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Abstract: The generation of functional osteoblasts from human somatic cells could provide an
alternative means of regenerative therapy for bone disorders such as osteoporosis. In this study,
we demonstrated the direct phenotypic conversion of human dermal fibroblasts (HDFs) into osteoblasts
by culturing them in osteogenic medium supplemented with valproic acid (VPA), a histone deacetylase
(HDAC) inhibitor. HDFs cultured with the VPA in osteogenic medium exhibited expression of alkaline
phosphatase and deposition of mineralized calcium matrices, which are phenotypical characteristics
of functional osteoblasts. They also expressed osteoblast-specific genes such as alkaline phosphatase,
osteopontin, and bone sialoprotein, which demonstrated their direct conversion into osteoblasts.
In addition, co-treatment with VPA and a specific inhibitor for activin-like kinase 5 (ALK5i II) had
a synergistic effect on direct conversion. It is considered that the inductive effect of VPA on the
conversion into osteoblast-lineage is due to the opening of the nucleosome structure by HDAC
inhibitor, which facilitates chromatin remodeling and cellular reprogramming. Our findings provide
a novel insight into the direct conversion of human somatic cells into transgene-free osteoblasts with
small chemical compounds, thus making bone regeneration using cellular reprogramming strategy
more clinically feasible.

Keywords: direct conversion; osteoblast; histone deacetylase inhibitor; valproic acid; inhibitor for
activin-like kinase 5

1. Introduction

Transcription factors (also known as reprogramming factors) are proteins that can control the
transcriptional regulation of genetic information by binding to specific DNA sequences [1,2]. In 2006
and 2007, ground-breaking research by Takahashi and Yamanaka demonstrated that forced expression
of a set of transcription factors such as c-Myc, Oct3/4, Sox2, and Klf-4, enable reprogramming of somatic
cells into induced pluripotent stem cells (iPSCs) that have the ability to self-renew and pluripotency [3,4].
Over the past decade, numerous studies have been conducted to reprogram and convert somatic cells
into targeted phenotypes by using various approaches including genetic manipulation, biomaterials,
growth factors, small molecules, and cocktails thereof. The “direct conversion” (also known as direct
reprogramming) of somatic cells to another differentiated lineage by introducing a combination of
transcription factors, is considered to be a more promising strategy, and it involves bypassing the
intermediate pluripotent stage [5]. The ability of somatic cells to transdifferentiate into tissue-specific

Appl. Sci. 2020, 10, 7372; doi:10.3390/app10207372 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1498-5624
https://orcid.org/0000-0001-8590-7442
http://www.mdpi.com/2076-3417/10/20/7372?type=check_update&version=1
http://dx.doi.org/10.3390/app10207372
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 7372 2 of 13

progeny without going through the time-consuming pluripotent generating step is considered to be
a promising strategy for regenerative medicine in clinical settings. These direct conversions include
fibroblasts into cardiomyocytes [6,7], neurons [8–11], chondrocytes [12–14] and more in other lineages.
However, the process of direct conversion in vitro is still relatively slow and not very efficient, which
hinders research on the mechanisms of reprogramming and progress in clinical applications.

Approaches that use small molecules for the direct conversion of somatic cells are highly desirable,
and it is thought that small molecules can significantly improve their use in therapeutic applications.
Using small molecules for reprogramming and conversion of cell lineage is an exciting area of research
and this has helped to identify small molecules that promote self-renewal [15–19], differentiation of
stem cells [20–24], and reprogramming, for example, in the induction of stem cells [25–29] and direct
conversion of somatic cells [30–32]. It has been shown that small molecules can promote osteogenesis
and bone regeneration [21,33–36].

