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Abstract: Recently, a number of data analysists have suffered from an insufficiency of historical
observations in many real situations. To address the insufficiency of historical observations,
self-starting forecasting process can be used. A self-starting forecasting process continuously
updates the base models as new observations are newly recorded, and it helps to cope with inaccurate
prediction caused by the insufficiency of historical observations. This study compared the properties
of several exponentially weighted moving average methods as base models for the self-starting
forecasting process. Exponentially weighted moving average methods are the most widely used
forecasting techniques because of their superior performance as well as computational efficiency.
In this study, we compared the performance of a self-starting forecasting process using different
existing exponentially weighted moving average methods under various simulation scenarios and real
case datasets. Through this study, we can provide the guideline for determining which exponentially
weighted moving average method works best for the self-starting forecasting process.

Keywords: comparative study; exponentially weighed moving average; non-stationary time series;
self-starting forecasting

1. Introduction

Time series is a sequence of observations, measured typically at successive points in time
spaced at uniform intervals. This exists in many situations, including the daily closing value of
the stock market, manufacturing process, health status of patients, and economic indicators [1].
Using these time series data, forecasting future events has been of considerable interest in various
fields, including control charts [2–5], health care surveillance [6–8], inventory controls [9], stock market
prediction [10–12], pandemic occurrence prediction [13], and electricity demand forecasting [14].
In such industrial areas, the accurate forecasting of future time series values helps establish more
effective decision or management policy. To achieve satisfactory forecasting performance, a number
of time series forecasting methods have been proposed, including exponentially weighted moving
average (EWMA; [15–18]), autoregressive integrated moving average (ARIMA; [19]), generalized
autoregressive conditionally heteroskedastic (GARCH; [20]), and vector autoregression (VAR; [21,22])
methods. In recent years, neural network-based approaches [23,24] have been widely applied for
the time series forecasting tasks [25–27]. Among these time series forecasting methods, in this study,
we focus on the EWMA model.

The EWMA model assigns different weights for individual observations collected over time,
and more recent observations are weighted more heavily than remote observations, and hence,
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dynamics of time series can be effectively reflected into the forecasting models. Furthermore, such an
EWMA model has a desirable property with a recursive form, which leads to computational efficiency.
Finally, the EWMA models do not need any distributional assumption and prior knowledge on the time
series [1,28]. Because of these advantages, a number of EWMA models have been proposed, including
single exponential smoothing (single ES; [15,16]) model, double exponential smoothing (double ES; [17])
model, triple exponential smoothing (triple ES; [18]) model, and two-stage exponentially weighted
moving average (two-stage EWMA; [29,30]) model. We presented a more detailed description on these
existing EWMA models in Section 2.1.

To ensure the satisfactory forecasting performance of the EWMA models, historical time series
observations should be sufficiently accumulated. However, lots of data analysists have suffered from
the insufficiency of historical observations in many real situations [31]. For example, the demand
prediction of newly launched products is not an easy task because there are no sales records of these
products. In addition, the prognosis of a manufacturing system status is also difficult immediately
after the preventive maintenance because meaningful process data are not sufficiently accumulated
after these operations. Accordingly, the insufficiency of historical observations has been regarded as
one of the challenging problems for time series data analysis [28].

To address the insufficiency of initial time series data, self-starting approaches [32–34] can be
incorporated into the EWMA model. In the self-starting-based EWMA modeling process, an initial
EMWA model is constructed only using small initial time series observations, and the EWMA model
is continuously updated as a new observation is sequentially recorded. By doing so, forecasting the
performance of EWMA models can be improved over time because historical records are continuously
accumulated in the forecasting process. Besides, the self-starting forecasting process can effectively
accommodate dynamically changing time-varying patterns in that the forecasting models are updated
by adding the most recently recorded observation to the initial time series data. In Section 2.2, we also
presented more details on the self-starting forecasting process.

The main purpose of this study was to examine the characteristics of EWMA models as
base-forecasting models for the self-starting forecasting process. Although various properties on existing
EMWA models have been thoroughly examined in a number of previous studies, their characteristics as
a base model for self-starting forecasting have not been systematically analyzed. Hence, this study has
a remarkable contribution in that this is the first attempt to comprehensively investigate the properties
of the EWMA models as base models of the self-starting forecasting process.

