normal control, based on the methods described
by Szewczyk et al. [27], with modifications. The groups were: normal control (C), administered
phosphate-buffered saline (PBS) solution (0.9% NaCl); negative control (N) with CUMS; positive
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control (P), administered fluoxetine (15 mg/kg) with CUMS; and 2 treatment groups administered
extract of SZS (E100 and E300 with 100 and 300 mg/kg, respectively) with CUMS. The materials were
dissolved in PBS solution. The saline and fluoxetine were administered by intraperitoneal injection
(i.p.) at a volume of 0.3 mL and the SZS extract was administered orally (p.o.). CUMS proceeded
randomly in a total of 8 cases, by picking out a sheet on which a case number is written. The methods
were applied as follows: (1) exposed to an empty cage for 9 h; (2) nipping of the tail for 2 min every 3 h,
3 times; (3) food removed for 9 h; (4) water removed for 9 h; (5), fed with wet feed; (6) left alone in
1 cage for 9 h; (7) lighting kept on for 24 h; (8) kept in darkness for 24 h. The same CUMS methods
were not applied. Behavioral tests were performed 30 min later.

2.4. Behavioral Experiments

Antidepressant-like activity was evaluated using the FST, TST, and OFT. The FST was performed
based on the method of Porsolt et al. [28] with slight modifications, as described previously [26].
Immobility times were recorded over the last 4 min of a 6 min test, using an open cylinder (20 cm × 30 cm)
filled with water to a height of 16 cm. The TST was carried out using Steru et al.’s [29] method with
slight modifications [26]. A mouse was suspended by taping the tail at 2 cm from the tip in a Plexiglas
box (25 cm × 25 cm × 50 cm). Immobility times were recorded over the last 4 min of a 6 min experiment
under dark and quiet conditions. The OFT was conducted on a square platform (30 cm × 30 cm),
of which the center zone was 10 cm × 10 cm and was divided into 9 equal squares. A mouse was placed
in the center of the platform, and three parameters were checked to evaluate depressive symptoms for
8 min: time or distance in the center zone, and total distance on the platform [30].

The tests were recorded on videotape, and data were analyzed using EthoVision XT Base version
14 (Noldus, Wageningen, The Netherlands).

2.5. Tissue Preparations

After the FST, TST, and OFT were finished, mice were sacrificed by cervical dislocation.
Whole brains were then collected and the hippocampi were dissected. The tissue was washed with
ice-cold Dulbecco’s phosphate buffered saline (DPBS) and stored at −80 ◦C until used. For LC-MS/MS,
the part was homogenized in 0.1% FA (400 mg/mL) using an ultrasonicator (VCX-600, Sonics &
Materials, Danbury, CT, USA) and the supernatant was collected by centrifugation at 12,300× g
for 15 min at 4 ◦C [26]. For Western blot, the tissue was dissolved in RIPA lysis buffer (50 mM
Tris-HCl, 150 mM NaCl, 1.0% (v/v) NP-40, 0.5% (w/v) sodium deoxycholate, 0.01% (w/v) sodium azide,
pH 7.4) containing HaltTM Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific Inc.).
The protein concentration of each sample was adjusted to be identical using a Bradford protein assay
kit (Bio-Rad Laboratories, Hercules, CA, USA).

2.6. Analysis of MAO-A, MAO-B, AChE, and BChE Activities

MAO-A and MAO-B activities of the extract and spinosin were continuously assayed as described
previously [31] using kynuramine (0.06 mM) and benzylamine (0.3 mM) as substrates, respectively.
AChE and BChE activities were measured as described previously [32] using the presence of 0.5 mM
ACTI and BTCI as substrates, respectively, by adding 0.5 mM DTNB as a color-developing agent.
For the assays of tissues, 40 µg of proteins were used in 0.5 mL reaction mixtures.