Mesenchymal stem cells (MSCs) are multipotent stem cells that have the ability to differentiate into
various cell types, such as adipocyte, myoblasts, chondrocytes, and osteoblasts [37,38]. Among these,
osteoblasts play a pivotal role in bone generation, and produce various types of bone extracellular
materials, such as type I collagen, osteopontin (OPN), osteocalcin (OCN), and bone sialoprotein
(BSP) [39]. Osteoblast differentiation is controlled by various transcription factors such as Runt-related
transcription factor 2 (Runx2) [40,41], Osterix [42,43], and distal-less homeobox 5 (Dlx5) [44,45].
However, a decline in the number of osteoblasts with respect to osteoclasts can cause an imbalance
between bone formation and resorption, and can subsequently lead to pathological conditions
such as osteoporosis [46], and bone degeneration-associated tumors such as multiple myeloma [47].
Such regeneration of bone tissue for therapies represents a serious health problem, and remains a
significant challenge in terms of clinical feasibility. This is because the available therapeutic approaches
are often accompanied by slow treatment, poor efficiency, pain, risk of infection, immunogenicity
problems, and tumorigenesis after cell implantation [48]. Therefore, the development of transgene-free
therapeutic approaches for bone repair is urgently needed. In this study, we hypothesized that VPA
could be used to enhance the differentiation efficiency of MSCs, and it could also improve the efficiency
of reprogramming somatic cells to osteoblasts.

Herein, we report the direct conversion of human fibroblasts into osteoblasts by using a
transgene-free approach and the use of osteoblast-promoting factors: histone deacetylase (HDAC)
inhibitor and tumor growth factor-β receptor (TGF-β R) inhibitor. We assessed the ability of the
synergistic effect to promote osteogenesis after co-treatment with valproic acid (VPA), a HDAC
inhibitor, and a specific inhibitor for activin-like kinase 5 (ALK5i II), a TGF-β R inhibitor. We performed
an experimental analysis at two time points for observation of the early stage (day 16) and the late
stage (day 24) markers [39]. It is anticipated that this highly efficient synergistic strategy, which does
not involve the transgene, may be useful for regenerative therapy against a variety of human diseases.
If sufficient efficiency can be achieved with a small molecule-based approach, then such cell-based
therapies could be beneficial in clinical settings for the generation of bone and repair of bone defects.

2. Materials and Methods

2.1. Reagents and Cell Culture

VPA (Sigma Aldrich, St. Louis, MI, USA) was dissolved in distilled water (DW) and stored at
−70 ◦C until use. VPA was diluted in the medium to meet the working concentration used in the
experiment. Human dermal fibroblasts isolated from neonatal foreskin (HDFs, #C-004-5C, Thermo
Fisher Scientific, Waltham, MA, USA) was maintained in Dulbecco’s Modified Eagle’s Medium (DMEM,
Hyclone, Locan, UT, USA) supplemented with 10% fetal bovine serum (FBS, Welgene, Daejeon, Korea),
100 U/mL penicillin and 100 µg/mL streptomycin (Thermo Fisher Scientific) in a 5% CO2 humidified
incubator at 37 ◦C. We assumed that only HDFs were present in the vial from the provider (i.e., there
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were no stem-like cells in the vial). When the confluence reached 80%, HDFs were sub-cultured with a
split ratio of 1:6. HDFs used in this study were under passage 7 in all experimental steps.

2.2. In Vitro Differentiation of HDFs

HDFs were seeded in a 24-well plate at a density of 1 × 104 cells/cm2 and incubated for 24 h
in complete medium. For osteogenic differentiation, the medium was replaced with fresh complete
medium (DMEM supplemented with 10% FBS, 100 U/mL penicillin and 100 µg/mL streptomycin)
supplemented with 10 mM β-glycerol phosphate, 50 µg/mL ascorbic acid, and 100 nM dexamethasone
(osteogenic medium, O.M.). All supplements used in the osteoblast differentiation were purchased
from Sigma Aldrich. For differentiation, osteogenic medium supplemented with VPA was replaced
every 2 days and incubated for a further 24 days.

2.3. Cytotoxicity Test (MTT Assay)

Cytotoxicity testing was performed to evaluate the toxicity to VPA and ALK5i II. First, HDF
was seeded in a 96-well plate. The next day, after washing with PBS, the chemicals were treated with
various VPA concentrations in complete medium. Then, MTT (Sigma Aldrich) solution was added to
each well every 24, 48 h, and 72 h. (final concentration 1 mg/mL) and incubated further at 37 ◦C for
4 h. After removing the supernatant, DMSO was added, and the absorbance was measured at 540 nm
using a microplate reader.