The remainder of this paper is organized as follows. In Section 2, we describe both the characteristics
of existing EWMA models and self-forecasting process. In Section 3, we present a simulation study to
compare the methods under various scenarios with only small initial time series data. In Section 4,
we present the comparative results from real case data, and Section 5 presents concluding remarks.

2. Background

2.1. Exponentially Weighted Moving Average Model

In 1956, a single ES model was first proposed [15], which was designed to forecast demands in
inventory control systems. In the single EWMA model, it is assumed that time series data, Y1, Y2, . . . ,
Yt, have no trend or seasonal pattern, and the level factor at time t, Ŷt, is given by

Ŷt = αYt + (1− α)Ŷt−1, (1)

where Ŷ1 = Y1 and α is a smoothing parameter between 0 and 1. Equation (1) can be rewritten
as follows:

Ŷt =
t∑

i=0

α(1− α)iYt−i (2)
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Thus, the single ES model can be considered a weighted average of the current and all past
observations. Because the multiplier of the past observation is (1-α), which is smaller than one for any
α values, it gives more weight to the current observation than past observations. Finally, the forecast
for s times ahead from the time t can be determined as follows:

Y∗t+s = Ŷt. (3)

As shown in Equation (3), single ES forecasts the future observations as a constant value. Hence,
this method might not yield satisfactory prediction performance in many real situations because the
time series data are dynamically changed over time. To accommodate a time-varying pattern with a
linear trend, a double ES model was proposed [17]. The double ES model assumes that the time series,
Y1, Y2, . . . , Yt, exhibit a linear trend with no seasonal pattern. In this model, the level factor and trend
factor at time t, denoted as Ŷt, and ∆Ŷt, respectively, can be calculated by following equations:

Ŷt = αYt + (1−α)
(
Ŷt−1 + ∆Ŷt−1

)
, (4)

∆Ŷt = β
(
Ŷt − Ŷt−1

)
+ (1− β)∆Ŷt−1, (5)

where Ŷ1 = Y1, and ∆Ŷ2 = Y2 −Y1, and 0 < α < 1, 0 < β < 1. The parameter α is a smoothing parameter
for the level factor, and the parameter β is for a trend factor. The forecast for s times further from time t
is given by

Y∗t+s = Ŷt + s× ∆Ŷt. (6)

This double ES model has successfully worked for forecasting the time series that has a constant
trend, however, it does not properly work in a time series having a time-varying pattern of varying
trends or seasonal variations.

To consider the seasonal variations, Winters [18] proposed the triple ES model to forecast the time
series with both a linear trend and seasonality. Unlike to all the aforementioned methods, the triple ES
method additionally estimates the parameters of a period term and seasonal factors with the historical
data. This m is composed of three factors: the level factor, trend factor, and seasonality factor at time t,
denoted as Ŷt, ∆Ŷt, and SNt, respectively. Each factor is expressed as

Ŷt =

{
αYt + (1−α)(Ŷt−1 + ∆Ŷt) i f t < L
α(Yt − SNt−L) + (1−α)Ŷt−1 i f t ≥ L

(7)

∆Ŷt = β
(
Ŷt − Ŷt−1

)
+ (1− β)∆Ŷt−1, (8)

SNt =

 Yt − Ŷt i f t < L
γ
(
Yt − Ŷt

)
+ (1− γ)SNt−L i f t ≥ L

(9)

where Ŷ1 = Y1, and ∆Ŷ2 = Y2 − Y1, and 0 < α < 1, 0 < β < 1, 0 < γ < 1. The parameter α is a
smoothing parameter for the level factor, the parameter β is for a linear trend factor, the parameter γ is
for seasonality factor, and the parameter L represents the period. The forecast for s times further from
the current time t can be computed as follows:

Y∗t+s =

{
Ŷt + s× ∆Ŷt i f t < L

Ŷt + SNt+s−L + s× ∆Ŷt i f t ≥ L
. (10)

If a time series has a seasonal pattern with increasing variation, the multiplicative triple ES
method is more appropriate than the additive model described above. The calculation procedure of the
multiplicative method is almost the same as the additive model except for some minor modifications.
For multiplicative ES method, Yt − SNt−L in Equation (7) and Yt − Ŷt in Equation (9) can be replaced
with Yt/SNt−L and Yt/Ŷt, respectively.
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However, it is not easy to estimate such parameters accurately when the historical data are not
sufficient or if prior knowledge on the time series is not available. Thus, the triple ES model might
not be an appropriate base model for the self-starting forecasting process under insufficient initial
historical observations. In addition, these traditional EWMA models are based on the assumption
that the future observations will have a similar pattern to past observations. However, in various
fields, such as signal processing, the time-varying patterns of future observations are unknown and far
from the historical pattern [29,30]. Consequently, these traditional models often suffer from the bias of
forecasting results from true future observations because of this assumption.