2.7. Analysis of Neurotransmitter Amines and Metabolites in Hippocampus Tissues by LC-MS/MS

Neurotransmitter amines and metabolites were analyzed as described previously [26], with slight
modifications. Briefly, the concentrations of the 8 standards (NE, EP, DA, 5-HT, 5-HIAA, DOPAC,
GABA, and glutamic acid) and DMBA as an internal standard were 0.004 and 0.1 mg/mL, respectively,
in DW containing 0.1% FA (v/v). For deproteinization, samples (150 µL) were mixed with 0.1 mg/mL
of DMBA (20 µL) and ACN containing 1% FA (330 µL). After centrifugation, samples (10 µL) were
analyzed by LC-MS/MS (LCMS-8050, Shimadzu Corp., Kyoto, Japan) using a Kinetex C18 column
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(250 mm × 4.6 mm, 5 µm, 100 Å) of Phenomenex (Torrance, CA, USA) at a flow rate of 0.30 mL/min
with a gradient of phase A (DW containing 0.1% FA) and B (ACN containing 0.1% FA): 0% of B for
6 min, 100% of B from 6 to 15 min, and 100% of B for 23 min followed by a return to 0% of B and a
12 min re-equilibration period. MS/MS was performed in electrospray ionization (ESI) mode.

2.8. Western Blot

Proteins of the prepared samples were separated using 11% SDS-PAGE gels, and were transferred
to nitrocellulose membranes (Thermo Fisher Scientific Inc.) according to the methods described
previously [33], with modifications. The membranes were blocked in Tris-buffered saline (TBS)
containing 5% bovine serum albumin (BSA) for 1 h at room temperature, and incubated at 4◦ overnight
with BDNF recombinant rabbit monoclonal antibody and β-actin polyclonal antibody (Thermo Fisher
Scientific Inc., Waltham, MA, USA, 1:2000). The membranes were washed with TBS containing
20% Tween 20 (TBST) and incubated with horseradish-peroxidase-conjugated goat anti-rabbit IgG
(H + L) secondary antibody (Thermo Fisher Scientific Inc., Waltham, MA, USA, 1:10000) for 1 h at
room temperature. The membranes were then washed with TBST and developed with an enhanced
chemiluminescence kit (Thermo Fisher Scientific Inc., Waltham, MA, USA). The protein bands were
detected using MicroChemi 4.2 (DNR Bio-Imaging Systems Ltd., Neve Yamin, Israel). The BDNF was
normalized to the β-actin band.

2.9. Statistical Analysis

The immobility times (FST and TST) and distances (OFT) were analyzed statistically. The levels of
NE, EP, 5-HT, DA, DOPAC, 5-HIAA, GABA, and glutamic acid in mouse hippocampus tissues were
quantitatively determined based on calibration curves. Levels in mouse hippocampus tissues were
then normalized versus corresponding control mean values and plotted as bar graphs using GraphPad
PRISM 7.0a (GraphPad, San Diego, CA, USA). The Mann-Whitney test was used to determine the
significances of the differences between metabolites levels in the C and N controls, and between the
N control and each of the three groups (i.e., P control, or the 2 extract-treated groups) using IBM
SPSS Statistics 20 (IBM Corporation, Armonk, NY, USA). The Kruskal-Wallis test was also used to
determine the significances of the differences among the four groups (i.e., N and P controls, and the 2
extract-treated groups).

3. Results and Discussion

3.1. SZS Extract and Inhibitory Activities against MAO-A, MAO-B, AChE and BChE

The SZS was extracted with the treatment of 70% ethanol and boiling. The yield was found to be
5.1% (w/w). Inhibitory activities of the extract against MAO-A, MAO-B, AChE, and BChE, relating
to neurologic pathways, were evaluated along with a flavone C-glycoside spinosin, which is a major
constituent of SZS. The SZS extract showed 67.9% and 58.4% of the residual activities against MAO-B
and AChE, respectively, at 50 µg/mL (Table 1). The inhibitory activities against MAO-A and BChE were
not effective. Spinosin exhibited moderate inhibitory activities against MAO-B and AChE, with IC50

values of 63.3 and 39.8 µM, respectively. However, the values were higher than those of reference
inhibitor compounds.
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Table 1. Inhibitions of recombinant human monoamine oxidase (MAO) enzymes, acetylcholinesterase
(AChE), and butyrylcholinesterase (BChE) by Semen Ziziphi Spinosae (SZS) extract and spinosin.