2.4. Alkaline Phosphatase (ALP) Staining

To analyze the degree of differentiation of HDFs into osteoblasts, staining was performed on day
16 after differentiation. After fixing for 15 min with 4% paraformaldehyde (PFA), it was washed 3 times
with phosphate-buffer saline (PBS). The Alkaline Phosphatase Staining kit II (Stemgent, Lexington,
MA, USA) was used to visualize the ALP activity. Staining was performed according to the protocol
provided by the manufacturer.

2.5. Detection of Calcium Deposits (Mineralization)

In the case of Alizarin Red S (ARS) staining, 4% PFA was fixed for 15 min and then washed 3 times
with DW. Next, the mineralized part was stained for 10 min in the dark using 2% ARS (Sigma Aldrich)
solution, washed with DW and then analyzed. Von Kossa staining was performed in the same manner
as outlined above and washed 3 times with DW. Next, the mineralized part was confirmed using the
Von Kossa Staining kit (Abcam, Cambridge, MA, USA). Staining was performed according to the
protocol provided with the kit. All stained images were analyzed under a microscope.

2.6. Quantification of ARS

To quantify the calcium deposits, the stained plates were analyzed according to the protocol
provided in the Alizarin Red Staining Quantification Assay kit (ScienCell, Carlsbad, CA, USA). Briefly,
200 µL of 10% acetic acid was added to each stained well and shaken at room temperature for
30 min. After heating the dissolved stain at 85 ◦C for 10 min, it was transferred to ice and cooled for
5 min. Following centrifugation, the supernatant was transferred to a new tube, and 10% ammonium
hydroxide was added for neutralization. Finally, the absorbance was measured at 405 nm using
a spectrophotometer.

2.7. Quantitative Real-Time Polymerase Chain Reaction (qPCR)

Total RNA was obtained from HDFs after differentiation using a Ribospin™ total RNA Purification
kit (Gene All Biotechnology, Seoul, Korea). Next, cDNA was synthesized using TOPscript™ RT PCR
DryMIX (Enzynomics, Daejeon, Korea). Three types of osteoblast gene-specific primers (Applied
Biosystems, Foster City, CA, USA) Osteopontin (Hs00960942_m1), ALP (Hs00758162_m1), and BSP
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(Hs00913377_m1) were used to analyze the degree of osteoblast differentiation at the gene level.
Real time PCR was performed using Taqman™ Fast Advanced Master Mix (Applied Biosystems)
and Eco Real-Time PCR System (Illumina, San Diego, CA, USA). The expression level of each
gene was normalized by glyceraldehyde 3-phosphate dehydrogenase (GAPDH, Hs99999905_m1) as
endogenous control, and relative fold change compared to control group was calculated by the ∆∆Ct
(RQ = 2−[∆Ct sample−∆Ct control]).

2.8. Statistical Analysis

All values are written as the mean ± S.D. All quantitative data are obtained from triplicate samples
from experiments that were performed several times. The statistical significance was determined by
Student’s t–test, one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test, and Welch’s
ANOVA followed by Games-Howell post hoc test. p < 0.05 was considered statistically significant.

3. Results

3.1. VPA Increases Osteoblast-Like Phenotype of HDFs

Some small chemicals have been shown to enhance the differentiation of stem cells to other
lineages [20–24], some increase the reprogramming and induction of stem cell phenotypes [25–29],
while others promote the direct conversion of somatic cells into other lineages [30–32]. Among these,
VPA was selected and tested as to whether it induces osteoblast-like phenotypes in HDFs. It has been
widely reported that small molecule VPA promotes reprogramming via inhibition of HDAC activity,
thus causing hyperacetylation of histones [26,49–51].