To address this drawback of the traditional EWMA models, Ryu and Han proposed two-stage
EWMA, which mimics the double ES model [29,30]. The two-stage EWMA can be formulated with
three factors: level factor, adjustment factor, and drift factor. In the first step, the level factor at time t,
Ŷt, can be computed as follows:

Ŷt = αYt + (1− α)Ŷt−1, (11)

where Ŷ1 = Y1. Then, the adjustment factor at time t, dŶt, can be estimated as follows:

dŶt = βdYt + (1− β)dŶt−1 (12)

where dYt is a first-order difference between time t and t-1, which can be defined as follows:

dYt = Yt −Yt−1. (13)

In addition, dŶ2 = Y2 −Y1. Finally, we estimate the drift factors of time t by

∆Ŷt = rdYt + (1− r)∆Ŷt−1, (14)

where ∆Ŷ2 = Y2 −Y1. The final forecast for s further times from the current time t can be computed
by the following equation:

Y∗t+s = Ŷt + dŶt + s× ∆Ŷt. (15)

The drift factor plays similar role to the trend factor in the double ES model. However, it should
be noted that the drift factor is defined as a difference between two successive observations, and hence,
the drift factor can more accurately reflect the dynamically changing patterns than the trend factors,
which is the difference between the estimated level factors of two successive time points. Moreover,
this method involves the adjusted factors in order to alleviate the effects from sudden and unexpected
changing patterns. Hence, the two-stage EWMA method can outperform the double ES method.

2.2. Self-Starting Forecasting Process with EWMA Model

To ensure the satisfactory performance of these EWMA models, sufficient historical time series
observations should be prepared beforehand. However, in many real situations, only a small number
of time series observations are available. One of possible solutions to this problem is a self-starting
approach, which both forecasting and model updating are simultaneously done as a new time series
observation is added to the training instances. With that approach, the base EWMA model is built
without requiring large preliminary initial time series observations. In addition, in the self-starting
approach, the models can effectively accommodate the time-varying patterns of time series in that the
base EWMA models are continuously updated as time series observations are newly recorded. It should
be noted that other forecasting methods, including ARIMA, GARCH, and VAR, cannot be used for
the self-starting forecasting process. These methods estimate a number of parameters, and in order
to estimate them, more time series observations than the number of parameters are required [35,36].
Accordingly, other forecasting methods are not available for the self-starting forecasting process.
Conversely, as described in Section 2.1, only a small number of time series observations (two) are
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required to estimate the initial factors of EWMA models; therefore, we only consider the EWMA
models as a base model for the self-starting forecasting process.

Because the self-starting forecasting process was proposed to address the situation where there
was no or only very small initial training observations available, it starts using only the minimum
observations required for the base model as initial training data. Thus, we also constructed the
initial base EWMA model using only the first two observations. Then, with the base EWMA model,
we forecasted s-step ahead future observations (i.e., forecasting window is denoted as s). The EWMA
models were continuously updated when a new observation was added, and s-step ahead forecasting
was also continuously conducted through the updated EWMA model. Figure 1 exemplifies the
self-starting forecasting process, which was considered in this study, when the forecasting window, s,
is set as 4, and the total length of the time series observation is 120.

Figure 1. Graphical illustration of self-starting forecasting process when the forecasting window (s)
and total time series length are 4 and 120, respectively.

