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Abstract: Island ecosystems are particularly susceptible to climate change and human activities.
The change of land use and land cover (LULC) has considerable impacts on island ecosystems,
and there is a critical need for a free and open-source tool for detecting land cover fluctuations and
spatial distribution. This study used Google Earth Engine (GEE) to explore land cover classification
and the spatial pattern of major land cover change from 1990 to 2019 on Haitan Island, China. The land
cover classification was performed using multiple spectral bands (RGB, NIR, SWIR), vegetation
indices (NDVI, NDBI, MNDWI), and tasseled cap transformation of Landsat images based on the
random forest supervised algorithm. The major land cover conversion processes (transfer to and
from) between 1990 and 2019 were analyzed in detail for the years of 1990, 2000, 2007, and 2019,
and the overall accuracies ranged from 88.43% to 91.08%, while the Kappa coefficients varied from
0.86 to 0.90. During 1990–2019, other land, cultivated land, sandy land, and water area decreased by
30.70%, 13.63%, 3.76%, and 0.95%, respectively, while forest and built-up land increased by 30.94%
and 16.20% of the study area, respectively. The predominant land cover was other land (34.49%)
and cultivated land (26.80%) in 1990, which transitioned to forest land (53.57%) and built-up land
(23.07%) in 2019. Reforestation, cultivated land reduction, and built-up land expansion were the
major land cover change processes on Haitan Island. The spatial pattern of forest, cultivated land,
and built-up land change is mainly explained by the implementation of a ‘Grain for Green Project’
and ‘Comprehensive Pilot Zone’ policy on Haitan Island. Policy and human activities are the major
drivers for land use change, including reforestation, population growth, and economic development.
This study is unique because it demonstrates the use of GEE for continuous monitoring of the impact
of reforestation efforts and urbanization in an island environment.
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1. Introduction

Islands consist of isolated land surrounded by water, making them particularly sensitive to
environmental and anthropogenic changes. Climate change, overpopulation, and other human activities
have considerable impacts on island ecosystems and the environment. Rapid island development and
utilization can quickly cause irreversible damage to the environment [1]. Some rapidly developing
islands are undergoing significant changes due to urbanization. Land cover change is a significant
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indicator to help identify land-system dynamics and environmental development [2–4]. Therefore,
mapping land cover change in a developing island is critical for supporting sustainable development
and land-use policy-making.

Mapping of land cover change using satellite remote sensing data has been reported by many
researchers [3,5]. For instance, Shifaw et al. (2019) [6] monitored farmland dynamics on Pingtan Island
using ENVI software. Kuemmerle et al. (2016) [2] assessed the spatial patterns of land cover change
using land cover change indicators. Abdullah et al. (2019) [4] used the advanced feature selection
and classification techniques to assess multi-temporal land use and land change (LULC) changes.
Viana et al. (2019) [7] proposed a novel method to classify long-term satellite images. These studies
successfully tracked land cover over time and the main challenge for wider adoption is the requirement
of computers with substantial processing capability and specialized software (e.g., ENVI, ArcGIS,
ERDAS, etc.) to classify remote sensing images. These specialized software packages need significant
computer resources and time to process multiple years of imagery over large spatial extents, and it is
challenging to process remote sensing images because of the data size of the imagery.

In contrast to the traditional remote sensing processes, Google Earth Engine (GEE) has shown
great potential for land cover classification [8]. It is a cloud computing platform for environmental
monitoring and analysis (https://earthengine.google.com/) [9,10], which can handle big data processing
rapidly [8]. In addition to various automatic mapping approaches, it also hosts a vast public data
catalog, including a series of remote sensing data (e.g., Landsat images, MODIS), topography, land
cover, weather, and population [10], which are updated as new data products become available. GEE
provides multiple examples to support imagery classification, including filter image collection, simple
cloud score, Landsat simple composite, and cloud masking. These examples help users to classify
LULC more efficiently and easily. This platform has been used by researchers in numerous studies
for forest change detection [11,12], habitat tracking [13], urban land mapping [14,15], and human
activity [16], indicating that GEE is very useful in observation and environmental analysis. For instance,
forest cover and change analysis has been performed in GEE, which helps to monitor and improve the
sustainability of the regional environment. Tamiminia et al. (2020) [17] concluded that the most-used
datasets in GEE are: vegetation indices (27%), Hansen global forest (17%), land cover (17%), and canopy
height (5%), which are all related to forests. Besides estimating forest biophysical parameters, it is used
to explore the forest change at global, national, and regional scales. Measuring trends in forest change
have been reported in previous research, such as using the Normalized Difference Vegetation Index
(NDVI) change to detect the land cover change [18–20] and Enhanced Vegetation Index (EVI) change
to monitor land degradation and restoration [21]. However, few studies discuss the process and trends
of LULC changes on a rapidly developing and urbanizing island.