HDFs were cultured in osteogenic medium supplemented with VPA for 16 days, and the ALP
activities were analyzed (Figure 1a). As the concentration of VPA increased to 2 mM, there was an
increase in ALP activity. HDFs were cultured in osteogenic medium supplemented with VPA for
24 days, and stained with ARS to estimate calcium deposition (Figure 1b). VPA at a concentration
of 2 mM induced relatively large amounts of calcium deposition, whereas VPA at 1 mM induced
some visible amount of calcium deposition compared to the osteogenic medium alone (Figure 1b).
Then we quantified the ARS fold change after the treatment of VPA. It was clearly shown that the
amount of ARS-stained calcified matrices increased according to VPA treatment in a dose-dependent
manner (Figure 1c). Hence, the results demonstrated the potential of VPA as a potent small molecule
for inducing osteoblastic conversion.

3.2. Growth Inhibitory Effect of VPA on HDFs

The cellular toxicity of VPA was measured by observing the morphological changes in the
HDFs (Figure 2a). HDFs have a large, flat, and elongated shape and are characterized by processes
extending out from the ends of the cell body giving bipolar or multipolar morphology. No apparent
morphological differences were observed when VPA was treated in the 0–2 mM range. However,
when the concentration of VPA was increased to 4 mM, a longer cellular body and thinner sprouting
were observed. Nevertheless, no observable cell death was seen at high concentration, which indicates
that VPA is not cytotoxic but it may be a growth inhibitor.

In addition, the cellular toxicity of VPA was measured on HDFs using MTT assay (Figure 2b). No
significant decrease in the cell viability was observed after 24 h exposure with VPA in the 0–4 mM range
(Figure 2b, left panel). A slight decrease in the MTT reduction was observed after 48 h exposure with
VPA at 4 mM (Figure 2b, middle panel). Similarly, as the exposure time period was increased to 72 h,
a decrease in the cell viability was observed in all concentrations (1, 2, and 4 mM VPA), indicating the
time-dependent growth inhibitory property of VPA (Figure 2b, right panel). As 4 mM VPA resulted in
high growth inhibition, we then continued the experiments with less than 2 mM VPA. It was noticeable
that with prolonged exposure to VPA, the growth inhibition of the fibroblasts went from 80% on day 3
down to 40% on day 16 (Figure 2b,c).
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Figure 1. Valproic acid (VPA) promotes osteogenesis via inhibition of histone deacetylase (HDAC). 
(a–c) Human dermal fibroblasts (HDFs) were cultured in the osteogenic medium supplemented with 
VPA as indicated. (a) After culturing for 16 days, cells were stained with alkaline phosphatase (ALP). 
Scale bar, 200 μm. (b) After culturing for 24 days, calcium deposition was assessed by Alizarin Red S 
(ARS) staining. Scale bar, 100 μm. (c) Quantified ARS fold change after the treatment of VPA. Error 
bars indicate the standard deviation (n = 3 per group) and statistical significance was determined 
using Welch’s ANOVA with a Games-Howell post hoc test in comparison to the non-treated control, 
* p < 0.05, *** p < 0.005. 
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Figure 1. Valproic acid (VPA) promotes osteogenesis via inhibition of histone deacetylase (HDAC).
(a–c) Human dermal fibroblasts (HDFs) were cultured in the osteogenic medium supplemented with
VPA as indicated. (a) After culturing for 16 days, cells were stained with alkaline phosphatase (ALP).
Scale bar, 200 µm. (b) After culturing for 24 days, calcium deposition was assessed by Alizarin Red S
(ARS) staining. Scale bar, 100 µm. (c) Quantified ARS fold change after the treatment of VPA. Error
bars indicate the standard deviation (n = 3 per group) and statistical significance was determined
using Welch’s ANOVA with a Games-Howell post hoc test in comparison to the non-treated control,
* p < 0.05, *** p < 0.005.

