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Abstract: The records of 24,797 traffic accidents (9039 involving fatalities or severe injury) during
rainy conditions from 2007 to 2017 in Seoul, South Korea, were used to analyze the spatial distribution
of the traffic accidents and rainfall events based on radar and gauge rainfall data. According to the
spatial correspondence analysis between rainfall distribution and accident locations for localized
and stratiform rain events, radar data in a two-dimensional grid (250 by 250 m) of 10 min temporal
resolution benefited the localized rainfall distribution concerning the accident location. The relative
accident rate (RAR) from radar data, which was used as a quantitative reference value for the effect of
rainfall on traffic accidents, was about 18% higher than that from gauge rainfall. The radar data more
clearly classified the number of traffic accidents during rainy conditions because its spatial distribution
was more precise for all accidents. In addition, the RAR estimation of accidents involving fatalities
and severe injury during rainfall could provide information on the district in which traffic accidents
increase due to rainfall. The study results support the adoption of radar-derived rainfall data to
analyze the influence of rainfall on accidents and the development of more accurate risk-assessment
tools for drivers and planners.
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1. Introduction

The number of fatal road accidents increases sharply during adverse weather conditions such
as fog, snow, or rain; this trend causes problems including socio-economic loss and increased
social anxiety [1–4]. The causes of traffic accidents can be divided into three categories: first,
driver-related factors that include recognition error, decision error, and performance error; second,
vehicle-related factors that include tire/wheel-related, brake-related, and steering-related; and third,
environment-related reasons that include slick roads, fog/rain/snow, and road design [5]. This study
focuses on rain-related factors. Precipitation has a particularly significant impact on the risk and
frequency of traffic accidents that occur in relation to weather conditions [6,7]. For example, accidents
and injuries are 10% and 8% more likely, respectively, on rainy days, and higher rainfall intensity is
associated with a 50% increase in the possibility of accidents [8]. Moderate rainfall (>10 mm) has
also been associated with increased accident risk [9]. Rain causes accidents through a combination of
physical effects that affect the driving environment [10], such as tire friction loss, and drivers’ lowered
abilities [11], such as poor visibility due to rainy conditions or secondary spray from other vehicles.
Therefore, it is necessary to clarify the relationship between adverse weather and road safety to develop
smarter technology that enables safe driving of both normal and autonomous vehicles [9]. According
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to the Korea Road Traffic Authority, the total number of fatalities in road traffic accidents has decreased;
however, the number of crashes during rainy conditions has increased [12]. In particular, in Seoul,
traffic fatality rates on rainy days were the highest of all cities [13]. In the Seoul area, the observation
network measuring rainfall information is sparse; hence, a limited number of studies have been
conducted on the relationship between rain and traffic accidents and its effects [14].

Previous studies investigating the effects of rainfall on accidents have focused on urban areas [9,15]
because global urbanization is increasing the relative importance of cities. Improved vehicle design
and driver training have reduced weather-related accident rates in developed countries in recent
decades, but urbanization and rising occurrences of extreme rainfall events have led to the need for
more effective approaches to analyzing the links between rainfall and accidents [7,16,17]. For example,
Jaroszweski and McNamara [18] compared the relative accident rate (RAR) for precipitation events
using both radar-derived and gauge-based rainfall data for two urban areas in the United Kingdom,
finding that the former approach was far superior. RAR values vary based on rain data sources.
Although many studies have assessed the cause-and-effect relationship between traffic accidents and
rainfall, few have used such time-based high-resolution radar data, especially to analyze changes in
the frequency of traffic accidents due to differences in spatial rainfall distribution within urban areas.
In this study, we analyzed the relationship between rainfall and traffic accident rates in Seoul, South
Korea, using the gauge- and radar-derived rainfall data to assess the influence of the type of rainfall
data used on the spatial distribution of traffic accident patterns.