As shown in Figure 1, the initial EWMA model f (y1, y2) is constructed by only two initial
observations (y1 and y2), and the f (y1, y2) generates the four-step ahead forecasting value, y∗6. Then,
when the observation is in the third time point, y3, is newly recorded, the initial forecasting model is
updated to f (y1, y2, y3). These forecasting and model updates are repeated until 116th observation is
recorded. This continuous model update process was repeated until (120 s) time series observations
were accumulated.
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3. Simulation Study

3.1. Simulation Setup

We conducted simulation studies under nine time series patterns to evaluate the performance of
four EWMA methods: (1) single ES; (2) double ES; (3) triple ES; and (4) two-stage EWMA methods.
The simulation was conducted under the following nine patterns:

• Pattern 1: Yt = N
(
0, σ2

t

)
, t = 1, 2, . . . , 120;

• Pattern 2: Yt = t/3 + N
(
0, σ2

t

)
, t = 1, 2, . . . , 120;

• Pattern 3: Yt = exp(t/30) + N
(
0, σ2

t

)
, t = 1, 2, . . . , 120;

• Pattern 4: Yt = max(0, t− 60) + N
(
0, σ2

t

)
, t = 1, 2, . . . , 120;

• Pattern 5: Yt = min(t, (120− t)) + N
(
0, σ2

t

)
, t = 1, 2, . . . , 120;

• Pattern 6: Yt =


N
(
0, σ2

t

)
1 ≤ t ≤ 30

10 + N
(
0, σ2

t

)
31 ≤ t ≤ 60

20 + N
(
0, σ2

t

)
61 ≤ t ≤ 90

30 + N
(
0, σ2

t

)
91 ≤ t ≤ 120

;

• Pattern 7: Yt = 10 sin(t/10) + N
(
0, σ2

t

)
, t = 1, 2, . . . , 120;

• Pattern 8: Yt = t + 10 sin(t/10) + N
(
0, σ2

t

)
, t = 1, 2, . . . , 120;

• Pattern 9: Yt =


10 sin(t/5) + N

(
0, σ2

t

)
1 ≤ t ≤ 20

10 sin(t/15) + N
(
0, σ2

t

)
21 ≤ t ≤ 80

10 sin(t/10) + N
(
0, σ2

t

)
81 ≤ t ≤ 120

.

The length of each time series pattern is 120, and the noises generated from the normal
distribution whose mean is zero and standard deviation is σ2

t were added to the baseline. In this
study, we investigated the performance of EWMA methods on both homoscedasticity and the
heteroscedasticity of the noises. Hence, the standard deviation of noise is σt, which can be defined
as follows:

• Small noise (homoscedastic): σt = 0.5, t = 1, 2, . . . , 120;
• Medium noise (homoscedastic): σt = 1, t = 1, 2, . . . , 120;
• Large noise (homoscedastic): σt = 2 , t = 1, 2, . . . , 120;
• Increasing noise (heteroscedastic): σt = 0.5 + t/80 , t = 1, 2, . . . , 120;
• Deceasing noise (heteroscedastic): σt = 2− t/80 , t = 1, 2, . . . , 120.

Figure 2 shows the baseline of the time series in each pattern.
Pattern 1 and 2 represent the simplest time series patterns, which are the stationary and linear

trend, respectively. On the other hand, Pattern 3 is a time series with an exponential trend, one of the
most well known nonlinearly time-varying pattern, and Pattern 4 represents a time series that changes
from stationary to non-stationary. More specifically, the series has a stationary pattern from time 1 to
60, followed by a constantly increasing trend from time 61 to 120. In addition, in Pattern 5, the direction
of the trend is changed from an increasing pattern to decreasing pattern. That is to say, the trend of the
simulation data constantly increased from time 1 to 60, and then, it constantly decreased from time 61
to 120. The simulated data in Pattern 6 consist of four stationary patterns with step-like increments
with a period size of 30. Patten 7 considers time series that exhibit constant seasonal time series whose
period size is 20, and Pattern 8 shows time series that exhibit seasonal variation (period size is 20)
with a linearly increasing trend. Finally, Pattern 9 considers time series with seasonal variation with
changing periods. In this scenario, the periods are 10, 20, and 30, respectively.

In each simulation study, we applied the self-starting EWMA model to each simulation case. That is,
we built the initial EWMA models using only the first two observations as a training time series data,
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and forecasted s-step ahead future observations using these initial models. Then, the EWMA models
were continuously updated as a successive observation was added to the training time series data.
Finally, the updated EWMA model forecasted s-step ahead future observations. This continuous model
update and forecasting process was repeated until (120-s) time series observations were accumulated.

Figure 2. Baselines of nine time series patterns.