3.3. Gene Expression of Osteogenic Markers in HDFs Supplemented with VPA

HDFs were cultured in osteogenic medium supplemented with VPA for 16 or 24 days, and analyzed
for the expression of osteogenic markers (Figure 3). As the concentration of VPA increased to 2 mM,
there was an increase in the mRNA level of alkaline phosphatase (ALP), an early osteogenic marker,
at Day 16 (Figure 3a). Similarly, when the concentration of VPA was increased to 2 mM, an increase in
the mRNA level of osteopontin (OPN) and bone sialoprotein (BSP), both of which are late osteogenic
markers, was observed at Day 24 (Figure 3b,c). The results demonstrate that VPA induces all early
and late osteogenic differentiation-related gene (ALP, OPN, BSP) expression patterns during direct
conversion of HDFs cells in vitro.

3.4. Co-Treatment of VPA and Specific Inhibitor for Activin-Like Kinase 5 (ALK5i II) Enhances Osteoblast-Like
Phenotypes of HDFs

To further enhance the efficiency of the direct conversion, ALK5i II, a TGF-β R inhibitor was
co-supplemented with VPA. HDFs were cultured in osteogenic medium co-supplemented with VPA
and ALK5i II for 24 days, and stained with ARS to observe the calcium deposition efficiency (Figure 4a).
VPA alone at 2 mM concentration induced relatively large amounts of calcium deposition, whereas VPA
alone at 1 mM induced little calcium deposition, similar to the osteogenic medium alone. However,
when ALK5i II and VPA were used for co-treatment, synergistic effects were shown on the direct
conversion into osteoblasts. Treatments with 1 mM VPA and 100 nM ALK5i II induced relatively large
amounts of calcium deposition that were similar to the 2 mM VPA alone.
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bars indicate the standard deviation (n = 3 per group) and statistical significance was determined 
using one-way ANOVA with Tukey’s post hoc test in comparison to the non-treated control, * p < 
0.05, ** p < 0.01, n.s. = not significant. (c) Cell viability was measured by the MTT assay after VPA 
treatment in complete media or osteogenic media for 16 days, respectively. Error bars indicate the 
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Figure 2. Cytotoxicity of VPA on HDFs. (a,b) HDFs were cultured in the osteogenic medium supplemented
with VPA as indicated. (a) Morphologies were observed in cells treated with VPA for 72 h. The concentration
of VPA is indicated in the upper left of each image. Scale bar, 200 µm. (b) Cell viability was measured
by the MTT assay after VPA treatment for 24, 48 h, or 72 h, respectively. Error bars indicate the
standard deviation (n = 3 per group) and statistical significance was determined using one-way
ANOVA with Tukey’s post hoc test in comparison to the non-treated control, * p < 0.05, ** p < 0.01,
n.s. = not significant. (c) Cell viability was measured by the MTT assay after VPA treatment in complete
media or osteogenic media for 16 days, respectively. Error bars indicate the standard deviation (n = 3
per group) and statistical significance was determined using one-way ANOVA with Tukey’s post hoc
test in comparison to the non-treated control, *** p < 0.005. Statistical significance was determined
using Student’s t-test in the comparison between groups cultured in complete medium and osteogenic
medium at the same VPA concentration, *** p < 0.005.
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Figure 3. Gene expression of osteogenic markers in HDFs supplemented with VPA. (a–c) Quantitative
real time-PCR was used to determine mRNA levels of (a) alkaline phosphatase (ALP) on Day 16,
(b) osteopontin (OPN), (c) bone sialoprotein (BSP) on Day 24 after HDFs were treated with the osteogenic
medium supplemented with VPA as indicated. Error bars indicate the standard deviation (n = 3 per
group) and statistical significance was determined using one-way ANOVA with Tukey’s post hoc test
in comparison to the non-treated control, * p < 0.05, ** p < 0.01, *** p < 0.005.
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acetylation reduces inter-nucleosomal interactions, and results in the unfolding of the chromatin 
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Figure 4. Osteoblast-like phenotypes were induced in HDFs cultured with VPA and specific inhibitor
for activin-like kinase 5 (ALK5i II). (a–c) HDFs were cultured in the osteogenic medium supplemented
with VPA and ALK5i II as indicated. (a) After culturing for 24 days, calcium deposition was assessed by
ARS staining. (b) Quantified ARS fold change after the co-treatment. Error bars indicate the standard
deviation (n = 3 per group) and statistical significance was determined using one-way ANOVA with
Tukey’s post hoc test, * p < 0.05, *** p < 0.005, n.s. = not significant. (c) After culturing for 24 days under
co-treatment conditions, calcium deposition was assessed by Von Kossa staining. Scale bar, 200 µm.