2. Study Area and Data

2.1. Study Area

The metropolitan city of Seoul was selected as the study area. Seoul is located in the center
of the Korean Peninsula and is the country’s capital. Its area is 0.6% (605 km2) of the total area of
Korea, but the population density is very high at 16,100 people/km2. Due to this high population
density, the traffic volume is also extremely high, road safety is diminished, and the road safety index
is low [13].

Seoul city has 80.6 rainy days with over 1.0 mm rainfall per year on average, and the average annual
rainfall of Seoul city is 1387 mm, which is 28.9 mm higher than the average for Korea, according to the
data from the Korea Meteorological Administration. Due to the recent extreme weather, the rainfall
deviation in each administrative area, including that in Seoul, is large. Therefore, it is necessary
to analyze the relationship between traffic accidents and the rainfall in Seoul using appropriate
rainfall information.

2.2. Traffic Accident Data

We used accident records collected by the Traffic Accident Analysis System (TASS) operated by
the South Korean Road Traffic Authority [12], focusing on accidents in Seoul (the most urbanized city
in South Korea) during the rainy season (April to October) from 2007 to 2017. A total of 259,088 traffic
accident cases were collected for this period. Among the collected 259,088 cases, 24,797 accidents
occurred in rain conditions, and the remained occurred in absence of rainfall. Each collected accident
record included the date and time of the accident combined with details such as the number of fatalities,
number and degree of injuries, gender and age of those involved, and accident summaries. Among the
24,797 accidents that occurred in rain conditions, 9039 accidents involved fatalities or severe injury.
The accident reports also included the records of weather conditions (rainfall, fog, etc.) by the police
handling the accident.

From the 24,797 accidents that occurred in rain conditions, we extracted the data on weather
conditions occurring one week prior and one week after the accidents. The extraction of this data
allowed consideration of data from a similar period during which no rain was falling. Classification
of rainfall/no-rain conditions in the record was based on weather conditions directly recognized by
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the police officer handling the accident, without using weather information observed at the time.
Therefore, rainfall conditions based on accident reports were defined as actual weather conditions at
the time in that location. The geographic locations of all selected accidents were used when collecting
relevant gauge- and radar-derived rainfall data.

2.3. Gauge and Radar Data

Although physical rain gauges can be used to obtain rainfall information, their limited distribution
and point-source data make it impossible to obtain accurate rainfall information for specific accident
locations. In contrast, radar-derived rainfall data can provide two-dimensional high-resolution (250 m
to 1 km) coverage that can be tied to the accident location and provides a significantly more detailed
picture of rainfall distribution than rain gauges [19,20].

The Korea Meteorological Administration (KMA) operates 30 automatic weather stations (AWSs)
in or near Seoul (Figure 1). These AWSs collect 1-min rainfall observation data that we converted into
1-h cumulative rainfall data for further analysis. Radar-derived rainfall data were collected from two
KMA weather radar sites to investigate the three-dimensional structure of rainfall. The Kwanaksan
weather radar site is located in Seoul, where a cone of silence causes some observation gaps, and the
Gwangdeoksan weather radar site is located approximately 100 km away and is affected by beam
attenuation and topography because the city is surrounded by mountains. The data from the two
sites were composited to compensate for these issues. Both radars are S-band with a beam width of
1◦ and a gate size of 250 m; radar is provided in Universal Format (UF). Volume data were extracted
from the radar reflectivity data to obtain constant altitude plan position indicator (CAPPI) data at a
height of 1.5 km using a bilinear interpolation program based on the algorithm suggested by Mohr
and Vaughan [21]. The spherical coordinates of the volume data were then transformed into Cartesian
coordinates. The spatial and temporal resolutions of the extracted CAPPI data were 250 × 250 m2 and
10 min accumulated [22]. To use radar data, the raw data (dBZ) were converted into rainfall intensity
data using the Z–R power-law relation (Z = aRb), with a = 200 and b = 1.6.
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Figure 1. Locations of selected traffic accidents on rainy days, April to October 2008–2017; automatic
weather stations (AWSs); and weather radar grid in Seoul.