In this simulation study, we applied the forecasting window, s, from one to six. In each s value,
we repeated this experiment 100 times and reported the average root mean square error (RMSE) values
of s-step ahead forecasting obtained from these 100 repetitions. To use the EWMA methods, appropriate
smoothing parameters should be determined. In this simulation, we changed the smoothing parameters
between 0.1 and 0.9 with a step size of 0.1, and we reported the lowest average RMSE values among
total smoothing parameter sets. The value of the smoothing parameter, 0.1, is sufficient to reduce the
risk of involving the noises of latest time series observation, and also, the value of smoothing parameter,
0.9, is a sufficiently large value to consider the impact of the most current time series observations.
For this reason, in previous works, the range of smoothing parameter values have been set between 0.1
and 0.9 [28,37]. Since simulation data for pattern from 1 to 6 do not have seasonality, we conducted
the experiments without the triple ES model in these patterns. Finally, the self-starting forecasting
process uses only two initial data, and the period and seasonal factors of the triple ES method cannot
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be accurately estimated using only this small number of time series data. Hence, in this study, we used
the ground truth of these factors to determine them.

3.2. Simulation Results

From Figures 3–5, x-axis is the prediction windows and y-axis is average root mean square error
(RMSE) values obtained from 100 repeated experiments. In Figure 3, the RMSE curves in Pattern 1 are
exhibited. In this time series pattern, the single ES yields a smaller RMSE than the other two methods
because the single ES is designed for stationary patterns. In addition, the trend factors in the double
ES methods tend to be overestimated, and these inappropriately estimated trend factors lead to poor
forecasting results. On the other hand, compared to the double ES method, the two-stage EWMA
method produced better forecasting performance than the double ES because the adjustment factor
alleviates the effect of the overestimated trend factors.

Figure 3. Comparison results between a single exponential smoothing (ES), double ES, and two-stage
EWMA in Pattern 1.

Figure 4 shows that the comparative results from Pattern 2 to Pattern 5 are nonstationary time
series having monotonically changing parts but no seasonality pattern. When the noises are not large,
the double ES model shows comparable performance with other two methods because these patterns
are composed of monotonically changing parts. In addition, the single ES model produced the worst
results because it cannot consider the nonstationary time series. On the other hand, the two-stage
EWMA model also produced the comparable performance with double ES in that the two-stage EWMA
model also basically designed the forecasting of the monotonically changing time series. In particular,
the two-stage EWMA method outperformed the other two methods in Pattern 3 because this model can
properly deal with a nonlinearly increasing pattern by reducing the bias based on its adjustment term.
On the other hand, when the large-sized noises are added, the double ES model performs the worst
because of its inaccurately estimated trend factors. That is to say, the number of initial observations is
too small to properly estimate the initial trend factors in the noisy time series, and these poor trend
factor estimation results sequentially influence the successive model update process of the double ES
model. Conversely, the two-stage EWMA model produces better forecasting performance because the
adjustment factors can lessen the risk of the inaccurate estimation of trend factors due to the noises
and small number of initial time series data. In addition, as mentioned earlier, the drift factor of the
two-stage EWMA model helps to accommodate the dynamics of time series in that they are computed
from the difference between the two successive time series observations—not from the difference
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between the estimated level factors, as in the double ES model. These results imply that the two-stage
EWMA model is robust to the noises because the adjustment factor can successfully compensate the
inaccurately estimated trend factors.

Figure 4. Cont.
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Figure 4. Comparison results between the single ES, double ES, and the two-stage EWMA in (a) Pattern
2, (b) Pattern 3, (c) Pattern 4 and (d) Pattern 5.