Compounds
Residual Activity (%) at 40 µM IC50 (µM)

MAO-A MAO-B AChE BChE MAO-A MAO-B AChE BChE

SZS a 79.2 ± 2.53 67.9 ± 1.81 58.4 ± 5.26 79.5 ± 0.71 - - - -
Spinosin 86.9 ± 0.00 67.9 ± 3.02 50.2 ± 1.05 83.5 ± 7.78 >80 63.3 ± 0.075 39.8 ± 0.40 >80

Toloxatone 1.08 ± 0.025 - - -
Lazabemide - 0.063 ± 0.015 - -

Tacrine - - 0.27 ± 0.019 0.014 ± 0.0043

Results are expressed as means ± standard errors of triplicate experiments. Values for reference compounds were
determined after preincubation for 30 min with enzymes. a Residual activities at 50 µg/mL.

3.2. Animal Experiment Plan

After acclimatization of the animals for 1 week, those under CUMS were treated to the end of
the experiments for 4 weeks and 3 days, and the drug and the extract were administered 2 days
after starting the CUMS (Figure 1). Animal behavioral tests (FST, TST, and OFT) were conducted for
3 days starting on the first day of the fifth week in order. The next day, the mice were sacrificed and
hippocampus tissues were isolated.
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Figure 1. The overall procedure of animal behavioral experiments. FST: forced swimming test; TST:
tail-suspension test; OFT: open field test; CUMS: chronic unpredictable mild stress.

3.3. Behavioral Tests

In the FST, immobility times of the SZS-extract-treated groups, E100 and E300, were decreased
compared to C, but not significantly, while those of N were significantly increased compared to C
(p < 0.05) and those of P were significantly decreased compared to N (p < 0.01; Figure 2). In the TST,
immobility times of E100 and E300 were significantly decreased compared to N (p < 0.01), with a dose
dependency (Figure 2). Moreover, the immobility time of N was significantly increased compared to C
(p < 0.05), and that of P was significantly decreased compared to N (p < 0.01). The results of immobility
times between N, P, E100, and E300 in both tests were statistically significant (p < 0.001).

In the OFT, the total distances of E100 and E300 were significantly higher than those of N (p < 0.01)
with a dose-dependent relationship close to that of C, and the results of the distances between N, P,
E100, and E300 were statistically significantly different (p < 0.001; Figure 3). Zone distances of E100
and E300 were higher than those of P, with a dose-dependency (p < 0.01; Figure 3). However, times in
zone of E100 and E300 were ineffective (i.e., lower than those of N) (Figure 3).
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(NE, p < 0.01; EP, p < 0.05; 5-HT, p < 0.05; GABA, p < 0.01; choline, p < 0.01; Figure 4). The concentrations 
of NE, EP, 5-HT, GABA, and choline were 0.16 ± 0.0021, 1.84 ± 0.25, 0.12 ± 0.0035, 542.5 ± 94.7, and 
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Figure 2. Behavioral analyses of the forced swimming test (FST) (A) and tail-suspension test (TST)
(B) after intraperitoneal injection of fluoxetine and oral administration of the extract into mice (n = 7).
C: normal control; N: negative control (chronic unpredictable mild stress (CUMS)); P: positive control
(CUMS + 15 mg/kg fluoxetine); E100 and E300: doses of the extract (CUMS + 100 and 300 mg/kg,
respectively). #: Kruskal-Wallis test; *: Mann-Whitney test. ###: p < 0.001; *: p < 0.05; **: p < 0.01.
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Figure 3. Behavioral analysis of the open field test (OFT) after intraperitoneal injection of fluoxetine and
oral administration of the extract into mice (n = 7). (A) Total distance; (B) Zone distance; (C) Time in
zone. C: normal control; N: negative control (CUMS); P: positive control (CUMS + 15 mg/kg fluoxetine);
E100 and E300: doses of the extract (CUMS + 100 and 300 mg/kg, respectively). #: Kruskal-Wallis test;
*: Mann-Whitney test. #: p < 0.05; ###: p < 0.001; *: p < 0.05; **: p < 0.01.