In China, many cities have experienced unprecedented urbanization over the past three decades [4].
As the fifth-largest island in China, the main change of land cover that has occurred on Pingtan Island
over the past 30 years is due to its strategic position on the southeast trade routes [22]. Pingtan Island
has fragile ecosystems, which makes it prone to severe soil loss during heavy rainstorms and through
wind erosion on the island [23]. With the implementation of China’s reforestation strategy ‘Grain for
Green Project’ [24,25], the first-phase construction of coastal shelter forests was carried out by the
Fujian government from 1988 to 2000, followed by the second phase of coastal shelter forests planting
between 2000 and 2005. Subsequently, China’s policy to boost the economy and social development
was initiated through a ’Comprehensive Pilot Zone’ program that was started in Pingtan County in
2009, which led to accelerated development of the island. Next, in 2014, Pingtan Island was approved
as a free trade zone [26]. It was also planned to be built into an international tourism island as well as
an important regional economic hub. As a result, Pingtan Island has undergone substantial change
in recent years, with the total gross domestic product (GDP) increased from 46.03 million USD to
4159.56 million USD (1990–2019). Notably, it has achieved substantial change in reforestation [25],
which plays a highly critical role in protecting the Pingtan Island environment by blocking wind
and stabilizing the soil. Although several studies have documented changes on this island, such as
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coastline change [9] and tourism [10], few studies have examined the spatio-temporal patterns of land
use change in this island environment.

This study leveraged GEE to map the LULC dynamics and major land cover conversion process
on Haitan Island (the largest island of Pingtan County). Satellite images from 1990, 2000, 2007,
and 2019 were chosen to capture the mostly undeveloped state in 1990, when the island had undergone
reforestation in 2000, after reforestation and before the comprehensive development establishment in
2007, and 10 years after the initiation of ’Comprehensive Pilot Zone’ development in 2019. The objectives
of this study were to quantify the impacts of a national reforestation program through land cover
conversion and analyze the driving factors for land use change.

2. Materials and Methods

2.1. Study Site

Haitan Island is the main island of Pingtan County, Fujian, China (Figure 1). It covers approximately
267 km2 land area and is comprised of seven towns and four villages. The region is characterized by
marine accumulation plains, with the highest elevation in Junshan mountain (434.40 m above the mean
sea level). The plains are mainly located in the middle of the island, while mountains and hills are
in the north and south. The soil here is poor and acidic (laterite soil: 46%, sandy soil: 23.35%) [27].
The area is dominated by marine monsoon climate, with a mean annual temperature of 19.6 ◦C and
mean annual precipitation of 1000–1200 mm.

Figure 1. Location of the study site, Haitan Island, within Pingtan County, Fujian, China.
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It has an extensive sandy coastline, including many beaches, such as Changjiang, Tannan,
Longfengtou, and Haitan. Due to its geographic location, the residents’ living environment is impacted
by frequent strong winds, especially the prevailing north-northeast wind in the winter season [6,23,28].
Many reforestation measures have been implemented for the purpose of environmental protection [29].
The major planted forest types are beach sheoak (Casuarina equisetifolia), black pine (Pinus thunbergii),
acacia (Acacia confusa), and slash pine (Pinus elliottii) [27].