In general, it is known that the adjustment of the radar rainfall value is quantitatively estimated
by calculating the bias of the ground rainfall gauge. Then, the calibrated radar data are generally used
to replace ungauged locations. However, it is not an appropriate calibration process for the radar data
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for this study, because the radar and gauge station data should be directly compared and each paired
with the accident locations. Therefore, when analyzing the effect of rainfall on traffic accidents in this
study, a separate radar rainfall correction technique was not applied.

The interpolated rainfall data were used to obtain rainfall information corresponding to the
accident location in some previous studies [14,23]. To consider a spatial distribution of rainfall using a
point rain gauge, we also used kriging to interpolate the rain gauge data into a distributed data set, then
used Geographic Information System (GIS) spatial analysis to compare the gauge- and radar-derived
rainfall to identify the rain gauges nearest the accident site and rainfall distribution at the time of the
accident (Figure 1).

2.4. RAR Calculation

The RAR has been used as an indicator of the effect of rainfall on traffic accidents; this compares
the rate of accidents recorded during a rainfall event to that during normal weather conditions. Mostly,
a matched-pair approach can generally be used to determine the RAR on the basis that incidents
observed (usually via police reports) during rainy periods in a particular area can be compared to a
no-rain period. Matched rainfall periods are those periods in which police reports and either gauge or
radar coincide with the rainfall data. It should be assumed that other factors, such as traffic volume,
driver demographics, and lighting conditions, are otherwise similar to each other. After identifying
all matched pairs, we counted crashes occurring during each matched period and calculated the
RAR [4,8,18]. In this study, the following equation was used to calculate the RAR, where n represents
the total number of RAR calculations within the period for data analysis. The daily average number of
accidents during matched days without rain was calculated with the accident data in no-rain days
within one week before and after each day of accidents occurring during rainfall.

RAR =
Number o f the accidents during matched rainy hours within a rainy day
Daily average number o f accidents during matched days without rain f all

(1)

3. Results and Discussion

3.1. Distance between Accident Location and Nearest Rainfall Data

Based on the number of traffic accidents that occurred under rainy conditions (24,797), the distance
between the traffic accident location and closest point of each rainfall data source (radar grid point and
AWS) was analyzed. The results are shown in Table 1 and Figure 2. Accident location and rainfall
observation points did not directly match because of spatial differences. In Figure 2, the Accident
IDs were sorted according to the nearest AWS and the high-resolution radar grid point. As shown
in Table 1, the minimum distance between the traffic accident point and the AWSs location is 16 m,
and the maximum distance is 5956 m. On average, AWSs are 1886 m from the accident site. The
minimum, maximum, and average distances to the radar grid point are 1, 183, and approximately 99 m,
respectively. Clearly, the use of AWS locations to assess accident-causing rainfall phenomena is not
reliable given the range of distances involved, whereas the high-resolution radar ensures that any given
accident location is no more than 183 m from a rainfall data point, resulting in much higher accuracy.

Table 1. Distance between rain gauges and radar grid with respect to the accident locations (unit: meters).

Data Type Min. 1st Qu. Median Mean 3rd Qu. Max

Rain gauges 16 1221 1806 1886 2466 5956
Radar 1 74 103 99 126 183
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grid point.

3.2. Frequency Analysis of Accident-Inducing Rainfall

It is important to determine the rainfall amount that causes the most traffic accidents to be able to
respond adequately to an accident. The sources of rainfall data also determine the accident-inducing
rainfall. In this study, AWSs and radar were used to obtain rainfall data at the time of traffic accidents,
and the rainfall frequency of each rainfall data source was checked.