In the current study, we also investigated the properties of three EWMA models when the size of
noise varies over time (heteroscedastic settings). When the initial noises are small, trend factors in the
double ES are accurately estimated in early phase, and they are also appropriately updated, not affected
by the noise in the early update process. Although the noise is increased over time, the double ES model
tends to still accurately forecast because these accurately estimated trend factors in the early phase can
alleviate the effects of noises. Conversely, the two-stage EWMA model showed smaller RMSE values
when the time series started with large-sized noise because the adjustment factor can successfully
compensate the inaccurately estimated trend factors, as the same as the experimental results in
homoscedastic settings. The simulation results in the heteroscedastic settings demonstrate that the
initial condition of time series observations might significantly affect the performance of a self-starting
EWMA model when the time series patterns a have monotonically increasing or decreasing part.
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Figure 5 shows the comparative results from Pattern 6 to Pattern 9 that have a seasonality pattern.
Please note that the initial seasonal factors in the triple ES model should be carefully estimated for more
accurate forecasting. However, in our problem setting, the number of initial historical data is too small
to accurately estimate the initial seasonal factors. Moreover, when the noises become large, the seasonal
factors also tend to be inaccurately estimated. For these reasons, the triple ES model showed the worst
forecasting performance in these scenarios, although this model is proposed for forecasting the seasonal
time series. These results imply that the triple ES model is not effective for seasonality-patterned data
when the initial time series is insufficiently prepared and the time series data contain large sized noises.
Finally, when the periods of the seasonality are changing (Pattern 9), the triple ES model performs
the worst because this model is based on the assumption that the period is constant. The double
ES model also yielded unsatisfactory forecasting results because this model was designed for only
considering the linear trend factors. In addition, as mentioned earlier, this model is quite sensitive
to the noises, and hence, when large-sized noises are added to the time series, forecasting accuracies
become worse. Conversely, the two-stage EMWA model tends to produce the best forecasting results
among all EWMA models because the adjustment factor helps adjust the bias of the estimation results
of the level factors for the patterns whose changing rates between successive time series observations
is not constant. However, the two-stage EMWA model cannot accurately forecast when the forecasting
windows become large in the seasonality-patterned data because this method is basically proposed for
forecasting the monotonically changing patterns. Thus, these results confirmed that the two-stage
EWMA can also be effectively applied to short-term forecasting for the seasonality time series data.

Figure 5. Cont.
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Figure 5. Comparison results between the single ES, double ES, triple ES, and two-stage EWMA in (a)
Pattern 6, (b) Pattern 7, (c) Pattern 8 and (d) Pattern 9.

In addition, the experimental results in heteroscedastic settings are similar to those in
homoscedastic settings. That is to say because the seasonal factors cannot be accurately estimated under
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insufficient time series observations, the triple ES model cannot produce a satisfactory forecasting
performance regardless of the varying patterns of noises. Besides, single ES and double ES models are
proposed for the stationary and monotonically changing time series patterns, and thus, they cannot yield
superior performance in seasonal time series patterns for both cases that the noises are homoscedastic
and heteroscedastic.

4. Case Study

In this section, we investigated the performance of EWMA methods using 18 real time series
datasets. Table 1 and Figure 6 show the characteristics and time series patterns of these real data,
respectively. These real data are available in public data repositories (Federal Reserve Bank of
St. Louis (https://research.stlouisfed.org/); https://datamarket.com/data/list/?q=provider%3Atsdl;
https://datahub.io/core/global-temp#data).

Table 1. Summary of real cases.

Case Duration of Time Series Time Scale

Case 1: Unemployment rate in USA 2000.01–2019.01 Monthly
Case 2: USD–EUR exchange rate 2000.01–2019.02 Monthly
Case 3: USD–KRW exchange rate 2000.01–2019.02 Monthly

Case 4: WTI crude oil price 2000.01–2019.01 Monthly
Case 5: Brent crude oil price 2000.01–2019.01 Monthly

Case 6: S&P 500 index 2009.01–2019.01 Monthly
Case 7: NASDAQ-100 index 2000.01–2019.02 Monthly

Case 8: Australian expenditure on financial services 1969.09–1994.03 Quarterly
Case 9: Chemical process temperature readings NA Minute

Case 10: Changes in the Earth’s rotation day length 1821–1970 Yearly
Case 11: Total building and construction activities in Australia 1973.09–1995.03 Quarterly

Case 12: Money supply in USA 1890–1974 Yearly
Case 13: Birth per 10,000 of 23 year old people 1961–2019 Yearly

Case 14: Numbers on unemployment benefit in USA 1984.01–2019.01 Monthly

As shown in Figure 6, most time series data in real cases are nonstationary patterns, and they
also have large-sized noises. In real situations, prior knowledge on periods and seasonality factors for
the triple ES is not available. However, we already demonstrated that the triple ES is not effective for
our problem settings in the simulation study. Hence, we only considered the single ES, double ES,
and two-stage EWMA models in the real time series cases.