2.2. Data Collection

The data processing flowchart for this study is presented in Figure 2. First, the cloudless composite
Landsat images for 1990, 2000, 2007, and 2019 (Section 2.2.1) and the maximum value of NDVI [19] in
the given year were calculated in GEE (Section 2.4). The administrative boundary, forest inventory
data, and 1:10,000 topographic map of Pingtan County were obtained from Fujian Forestry Bureau,
and socio-economic data were collected from Fuzhou Statistical Yearbook. Second, the classification and
accuracy assessment (Section 2.3) were performed in GEE. Except for the field survey data as additional
validation in 2007, other samples were all collected in Google Earth Pro by visual interpretation. Finally,
the major land cover conversion between 1990 and 2019 was mapped to identify the spatial pattern
and process, using maximum NDVI to understand the influence of LULC changes on Haitan Island.

Figure 2. The flowchart of data processing in this study. SR = Surface reflectance; NDVI = Normalized
Difference Vegetation Index; NDBI = Normalized Difference Built-up Index; MNDWI = Modified
Normalized Difference Water Index; LULC = Land use and land cover.
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2.2.1. Image Preprocessing

GEE provides a rapid analysis using Google’s computing infrastructure, which offers online
datasets in near-real time [10]. Landsat 5 Surface Reflectance images (1990, 2007), Landsat 7 Surface
Reflectance images (2000), and Landsat 8 Surface Reflectance images (2019) were selected for Haitan
Island land cover classification in GEE (Table 1).

Table 1. Data sources used in this study.

Data Layer Source Spatial Resolution (m) Year

Landsat 5 Surface Reflectance GEE dataset (USGS) 30 1990, 2007
Landsat 7 Surface Reflectance GEE dataset (USGS) 30 2000
Landsat 8 Surface Reflectance GEE dataset (USGS) 30 2019

Administrative boundary
Forest inventory data

Fujian Forestry Bureau - 2003, 2016
2003, 2016Fujian Forestry Bureau -

1:10,000 topographic map Fujian Forestry Bureau 1 -
Socio-economic data Fuzhou Statistical Yearbook - 1990–2019

Images were selected and mosaicked based on the quality assessment band flags to minimize the
effects of clouds and clouds’ shadows. Simultaneously, the spectral bands in Landsat image, including
red, green, and blue bands (RGB), near-infrared (NIR), and short-wave infrared (SWIR), were selected
for classification. In addition, NDVI [19], Normalized Difference Built-up Index (NDBI) [18], Modified
Normalized Difference Water Index (MNDWI) [14,18], and tasseled cap transformation (brightness,
greenness, wetness) [30,31] were calculated and added to the bands, which are helpful for land use
classification [18,32]. All of the processing was conducted in GEE Code Editor (https://code.earthengine.
google.com/).

2.2.2. Land Cover Classes

Land cover types were divided into six classes (sandy land, built-up land, cultivated land, forest
land, other land, and water) in this study (Table 2) [27]. Next, the samples were selected from historical
images in Google Earth Pro using a visual assessment. A total of 1000 sample points were collected in
1990, 2000, 2007, and 2019, respectively. The collected samples were divided into 70% training data
and 30% validation data.

Table 2. The description of land cover classes on Haitan Island, China.

Land Cover Classes Description

Sandy land (SL) Beaches
Built-up land (BL) Residential areas and other built-up land, such as roads, industrial land

Cultivated land (CL) Cultivated, fallow farmland and terraced
Forest land (FL) Forest, grassland, orchard, and urban greening land
Other land (OL) Unused land or hard-to-use land, including rocks and bare soil

Water (W) Rivers, reservoirs, lakes, dams and oceans

2.3. Image Classification and Accuracy Assessment

There are several classifier packages for supervised classification in GEE, such as Random Forests
(RF), Classification and Regression Trees, Support Vector Machine, and Naïve Bayes [9]. Many researchers
reported higher accuracy was achieved using RF classifier algorithm [18,33,34]. The RF algorithm is
an ensemble learning method, which consists of many individual decision trees [5]. Each individual
decision tree has several nodes, and the final result is determined by the majority vote. The advantage
of RF is that it can produce a highly accurate classifier and handle thousands of input variables [35].
Thus, RF was used to obtain the classification maps in this study.