Figure 3 shows a significant number of incidents with zero measured rainfall in all rainfall data
sources, unlike the data recorded as rain conditions in the police reports. These data are based on the
judgment of the police officer handling the accident at the accident location at that time, which might
differ from the actual observed data of different data sources. The 14,388 cases among 24,797 traffic
accidents (58%) under rainfall conditions according to the police accident report corresponded to
no-rain conditions in the data of the AWS nearest to the accident location. In the case of the interpolated
rainfall data from the distributed AWSs, the 9290 accident cases were also considered to cause traffic
accidents in no-rain conditions (Figure 3b). The radar rainfall data for 6249 cases of traffic accidents
represented the no-rain condition, which was lower than the cases of AWS observations. Most traffic
accidents under rainfall occurred at rainfall of 0.1–5 mm per hour, with the exception of when the
rainfall was observed as zero. The number of accidents is more strongly related to the range of rainfall
frequency, that is, higher frequent rainfall ranges contained a larger number of accidents. Figure 4
shows the same frequency analysis of accident-induced rainfall with only fatal and severe accidents of
9039 cases among 14,388 accidents; however, similar results were presented for all rainfall data sources.
The results indicated no differences in accident-inducing rainfall amounts based on the type of rainfall
data; however, a high possibility of the rainfall conditions on the road being mismatched according to
the type of rainfall data was confirmed. Therefore, as presented in the next sections, the difference
between the spatial distribution of rainfall and accidents according to the types of rainfall data must be
examined qualitatively based on the specific rainfall event and confirmed by quantitative indicators
such as RAR.
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3.3. Spatial Distribution of Rainfall and Accident Locations

To analyze the spatial correspondence between rainfall distribution and accident location, we
plotted data for localized rain events and stratiform rain events [24,25]. A localized rain event
is defined as when the area of the rainfall-field is less than 30% of the total area of Seoul. The
criterion was determined to be less than 30% by reflecting the heavy rainfall area of Seoul at the
time, defined as locally heavy rain in the report [26]. The total number of observed rainfall events
related to the 24,797 traffic accidents during rainy conditions was 8288, and localized rain accounted
for 2546 events, which corresponded to 30.7% of all rainfall events. The spatial scale of the localized
rain, such as the convective band, was set at 10 km based on the research report by the Meteorological
Administration, which noted that the convective region is formed while maintaining a width of 2–20 km
and a length of several hundred km in radar images. Figure 5 shows the locations of accidents (red
stars), and interpolated rainfall from AWS (left) and radar rainfall (right) for localized rain events.
Localized rainfall distributions were not observed by AWS and were estimated as non-rainfall in many
cases, resulting in considerable differences in rainfall intensity and spatial distribution of rainfall. In
particular, the rainfall of the line-shape was concentrated in southeastern Seoul on 27 July 2011 and
it is strongly suspected that this caused traffic accidents; AWSs could not measure the rainfall in the
region (Figure 5e,f) [27].

The distribution of interpolated AWS rainfall was far less consistent with accident locations than
that of radar-derived rainfall, which indicated that localized heavy rainfall likely affected accident
occurrence. A quantitative analysis of the spatiotemporal correlation between rain strength and
accident occurrence was performed by actively utilizing the spatial distribution information of the
radar-derived rainfall.

Figure 6 shows the images for stratiform rainfall events. In this study, a rainfall event was
classified as stratiform when the area of rainfall exceeded 50%. Compared with Figures 5 and 6, there
is a difference in rainfall amount based on the type of rainfall data, but the area covered by rainfall
is generally similar between interpolated AWS and radar-derived rainfall distribution with traffic
accident locations in the case of stratiform. However, in the case of very light rainfall intensity, as that
seen on 9 May 2007, the area observed by AWS did not cover the entire area of rainfall and regarded
the rainfall as local (Figure 6a,b). This occurred due to a measuring error of AWS because a 0.5 mm
tipping bucket is used which cannot measure light rainfall below 0.5 mm.