3.4. LC-MS/MS Analysis of Neurotransmitter Monoamines and Metabolites

After the FST, TST, and OFT, the levels of NE, EP, 5-HT, DA, DOPAC, 5-HIAA, GABA, and choline
in mouse hippocampus tissues were quantitatively determined based on calibration curves and then
normalized. In the hippocampus, five compounds were detected; NE, EP, 5-HT, GABA, and choline
levels of E100 and/or E300 were significantly higher than those of N with dose-dependencies (NE,
p < 0.01; EP, p < 0.05; 5-HT, p < 0.05; GABA, p < 0.01; choline, p < 0.01; Figure 4). The concentrations
of NE, EP, 5-HT, GABA, and choline were 0.16 ± 0.0021, 1.84 ± 0.25, 0.12 ± 0.0035, 542.5 ± 94.7,
and 178.6 ± 27.9 ng/mg protein in control; those in CUMS-treated negative controls were decreased,
those in positive controls were increased, and those in E100 and E300 were increased to the positive
controls (Table S1). Levels of DA, 5-HIAA, and DOPAC were too low to be detected.
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sedative and hypnotic [8], and anxiety suppression [25] effects, as well as anti-Alzheimer’s disease 
activities [12,13,34–36]. However, little information is available about the antidepressant activity of 
SZS. Very recently, Ziziphus mucronata showed an antidepressant effect in chronically stressed rats 
due to its capacities for antioxidant activity, and probably the modulation of monoamines 
transmission [37]. Spinosin, a major constituent of SZS, has been reported to have the activities of 
neurogenesis for cognitive improvement [38–40], sleep reduction for the treatment of insomnia [41], 
neuroprotection [42], and cardioprotection [43]. However, the antidepressant activity of spinosin was 
not previously reported.  

Figure 4. LC-MS/MS analysis of neurotransmitters in the hippocampi of mouse brains after behavioral
tests by intraperitoneal injection of fluoxetine and oral administration of the extract into mice (n = 7).
C: normal control; N: negative control (CUMS); P: positive control (CUMS + 15 mg/kg fluoxetine);
E100 and E300: doses of the extract (CUMS + 100 and 300 mg/kg, respectively). GABA: γ-amino butyric
acid. #: Kruskal-Wallis test; *: Mann-Whitney test. #: p < 0.05; ##: p < 0.01; *: p < 0.05; **: p < 0.01.

3.5. Analysis of MAO-A, MAO-B, AChE, and BChE Activities in Hippocampus Tissues

MAO-A, MAO-B, AChE, and BChE activities of the hippocampus tissues were assayed. In the
hippocampus of E100 and E300, the content of AChE was increased, but with no dose-dependency
(Table 2). Other enzyme activities were not significant.

Table 2. MAO-A, MAO-B, AChE, and BChE activities of the hippocampus in normalized values.

Group
Normalized Value (n = 7)

MAO-A MAO-B AChE BChE

C 1.00 ± 0.70 1.00 ± 0.55 1.00 ± 0.72 1.00 ± 1.11
N 1.65 ± 0.97 0.99 ± 0.48 1.65 ± 0.78 0.65 ± 0.26
P 1.06 ± 0.31 1.00 ± 0.37 2.33 ± 1.37 0.98 ± 0.86

E100 1.08 ± 0.37 0.75 ± 0.43 1.52 ± 0.76 0.42 ± 0.23
E300 1.22 ± 0.26 0.56 ± 0.47 0.99 ± 0.20 0.42 ± 0.22

C: normal control; N: negative control (CUMS); P: positive control (CUMS + 15 mg/kg fluoxetine); E100 and E300:
doses of the extract (CUMS + 100 and 300 mg/kg, respectively).

3.6. Western Blot

Western blot was performed using the same amount of protein. BDNF levels of hippocampus
tissues in E100 and E300 were significantly higher than those in the control and in the positive control
(p < 0.05; Figure 5).

SZS has various biological activities, and many studies have reported its neuroprotective [6],
sedative and hypnotic [8], and anxiety suppression [25] effects, as well as anti-Alzheimer’s disease
activities [12,13,34–36]. However, little information is available about the antidepressant activity of
SZS. Very recently, Ziziphus mucronata showed an antidepressant effect in chronically stressed rats due
to its capacities for antioxidant activity, and probably the modulation of monoamines transmission [37].
Spinosin, a major constituent of SZS, has been reported to have the activities of neurogenesis for
cognitive improvement [38–40], sleep reduction for the treatment of insomnia [41], neuroprotection [42],
and cardioprotection [43]. However, the antidepressant activity of spinosin was not previously reported.
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in immobility times in the SZS-extract-treated groups. In the OFT, total and zone distances were 
significantly increased with a dose dependency. In addition, neurotransmitter monoamines levels in 
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BDNF was expressed as up-regulated by antidepressant treatment [5,52], and also plays an 
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hippocampus. In our results, BDNF expression was significantly increased in the dosed groups, 
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the hippocampus (Figure 6).  