https://code.earthengine.google.com/
https://code.earthengine.google.com/
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For the year of 2007, 114 field samples (with GPS locations) were collected in December of 2007, which
were additional samples for validation. The field samples covered each type and were distributed
as uniformly as possible in the accessible areas of Haitan Island. The GPS coordinate was collected
three times in each sample, and the mean (X, Y coordinate) was taken as the location of sample. All the
samples were unloaded in GEE. Since the early Google Earth satellite images (1990 and 2000) that
cover Haitan Island were lower resolution than the image in the year 2019, topographic map and
forest inventory data were used as auxiliary data to delineate the reference points. Finally, all the
reference data was uploaded in GEE for accuracy assessment. According to the confusion matrix for
each year in GEE, user’s accuracy, producer’s accuracy, overall accuracy, Kappa coefficient, and F1
score [18,36] were calculated to evaluate the classification results [9]. F1 score ranged from 0 to 1,
which was calculated based on the combination of producer’s and user’s accuracy. The higher value
of F1 score means higher accuracy achieved. Finally, the land use classified maps were downloaded
from GEE.

2.4. Detection of Land Cover Change

The spatial patterns of land cover change are critical to understanding the LULC process and for
helping policymakers adopt appropriate practices for the region’s sustainable development. Thus,
the gain and loss of major land cover types were calculated as follows (Equations (1)–(3)):

Kgain = Sb − Sa (1)

K0 = Sbi = Sai (2)

Kloss = Sa −K0 (3)

where Sa and Sb are the land cover type at the initial and end of time in a given period, respectively.
Sai and Sbi are the unchanged area of the same land cover type in the initial and end of time.

In addition, NDVI is useful for environmental monitoring, particularly in vegetation growth
measurement (Equation (4)) [17,19,37]. Therefore, the maximum NDVI value composition was
calculated from all the available images in the years of 1990, 2000, 2007, and 2019 to understand the
influence of LULC changes in this study:

NDVI = (NIR−Red)/(NIR + Red) (4)

where NIR and Red are the values of near-infrared and red band, respectively, in Landsat image.

3. Results

3.1. Land Cover Classification and Accuracy Assessments

The land cover classification maps of the years 1990, 2000, 2007, and 2019 are shown in Figure 3a–d,
which were produced using random supervised classification. The RF classifier produced good overall
accuracies for Haitan Island, with overall accuracy assessments of 90.09% (1990), 90.31% (2000), 91.08%
(2007), and 88.43% (2019), respectively, and the Kappa accuracies were 0.88 (1990), 0.89 (2000), 0.90
(2007), and 0.86 (2019) (Table 3). For each class type, the user’s accuracies and producer’s accuracies
ranged between 80–100% in each year. Water had high classification accuracies in each year because
its reflectance is easier to distinguish from other categories, whereas sandy land and other land had
low accuracies.
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Figure 3. Land cover classification on Haitan Island: (a) 1990, (b) 2000, (c) 2007, and (d) 2019. A is
the Xingfuyang area. A, B in (d) 2019 is the different area compared to 1990, 2000, and 2007, due
to reclamation.
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Table 3. User’s accuracy, producer’s accuracy, overall accuracy, and Kappa coefficient on Haitan Island,
China, by land cover classes.

Accuracy Assessment
Land Cover Classes

SL BL CL FL OL W Overall
Accuracy

Kappa
Coefficient

Year: 1990

User’s accuracy 83.33% 91.11% 86.05% 93.33% 88.10% 97.37%
90.09% 0.88Producer’s accuracy 93.02% 91.11% 90.24% 85.71% 80.43% 100.00%

F1 score 0.88 0.91 0.88 0.89 0.84 0.99

Year: 2000

User’s accuracy 82.98% 91.30% 88.37% 95.24% 88.64% 97.22%
90.31% 0.89Producer’s accuracy 92.36% 89.36% 86.36% 88.89% 86.67% 100.00%