In the case study, we applied the same experimental setting as the simulation study. At first,
we constructed the initial EWMA models using only the first two observations as training time series
data and forecasted s-step ahead future observations using these initial models. In the next step,
we updated the EWMA models by adding the successive new observation to the training time series.
Finally, the updated model forecasted the s-step ahead future observations. This continuous model
update process was repeated until the (L-s) time series observations were accumulated where L was
the length of the total time series data. In addition, as the same in the simulation study, we considered
the smoothing parameter values between 0.1 and 0.9 with a step size of 0.1, and we reported the
lowest average RMSE values among the total smoothing parameter sets. Finally, the RMSE values are
computed by varying the forecasting window (s) from one to six.

Table 2 shows the comparison results between three EWMA models.

https://research.stlouisfed.org/
https://datahub.io/core/global-temp#data
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Figure 6. Time series data of 14 real cases.
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Table 2. RMSE values of EWMA models in 14 real cases varying forecasting windows.

Case EMWA Model s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 Average

Case 1
Single ES 0.17 0.26 0.35 0.44 0.53 0.62 0.40

Double ES 0.15 0.22 0.28 0.35 0.42 0.51 0.32
Two-stage EWMA 0.15 0.21 0.28 0.33 0.39 0.47 0.31

Case 2
Single ES 0.03 0.05 0.06 0.07 0.08 0.09 0.06

Double ES 0.03 0.05 0.07 0.08 0.09 0.11 0.07
Two-stage EWMA 0.03 0.05 0.06 0.07 0.08 0.09 0.06

Case 3
Single ES 28.46 45.93 57.41 66.86 76.29 85.51 60.08

Double ES 28.91 48.23 61.96 74.09 87.02 100.51 66.79
Two-stage EWMA 25.48 45.35 56.37 65.63 73.43 82.76 58.17

Case 4
Single ES 5.74 9.35 12.37 14.78 16.78 18.39 12.90

Double ES 5.67 9.90 13.58 16.82 19.77 22.38 14.69
Two-stage EWMA 5.08 8.34 11.46 13.77 15.59 17.54 11.96

Case 5
Single ES 5.92 9.58 12.50 14.81 16.75 18.42 13.00

Double ES 5.99 10.10 13.63 16.66 19.43 22.01 14.64
Two-stage EWMA 5.33 8.95 11.86 14.41 16.09 17.86 12.42

Case 6
Single ES 53.49 80.72 99.46 115.55 129.62 144.23 103.85

Double ES 54.49 85.14 106.53 124.03 140.21 156.16 111.09
Two-stage EWMA 49.47 76.97 93.08 105.16 114.09 122.17 93.49

Case 7
Single ES 151.05 230.85 289.31 340.43 390.81 442.15 307.43

Double ES 158.75 265.42 342.90 407.23 477.73 552.12 367.36
Two-stage EWMA 139.70 222.72 275.33 321.19 361.35 402.55 287.14

Case 8
Single ES 40.40 67.80 96.53 125.10 153.53 181.59 110.83

Double ES 31.51 44.53 61.65 80.38 102.38 121.51 73.66
Two-stage EWMA 29.64 41.23 56.46 72.36 91.03 107.80 66.42

Case 9
Single ES 0.25 0.46 0.66 0.85 1.03 1.19 0.74

Double ES 0.14 0.31 0.49 0.68 0.87 1.07 0.59
Two-stage EWMA 0.14 0.28 0.44 0.60 0.76 0.92 0.52

Case 10
Single ES 29.57 53.40 74.62 92.72 108.53 122.14 80.16

Double ES 19.87 44.42 74.80 102.48 124.28 144.99 85.14
Two-stage EWMA 17.46 36.79 60.13 81.02 98.35 111.90 67.61

Case 11
Single ES 599.66 713.71 805.95 853.11 1050.50 1049.90 845.47

Double ES 621.67 778.90 925.22 1047.40 1371.00 1546.80 1048.50
Two-stage EWMA 608.68 721.59 795.26 777.03 998.28 1048.70 824.92

Case 12
Single ES 15.05 26.93 37.78 47.55 55.69 64.03 41.17

Double ES 5.70 10.40 16.23 22.91 25.54 31.73 18.75
Two-stage EWMA 5.45 9.57 14.72 21.13 24.10 30.23 17.53

Case 13
Single ES 12.65 19.88 25.26 30.32 35.89 41.92 27.65

Double ES 12.05 18.28 22.11 26.27 32.51 40.55 25.30
Two-stage EWMA 11.69 18.52 22.98 26.14 28.04 32.01 23.23