3.4. RAR Analysis

The RAR was estimated to quantitatively analyze the effects of rainfall data sources on the
relationship between rainfall and traffic accidents. RAR analysis was based on accident-causing
rainfall, without considering specific rainfall criteria or range. The wet and dry hours of Equation (1)
to calculate the RAR were estimated using the data one week before and after each accident during
the rainfall condition. The RAR was calculated for 467 administrative districts in Seoul using the
interpolated AWS and radar-derived data to produce an average RAR of 1.35 and 1.59, respectively
(Figure 7). Because the radar better captures the spatial distribution of rainfall, the number of traffic
accidents due to rainfall was counted more accurately. For fatal and severe accidents, the RAR was
1.49 using gauge (AWS) data and 1.63 using radar data (Figure 8).
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Figure 9 shows the mapping result of RAR for the administrative districts of Seoul. The RAR of all
accidents during rainy conditions differs according to the number of accidents and rainfall occurrence
patterns in each administrative district. In particular, there are many districts with a RAR of 6 or higher
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estimated according to radar data. Considering the recent increase in localized rainfall, the analysis
using radar rainfall should also be considered for future safety planning applications in Seoul.
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radar-derived rainfall (lower) for all accidents in rain conditions.

Because traffic accidents occur more frequently during rainfall below 5 mm, the spatial detection
of rain affects RAR calculations more than the quantity of rainfall. Therefore, the radar in the
two-dimensional grid is better able to detect rainfall spatially than the rain gauge, which measures
rainfall in a fixed location, thus increasing the reliability of RAR estimation

Figure 10 shows the mapping results of RAR with fatal and severe injury accidents for the
administrative districts of Seoul. The range of RAR values was widened to 8 for fatal and severe injury
accidents. It is expected that the district where the severity of traffic accidents increases due to rainfall
could be detected based on these results.
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4. Conclusions

In this study, the frequency and spatial distribution of rainfall and traffic accidents in Seoul, South
Korea, were analyzed using point data from AWS gauges, interpolated data from the same gauges,
and 250 m resolution gridded radar data.

The frequency analysis of the rainfall amount and the number of traffic accidents indicated little
difference in accident-inducing rainfall amounts based on the rainfall data sources. A large number of
accidents occurred in the lowest rainfall range, and this was more strongly related to the high frequency
of rainfall occurrence than the rainfall amount. This is because the lowest rainfall range might contain
a large number of accidents due to various factors.

The spatial distribution of traffic accidents and rainfall events was influenced by radar and gauge
rainfall data sources. The analysis results of the spatial distribution of rainfall and accident locations for
localized and stratiform rain events indicated that radar data was superior to gauge data for mapping
localized rainfall distribution and accident location. The RAR calculated from radar-derived rainfall
was about 18% higher than that from AWS rainfall, and the radar data more clearly classified the
number of traffic accidents during rainy conditions because its spatial distribution was more precise
for all accidents during rainy conditions. In addition, the RAR estimation with fatal and severe injury
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accidents during rainfall conditions provided information on the districts in which traffic accidents
increase due to rainfall.

A more effective method for analyzing traffic accident risk in rainfall conditions was demonstrated
in this study based on the superior spatial resolution of radar-derived rainfall, which is advantageous
for calculating the value of the RAR. However, it should be noted that more data should be used to
analyze the ranges of rainfall amount frequency with respect to the corresponding accident frequencies.
Furthermore, calculations such as Cohen’s Kappa coefficient should be adopted to quantify the
correspondence between the rainfall data sources. The approach of this study could be applied to the
development of risk-warning technology in poor weather for drivers, especially given the potential
increase in traffic accidents due to rising extreme weather phenomena, such as torrential rainfall due to
climate change. In addition, the results derived in this study could contribute to developing a method
for real-time prediction of the probability of traffic accidents using the higher spatial rainfall detection
and prediction capability of radar.
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