F1 score 0.87 0.90 0.87 0.92 0.88 0.99

Year: 2007

User’s accuracy 82.61% 92.68% 87.18% 92.31% 88.10% 97.22%
91.08% 0.90Producer’s accuracy 92.68% 90.48% 89.47% 90.57% 86.05% 97.22%

F1 score 0.87 0.92 0.88 0.91 0.87 0.97

Year: 2019

User’s accuracy 83.97% 89.29% 84.41% 95.39% 82.61% 99.31%
88.43% 0.86Producer’s accuracy 80.62% 88.03% 92.39% 85.29% 82.31% 99.65%

F1 score 0.82 0.89 0.88 0.90 0.82 0.99

NOTE: SL = sandy land, BL = built-up land, CL = cultivated land, FL = forest land, OL = other land, W = water.

3.2. The 30-Year Land Cover Change

Table 4 shows the land cover area and change of Haitan Island over the 30 years. The main trend
of land cover type change is that forest area has increased by 92.36 km2 of the study area, followed
by other land categories declining by 79.05 km2 of the study area, and expansion of built-up land by
47.27 km2 of the study area. Compared to the final and initial period for each land cover type, the rate
of land cover change of built-up land and forest land increased by 264.43%, and 156.85%, respectively,
while sandy land, other land, and agricultural land reduced by 88.07%, 65.80%, and 46.70% from
1990 to 2019.

Table 4. Summary of land cover classes and change on Haitan Island, China.

Land Cover
Classes

Area (km2) Change in Area (%)

1990 2000 2007 2019 1990–2000 2000–2007 2007–2019 1990–2019

Sandy land 14.30 6.66 1.07 4.89 −53.43 −83.85 354.90 −65.80
Built-up land 17.87 26.86 48.39 65.14 50.24 80.17 34.63 264.43

Cultivated land 69.74 60.14 46.69 37.17 −13.76 −22.36 −20.39 −46.70
Forest land 58.89 89.80 146.25 151.25 52.49 62.86 3.42 156.85
Other land 89.76 62.57 2.60 10.71 −30.29 −95.85 312.37 −88.07

Water 9.68 14.22 15.25 13.20 46.87 7.24 −13.43 36.36

The built-up land areas and forest land areas were continuously increasing over the whole period
from 1990 to 2019, while cultivated land areas were gradually decreasing. Other land and sandy
land areas showed a similar trend, reducing from 1990 to 2007, but increasing between 2007 and 2019
(Figure 4). In 1990, sandy land covered 14.30 km2 of Haitan Island, while this dropped to 1.07 km2 in
2007 and increased in 2019 (4.89 km2). The built-up land areas expanded by 8.98 km2 between 1990
and 2000 and substantially grew by 21.53 km2 and 16.76 km2 between the second (2000–2007) and
third (2007–2019) intervals, respectively. Water areas experienced an increase of 4.54 km2 between
1990 and 2000 and 1.03 km2 between 2000 and 2007 and decreased between 2007 and 2019 (2.05 km2).
The cultivated land continuously declined by 9.60 km2 between 1990 and 2000, 13.45 km2 between
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2000 and 2007, and 9.52 km2 between 2007 and 2019. The other land areas showed a significant change
between 1990 and 2019, with a decrease of 27.19 km2 and 59.98 km2 in the first and second intervals,
and an increase of 8.11 km2 in the third interval.

Figure 4. The change in the area of land cover classes in different time intervals: 1990–2000, 2000–2007,
2007–2019, and 1990–2019. SL = sandy land, BL = built-up land, CL = cultivated land, FL = forest land,
OL = other land, W = water.

3.3. The Spatial Patterns of Land Cover Change

Figure 5 shows the transition of each land cover type during different intervals. In the periods
between 1990–2000 and 2000–2007, the greatest transition was other land to forest land. Between
2007 and 2019, some of the forest land was transformed into other land, and most of them remained
unchanged. For the whole period, the predominant land cover transitions were other land and
cultivated land areas to forest land area.

Figure 5. Conversion matrix of land use: (a) 1990–2000, (b) 2000–2007, (c) 2007–2019, and (d) 1990–2019.
SL = sandy land, BL = built-up land, CL = cultivated land, FL = forest land, OL = other land, W = water.