Then we quantified the ARS fold change after the co-treatment with VPA and ALK5i II (Figure 4b).
When the cells were co-treated with 100 nM AKL5i II, the amount of calcium deposition was more
than 3-fold and 2.5-fold higher with VPA at 1 mM and 2 mM, respectively, compared to treatment with
the same concentration of VPA only. Dose-dependent calcium phosphate deposition was observed
as the concentration of VPA increased in both the single (VPA alone) or co-supplemented (VPA and
ALK5i II) groups.

Next, HDFs were cultured in osteogenic medium co-supplemented with VPA and ALK5i II for
24 days, and stained with Von Kossa to understand the mineralization effects and further support
the calcium deposition efficiency demonstrated by ARS staining (Figure 4c). Similar to ARS staining,
VPA alone at 2 mM concentration induced a relatively large amount of calcified matrices, whereas VPA
alone at 1 mM induced a small amount of calcification s, which was similar to the osteogenic medium
alone. However, when we co-supplemented with 2 mM VPA and 100 nM ALK5i II, this induced a
relatively large amount of calcified matrices, whereas 1 mM VPA and 100 nM ALK5i II induced a
relatively large amount of calcification that was similar to the 2 mM VPA alone. Hence, these results
demonstrated that when VPA is used in conjunction with ALK5i II, the potential of VPA as a potent
small molecule in osteoblastic conversion is further increased.
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4. Discussion

Histone modification and DNA methylation constitute major mechanisms that are responsible
for epigenetic regulation of gene expression during development and differentiation [52–54]. Among
various histone modifications, acetylation is known to impact the physical properties of chromatin
and there is significant evidence that histone acetylation is important in nucleosome assembly and
chromatin folding [55]. It was shown that lysine charge neutralization achieved through histone tail
acetylation reduces inter-nucleosomal interactions, and results in the unfolding of the chromatin fiber.
It is now widely acknowledged that acetylation promotes the opening of the chromatin structure
by interfering with the interactions between nucleosomes and releasing the histone tails from the
linker DNA.

HDAC inhibitors are small molecules that can promote either self-renewal, differentiation,
or reprogramming of cells under certain conditions. In the past decade, due to their role in epigenetic
regulation, gene expression profiles, and signal transduction pathways, HDAC inhibitors have been
widely used to convert the state of cells into other lineages. It has been reported that VPA, which is a
HDAC inhibitor, promotes chromosomal remodeling and maintains acetylated histones as an “open
form” of the chromatin structure by acting as an inhibitor of HDAC [26,49–51], thereby enhancing
reprogramming of somatic cells into iPSCs and other lineages. Previous reports have shown that
treatment of VPA arrests cellular growth [51,56]. Similar to the effect of VPA in osteogenic medium,
increasing the concentration of VPA in complete medium showed increased growth inhibition of cells
(Figure 2c). However, the extent of the growth inhibition was less profound in complete medium
than in osteogenic medium, which is considered to be because the fibroblasts in osteogenic medium
supplemented with VPA underwent a shift from a proliferative state to a cellular reprogramming
process. In addition, treatment of VPA in complete medium resulted in no observable difference in
cellular morphology and calcium deposition (data not shown), whereas significant changes were
observed in osteogenic medium with VPA (Figure 1b). These results suggest that osteogenic medium is
a key factor for the direct conversion of fibroblasts into osteogenic lineage, and VPA acts as an enhancer
in the reprogramming process.