From these results, the SZS ethanol extract exhibited significant antidepressant-like effects via 
immobility decreases in FST and TST, distance increases in OFT, hippocampal NE and 5-HT 
increases, and BDNF expression increase in the hippocampus. 

Figure 5. Western blot of brain-derived neurotrophic factor (BDNF) in the hippocampus. C: normal
control; N: negative control (CUMS); P: positive control (CUMS + 15 mg/kg fluoxetine); E100 and E300:
doses of the extract (CUMS + 100 and 300 mg/kg, respectively). The intensities of the bands were
quantified with a densitometer (n = 3). The β-actin was used to normalize the BDNF. #: Kruskal-Wallis
test; *: Mann-Whitney test. #: p < 0.05; *: p < 0.05.

SZS showed MAO-B and AChE inhibitory activities in vitro; however, MAO-B activity in the
hippocampus was low and AChE activity was detected, but differences between the control and
dosed groups were not significant. These results suggest that the antidepressant activity of SZS is
mediated via pathways other than MAO-B or AChE inhibitions, similar to the results of novel herbal
treatment [44].

The CUMS method is widely used to investigate antidepressant activity in animal models [45].
CUMS can induce behavioral changes resembling clinical depression, and these parameters can be
reversed or prevented by chronic antidepressant treatment [46]. In addition, the TST, FST, and OFT
were performed as behavioral tests to investigate antidepressant effects, as many other studies have
reported [47–49]. FST and TST are the two most validated behavioral assays for assessing antidepressant
potential [50,51]. To avoid false-positive results, OFT is used to evaluate locomotor activity [30]. In this
study, the tests were carried out using CUMS-treated mice. The TST experiments showed significant
decreases in immobility times, and the FST experiments also exhibited decreases in immobility times
in the SZS-extract-treated groups. In the OFT, total and zone distances were significantly increased
with a dose dependency. In addition, neurotransmitter monoamines levels in the hippocampus tissues
were significantly increased in the extract-treated groups.

BDNF was expressed as up-regulated by antidepressant treatment [5,52], and also plays an
important role in neurogenesis and antidepressant-like behavior [47]. The chronic administration of
antidepressant has been found to increase the expression of BDNF in the rodent hippocampus [53].
In this study, the mechanism of SZS for antidepressant effects was investigated via assaying BDNF
expression by Western blot and the levels of neurotransmitter monoamines by LC-MS/MS in the
hippocampus. In our results, BDNF expression was significantly increased in the dosed groups,
similar to other results of around two-to four-fold increases [54–56], and NE and 5-HT levels were
increased, similarly to the selective serotonin reuptake inhibitors (SSRIs) [53]. It is suggested that the
antidepressant-like activity is mainly dependent on BDNF expression and NE and 5-HT increases in
the hippocampus (Figure 6).

From these results, the SZS ethanol extract exhibited significant antidepressant-like effects via
immobility decreases in FST and TST, distance increases in OFT, hippocampal NE and 5-HT increases,
and BDNF expression increase in the hippocampus.
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4. Conclusions

In this study, the antidepressant-like activity of SZS ethanol extract was investigated using mice
exposed to CUMS. In the TST, immobility times of the extract-treated groups were significantly
decreased compared to the negative control, demonstrating a dose-dependency. In the FST, immobility
times of the dosed groups were decreased compared to the normal control. In the OFT, total and
zone distances of dosed groups were significantly higher than those of negative controls, with a
dose-dependent relationship. After behavioral tests, NE and 5-HT levels in the hippocampus tissues
of dosed groups were significantly higher than those of negative controls. BDNF levels in the
hippocampus tissues of dosed groups were higher than those of negative controls. These results
suggest that the SZS extract could be a potential antidepressant agent.
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