Appl. Sci. 2020, 10, 7336 10 of 16

Over the past 30 years, forest, cultivated land, and built-up land were the major changed land cover
types. The spatial patterns of these land cover changes are shown in Figure 6a–f, which progressed as
follows: Reforestation, cultivated land shrink, and built-up land expansion.

Figure 6. The main land cover types: (a) forest change, (b) cultivated land change, and (c) built-up
land change loss and gain between 1990 and 2019 and their conversion. Transfer to/from (d) forest land,
(e) cultivate land, and (f) built-up land. Other = sandy land, water, and other land; BL = built-up land,
CL = cultivated land, FL = forest land.

The results of forest change analysis show 106.48 km2 of forest gain and 14.11 km2 of forest loss
between 1990 and 2019 (Figure 6d). Forest gain area was transferred from cultivated land (28.88 km2),
built-up land (1.59 km2), and other land cover types (76.01 km2), respectively. The area of forest gain is
larger on the western than the eastern area of the Island. Forest loss area was transferred to cultivated
land (2.82 km2), built-up land (7.71 km2), and other land cover types (3.58 km2), respectively. Cultivated
land loss amounted to 48.87 km2 on Haitan Island, with 41.64% (28.88 km2), 23.03% (15.97 km2),
and 5.80% (4.02 km2) converted to forest, built-up land, and other land cover types, respectively.
The most apparent reduction occurred in the middle of Haitan Island. A total of 51.66 km2 of built-up
land expanded from other land cover types (27.98 km2), cultivated land (15.97 km2), and forest
land (7.71 km2). The most obvious built-up land expansion occurred in the middle of Haitan Island
(e.g., Tancheng town). Meanwhile, in order to evaluate the influence of LULC changes, the maximum
NDVI in the years of 1990, 2000, 2007, and 2019 was calculated (Figure 7). Comparing the maximum
NDVI in a given year, more greenery and fragmentation of Haitan Island can be seen in 2019, which
indicated that the vegetation increased and was accompanied by built-up land expansion.
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Figure 7. The maximum NDVI: (a) 1990, (b) 2000, (c) 2007, and (d) 2019 on Haitan Island.

4. Discussion

4.1. Land Cover Change from 1990 to 2019

The dominant land cover in 1990, covering 34.49% of the study area, was other land (89.76 km2),
followed by 26.80% cultivated land (69.74 km2). In comparison, 53.57% of forest land and 23.07% of
built-up land were the dominant land cover types in 2019. Similar to previous research [6], results
of this study showed a continuous decline of cultivated land on Haitan Island, which was mostly
converted to forest and built-up land (Figures 5 and 6). Other land and sandy land showed the same
trend, which reduced from 1990 to 2000 and 2000 to 2007 but increased since 2007.

The spatial pattern was used to identify the major land cover types’ change. The results showed
that reforestation, cultivated land reduction, and built-up land expansion were the major land cover
change processes on Haitan Island. The reforestation process was more evident on the western coast
than the eastern coast, which implies a threat by the wind-related environment on the eastern coast.

4.2. Effects of Reforestation on Land Cover Change

The sandy lands are mainly located in the windward direction of each bay (e.g., Changjiang Bay,
Haitan Bay, and Tannan Bay). The area of sandy land decreased by 13.22 km2 between 1990 and 2007,
and the reason can be explained by policy-making that aims at sand control on Haitan Island. Local
forestry bureau, Fujian Academy of forestry, and other relevant institutions carried out reforestation
projects in Pingtan County [27]. The coastal forests have an advantage in windbreak and sand fixation,
which protects Haitan Island’s ecosystems and the environment from wind damage. Nevertheless,
in 2007–2019, the area of sandy land increased by 3.81 km2. The fact may be explained by the possible
conversion of other land use types into bare land because of the development process to support the
tourism and built-up land development [38] and the construction of roads and wind power stations
near the location of wind gaps. Massive construction reduces the windproof ability of shelter forests
and forms new wind gaps, which push the development of sand [27].