Previously, it has been shown that VPA promotes cell fate determination via activation of the
ERK pathway [57] and suppression of STAT3 and HDAC3 pathways [58]. In particular, VPA was
used as a substitute for c-myc in reprogramming [26]. The treatment of VPA increased the number
of iPSC colonies by more than 50-fold, and the reprogrammed iPSCs resembled ESCs with regard to
their morphology, pluripotency and gene expression profiles [26]. Recently, it was demonstrated that
VPA is a potential inducer of osteogenesis in mouse mesenchymal stem cells (MSCs) [59]. Molecular
analysis showed upregulation of Runx2, osteoblast-related differentiation markers, and bone-related
transcription factors in VPA-treated mouse MSCs. In vitro analysis using ARS and Von Kossa staining
results showed an increase in the deposition of calcium phosphate in VPA-treated mouse MSCs and
confirmed osteoblast differentiation and mineralization. It is considered that VPA sets somatic cells in a
transition state before they continue and complete the reprogramming process. In addition, it has been
reported that VPA promotes osteogenic differentiation of bone marrow-derived mesenchymal stem
cells (BMSCs) by alleviating the adverse effect of glucocorticoids on BMSC proliferation, apoptosis and
osteogenic differentiation [60]. In a previous study, expression levels of Runx2 and other osteogenic
markers were analyzed as early markers for the differentiation of MSCs into osteogenic lineage [61].
It was noticeable that Runx2 and other osteogenic markers were increased simultaneously. Accordingly,
we selected ALP as the early stage marker and provided the staining analysis in Figure 1a and gene
expression analysis in Figure 3a. Based on the previous finding, it was expected that the Runx2 level
would also increase along with ALP level. Taken together, it was hypothesized that that small molecule
VPA promotes the induction of osteoblasts and mineralization of calcium matrices via formation of
hyper-acetylated histones through inhibition of HDAC activity (Figure 5).
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Meanwhile, in previous studies, ALK5i II was used as a TGF-β R inhibitor in direct conversion,
whereby ALK5i II induced fibroblasts to exhibit osteoblast phenotypes with remarkable abilities [62].
Among various ALK5 inhibitors, ALK5i II exhibited the highest inhibition of smad2/3 signaling and
induced osteoblastic conversion at the highest efficiency. Previously, it was shown that a TGF-β R
inhibitor substituted transcription factors, such as Oct4 or Sox2 in the induction of reprogramming
and maintenance of pluripotency [63,64]. Treatment of a TGF-β R inhibitor resulted in an 8-fold
increase in the efficiency of the direct conversion of fibroblast into cardiomyocytes induced by
cardiomyocyte-specific reprogramming factors [65,66]. A TGF-β R inhibitor was also used as an
essential component when tested as a small molecule in the induction of direct conversion of fibroblasts
into neural cells [67,68] and cardiomyocytes [69]. It is understood that osteoblasts and osteocytes
produce TGF-β, but its roles in osteogenesis is more complicated. It was demonstrated that the TGF-β
signal enhances osteoblast differentiation at early stages, whereas at later stages of differentiation,
it inhibits proliferation and mineralization of osteoblasts [70]. Other reports have revealed that TGF-β
may either stimulate or inhibit the differentiation of osteoblasts as a function of the composition,
concentration, density, and differentiation stage of the cells [71,72].

Herein, we employed small molecule VPA, a HDAC inhibitor, in combination with a TGF-β
R inhibitor, ALK5i II, for cell fate conversion to efficiently reprogram fibroblasts into osteoblasts.
Simultaneous treatment demonstrated a synergistic effect on the direct conversion of somatic cells to
osteogenic lineage. It is anticipated that the addition of other small molecules, transcription factors,
or supplements may further elevate the expression levels of osteoblast-specific genes and promote the
direct conversion efficiency. The generation of functional osteoblasts from human somatic cells could
provide an alternative means of bone regenerative therapy for bone disorders such as osteoporosis.
The process is attractive because of its advantages, that is, it is a highly efficient conversion step
for the production of bone matrix and promoting bone tissue regeneration, and additionally, it is a
transgene-free method. Further investigation of the VPA mechanism associated with histone acetylation
and the promotion of direct reprogramming efficiency could support the findings of our study. It is
anticipated that these results may be beneficial in providing a safer approach and higher reprogramming
efficiency for practical use in human therapies.
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