Case 14
Single ES 14404 24111 30938 36193 41164 46366 32196.00

Double ES 13835 23541 30264 35100 39573 44480 31132.17
Two-stage EWMA 11485 22070 29333 33969 38237 42563 29609.50

In Table 2, the lowest RMSE values in each case and prediction window are highlighted as bold and
underline for more effectively showing the best EWMA model. As shown in Table 2, the experimental
results in most cases are the almost same as those in simulation studies. That is to say, the double ES
model tends to show the worst forecasting results because the trend factors in double ES are sensitive
to large-sized noises. Moreover, single ES model also showed unsatisfactory performance in that
this model cannot accommodate the nonstationary time series encountered in many real situations.
On the other hand, as confirmed in a simulation study, the two-stage EWMA model shows the best
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performance in most cases because the adjustment factor of the two-stage EWMA model helps to lessen
the effect of noises and the bias of forecast caused by insufficient time series observations. Besides,
the two-stage EWMA model yields much smaller RMSE values than the double ES model because
the drift factor better models the changing patterns of time series than the trend factor in the double
ES model. In other words, the drift factor is calculated as the first-order difference of two successive
observations, and it is more effective to accommodate the inherent dynamics of the time series than the
trend factor which is defined as the difference of two successive estimated level factors.

5. Conclusions

In this study, we examined the properties of the EWMA models as a base forecasting model of
a self-starting forecasting process. To this end, we conducted situation studies under the situations
that only small initial time series data (number of initial observations is two). In the simulation study,
we generated a number of scenarios that reflected a variety of practical situations. These simulation
scenarios consider different time series patterns and sizes of noises. In addition to the simulation study,
we also applied the self-starting forecasting using the EMWA models on the various real case data.
Through comparative experiments in such a number of cases, we can summarize the characteristics of
EMWA models as base models of self-starting the forecasting process as follows:

• Single ES performs best only in the stationary time series and yields unsatisfactory results in
nonstationary patterns. Thus, this model is not proper for the base model for the self-starting
forecasting process in that, in many real situations, there is no assurance that the time series data
is changed with stationary patterns.

• Double ES shows comparable or better performances than other EMWA models when the time
series observations are monotonically increased or decreased. However, this model is vulnerable
to the noises when there are no sufficient time series observations to compensate the effect of noise.
In other words, the trend factor in the double ES model cannot be accurately estimated when
large-sized noises are added to the insufficient time series observations, and these poorly estimated
trend factors sequentially influence the successive model update process of the double ES model.
Therefore, the double ES model might not be proper for a base model of the self-starting forecasting
process in that the time series data in many real situations often contain large-sized noises.

• The seasonal factor in the triple ES model should be carefully estimated for the sake of more
accurate forecasting. However, the seasonal factors are poorly estimated when the initial time
series observations are not sufficient, and thus, the triple ES shows the worst performance although
this model is designed for handling seasonality patterns. In addition, prior knowledge on the true
period is not available when time series observations are not sufficiently accumulated. For these
reasons, the tripe ES model is not appropriate to be used for a base model of the self-starting
forecasting process.

• Conversely, the two-stage EWMA model tends to yield comparable or better performance than
other EWMA models in all cases. In particular, this model outperforms other EWMA models as a
base model for the self-starting forecasting process in the complex time series (i.e., non-stationary
and noisy time series) because of the drift factor and adjustment factor. That is to say, the drift
factor calculated as the first-order difference of two successive observations helps to accommodate
the dynamics of the time series, and the adjustment factor helps to lessen the intrinsic bias caused
by the noises and insufficient initial time series data. Finally, these appropriately estimated factors
also lead to desirable EWMA model updates in the self-starting process.

Based on these various comparative results, we suggest using the two-stage EMWA model as a
base model of the self-starting forecasting process. For the further study, we will carefully investigate
the effects of the smoothing parameters on the self-starting forecasting performance. In addition,
we will also study the systematic way to select the optimal smoothing parameters of the EWMA
model for the self-starting forecasting process. Finally, for the sake of exploiting these advantages of



Appl. Sci. 2020, 10, 7351 17 of 18

the two-stage EWMA as a base model for the self-starting approach, we will attempt to apply it to
self-starting approach-based control chart techniques.
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