Reforestation can contribute to local ecological restoration, coastal protection, and urban green
space expansion [39]. In this study, forest land had experienced significant growth over the past three
decades. The maximum NDVI showed Haitan Island was greener in 2019 than before (Figure 7), which
indicated the effects of reforestation. Overall, forest change on Haitan Island reflects the ability of
anthropogenic activities to transform natural landscapes. Although the pattern of forest change was
discussed in this study, forest species and quality on Haitan Island remain unknown. According to
incomplete statistics based on the forest survey data, black pine was the dominant tree species in
Pingtan Island for wind prevention in the 1990s, but beach sheoak subsequently became the major
tree species [27]. In addition, due to the continuous reforestation processes and in favor of the goal
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of international tourism, varieties of tree species were cultivated on Haitan Island in recent years.
Therefore, the change of forest species and quality on Haitan Island needs to be further studied.

4.3. Drivers of LULC Change

Reforestation and built-up expansion were accompanied by a decrease in cultivated land on
Haitan Island. Results from this study showed that built-up expansion and cultivated land reduction
were concentrated in the middle of the island. The reason for this phenomenon is related to government
development policy [39]. According to the national development strategy, the layout planning of
‘Comprehensive Pilot Zone’ focused on the central and western plain regions’ development [29].
Under the guideline of strategy, the cross-strait bridge was built in 2010 [39], which connects Pingtan
Island and mainland China and boosts its development. Pingtan cross-strait, highway–railway bridge
nears completion, and the high-speed rail will be open to traffic in the coming years. The station is
located in Tancheng town, in the middle of the island. Those measures accelerate urban development
of Pingtan Island. Likewise, the ’Grain for Green Project’ contributed to cultivated land transfer to
forest land. Similar projects have also greatly contributed to forest increase in other parts of China due
to government policy making, for instance, Three North Protection Forest Project [25,40]. This program
is successful in protecting the ecosystem and environment by afforestation based on the guideline of
national strategy. Zhai et al. (2013) [41] discussed reforestation efforts and payments for ecosystem
services’ programs on tropical Hainan Island, where the Sloping Land Conversion Program (SLCP)
increased tree cover on the island while losing diverse natural forests. Zhai et al. (2013) [41] discussed
the limitations of using “forests” as a classification category in forest restoration programs because
it includes both natural, native, and non-native forests. According to Xu (2011) [42], continued use
of general category “forest” would further risk tropical natural forests and associated biodiversity.
Economic subsidies to plant non-native monoculture-type forests (e.g., rubber plantations, etc.) would
further place conversion pressure on natural forests [41]. Zhang et al. (2000) [43] conducted an
econometric analysis of the causes of forest land use changes on Hainan Island and concluded that
population growth was behind the decrease in natural forests. In addition, higher timber prices led to
rain forest loss while increasing the area of plantation forests [43].

Besides the policy factor for land use transition, population and economic activity also have
contributed to land cover change. According to the Fuzhou Statistical Yearbook [44], the urban
population of Pingtan County was 94,500 people in 1990, which increased to 230,900 people in
2019. The population increased considerably in the town of Tancheng (County government location).
The growing population results in the expansion of built-up land, such as road construction, industry,
residential houses, and other changes. The GDP of Pingtan County was 46.03, 455.59, 772.94, and 4159.56
million USD in 1990, 2000, 2007, and 2019, respectively, which indicated rapid economic growth.
In addition, another threat to sustainable development in Pingtan County is physical factors, particularly
strong wind [23]. With further uncertainty factors arising in recent years, the balance between nature
conservation and socio-economic development is necessary.

