1.Gasification

Drying (RStoic) reactor specification

Temperature (°C)	100
Pressure (bar)	1
Fractional conversion	0.325 component of pyrolysis-oil

Decomposition (Ryield) reactor specification

Temperature (°C)	500
Pressure (bar)	1
Yield options	Component yields
H_2	4.15
С	32.8
O_2	30.4
N_2	0.27
S	0.001

Combustion and gasification (RGibbs) reactor specification

Calculation option	Calculate phase equilibrium and chemical
	equilibrium
Temperature (°C)	800
Pressure (bar)	1
Products	Identity possible products
Component	Valid phases
CO	Mixed
H ₂	Mixed
CO ₂	Mixed
CH ₄	Mixed
NH ₃	Mixed
H ₂ S	Mixed

2. Rectisol

Rectisol (RadFrac) block specification

Configuration:

Calculation type	Equilibrium
Number of stages	15
Condenser	none
Reboiler	none
Valid phases	Vapor- Liquid
convergence	Standard

Steams:

Feed streams

Name	Stage	Convention
9	1	Above-stage
10	15	On-stage

Product streams

Name	Stage	Phase	Basis	Units
11	15	Liquid	Mole	kmol/hr
12	1	Vapor	Mole	kmol/hr

Pressure:

View	Top/Bottom
Top stage/ Condenser pressure (bar)	1~80

3. Methanol synthesis

Methanol synthesis (RPLUG) reactor specifications:

Reaction type:	Reactor with specified temperature
Configuration:	
Multitube reactor:	Number of tubes: 11458
Tube dimensions:	Length: 12.0 meter
	Diameter: 0.03675 meter
Catalyst specifications:	
Bed voidage	0.5
Particle density	2000 kg/m^3

Kinetic LHHW Parameters

$R1 (CO2 + H2 \rightarrow CO + H2O)$		
Kinetic factor	k = 1	
	n = 0	
	E = 0 kJ/kmol	
Driving-force expressions (partial pressure)	:	
Term 1		
Concentration exponents for reactants	$CO_2 = 1, H_2 = 0$	
Concentration exponents for products	$CO = 0, H_2O = 0$	
Coefficients:	A = 4.80, B = -11398.2, C = 0, D = 0	
Term 2		
Concentration exponents for reactants	$CO_2 = 0, H_2 = -1$	
Concentration exponents for products	$CO = 1, H_2O = 1$	
Coefficients:	A = 0.13, B = -6624.98, C = 0, D = 0	

Adsorption expression:	
Adsorption term exponent:	1
Concentration exponents:	
Term 1:	$H_2 = 0, H_2O = 0$
Term 2:	$H_2 = -1, H_2O = 1$
Term 3:	$H_2 = 0.5, H_2O = 0$
Term 4:	$H_2 = 0, H_2O = 1$
Adsorption constants:	
Term 1:	A = 0, B = 0, C = 0, D = 0
Term 2:	A = 8.15, B = 0, C = 0, D = 0
Term 3:	A = -6.45, B = 2068.44, C = 0, D = 0
Term 4:	A = -34.95, B = 14928.90, C = 0, D = 0

$R2 (CO2 +3H2 \rightarrow CH3OH + H2O)$		
Kinetic factor	k = 1	
	n = 0	
	E = 0 kJ/kmol	
Driving-force expressions (partial pressure)		
Term1		
Concentration exponents for reactants	$CO_2 = 1, H_2 = 1$	
Concentration exponents for products	$CH_3OH = 0, H_2O = 0$	
Coefficients:	A = -29.87, B = 4413.76, C = 0, D = 0	
Term 2:		
Concentration exponents for reactants	$CO_2 = 0, H_2 = -2$	
Concentration exponents for products	$CH_3OH = 1, H_2O = 1$	
Coefficients:	A=17.55, $B=-2645.97$, $C=0$, $D=0$	
Adsorption expression		
Adsorption term exponent:	3	
Concentration exponents:		
Term 1:	$H_2 = 0, H_2O = 0$	
Term 2:	$H_2 = -1, H_2O = 1$	
Term 3:	$H_2 = 0.5, H_2O = 0$	
Term 4:	$H_2 = 0, H_2O = 1$	
Adsorption constants:		
Term 1:	A = 0, B = 0, C = 0, D = 0	
Term 2:	A = 8.15, B = 0, C = 0, D = 0	
Term 3:	A = -6.45, B = 2068.44, C = 0, D = 0	
Term 4:	A = -34.95, B = 14928.9, C = 0, D = 0	