4.4. Advantages of Using GEE and Data Limitations

GEE provides an unprecedented opportunity to handle time-series images efficiently. Previous
research reported combining NDVI, NDBI, and other indexes to improve classification accuracy [19,45].
For instance, Liu et al. (2020) [14] proposed to add the annual minimum built-up composites, texture
features’ usable image, and other indices to bands for image classification. Zurqani et al. (2019) [46]
used NDVI, EVI, GRVI, MSAVI, and NDWI for classification in Greenville, South Carolina. In this
study, NDVI, NDBI, MNDWI, and tasseled cap (brightness, greenness, wetness) were added to
Landsat images and achieved satisfactory classification. For better accuracy of classification, it has
not only high-resolution images (e.g., Sentinel datasets) but also supports HSV-based Pan-Sharpening
algorithm for Landsat in GEE, which is helpful for classification. However, it is limited to processing
post-classification [14] and lacks an interactive interface to modify the classification.
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In addition, combining images from different time periods can improve the accuracy of classification.
For instance, Figure 8 shows the Landsat image of Haitan Island in April 2020 and June 2020, respectively,
where the increased pixel values from cultivated land are evident in the June image. Cultivated
land can be identified accurately by evaluating both growing season and fallow season images. It is,
however, challenging to acquire both the growing season and fallow season images in each of the
study years due because there is often cloud coverage in the study area.

Figure 8. Cultivated land in the north and west of Haitan Island: (a) fallow season, Landsat image
obtained in April 2020, (b) growing season, Landsat image obtained in June 2020 (subset of Landsat 8
OLI, shown with band 5, 4, and 3 in red, green, and blue).

For long-time temporal observations, Landsat datasets are the only option for tracking the
continuous land cover change from the 1990s. In this study, the maximum NDVI composition was
selected from all the available images in a given year to evaluate the influence of LULC changes.
However, although GEE provides algorithms to combine multiple images for re-assembling a cloud-free
image, Landsat series datasets and other optical satellite data always contain more cloud cover in the
coastal area. Some NDVI values might not represent the maximum NDVI values due to the limited
images in a given year because of the influence caused by haze and clouds in the image [30]. Therefore,
it is more challenging to achieve long-term observation and evaluation in coastal areas [24].

5. Conclusions

Satellite classification has most often been used to document environmental losses in the face of
urbanization. This study is unique because it provides an efficient methodology for temporal land use
classification and forest detection for island environments while showing combined reforestation and
urbanization over time. Google Earth Engine was used to classify Landsat satellite images to track
land cover change for Haitan Island from 1990 to 2019. A multi-temporal, remote sensing database was
instantly available via GEE’s data library and cloud computing environment, which provides access
to high-throughput computing at no cost for noncommercial uses. Image analysis in GEE showed
that Haitan Island experienced a dramatic land cover change from 1990 to 2019. User and producer
accuracies were consistently higher than 80% for the classified images. The overall accuracy and Kappa
coefficient values ranged from 88.43% to 91.08% and 0.86 to 0.90, respectively. The results showed that
over the past 30 years (1990–2019) Haitan Island has experienced an increase in forest land (30.94%) and
built-up land (30.70%) and a decrease in cultivated land (13.63%) and sandy land (3.76%) in the study
area. In general, LULC experienced a significant change, which may be due to socio-economic factors
(e.g., population growth, anthropogenic activities), policy decision making (fast-growing economy
and reforestation), and physical factors. The increases in the forest area show that the reforestation
efforts have been successful even though there has been increased urbanization. These reforestation
efforts are particularly important in this island environment where the trees serve as sand-control and
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windbreaks. Continuous monitoring of island environments and sustainability, in the face of climate
change and population pressures, using GEE and satellite image classification helps regionalized
land-use policy-making and represents an important example for other island environments that may
face similar issues. Future analysis can be enhanced by using science-based "forests" category, which
includes differentiating by the type of forests (e.g., native, non-native, etc.) and economic analysis of
drivers in changes between native and non-native forests.
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Glossary

EVI Enhanced Vegetation Index
GEE Google Earth Engine
GRVI Green-Red Vegetation Index
HSV Hue-Saturation-Value
LULC Land use and land cover
MSAVI Modified Soil-adjusted Vegetation Index
MNDWI Modified Normalized Difference Water Index
MODIS Moderate Resolution Imaging Spectroradiometer
NIR Near-infrared
NDVI Normalized Difference Vegetation Index
NDBI Normalized Difference Built-up Index
NDWI Normalized Difference Water Index
OLI Operational Land Imager
RGB Red, green, blue bands
SWIR Short-wave infrared
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