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Abstract: The study proposed a robotic calibration algorithm for improving the robot manipulator
position precision. At first, the kinematic parameters as well as the compliance parameters of the
robot can be identified together to improve its accuracy using the joint deflection model and the
conventional kinematic model calibration technique. Then, an artificial neural network is constructed
for further compensating the unmodeled errors. The invasive weed optimization is used to determine
the parameters of the neural network. To show the advantages of the suggested technique, an HH800
robot is employed for the experimental study of the proposed algorithm. The improved position
precision of the robot after the experiment firmly proves the practicability and positional precision of
the proposed method over the other algorithms in comparison.
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1. Introduction

Robot manipulators are widely used in industry to attain many duties such as welding, painting,
pick and place task, etc. The construction of robot manipulators is characterized using their kinematic
model parameters. However, experience has shown that industrial manipulators have much greater
repeatability than accuracy [1]. Therefore, the utility of robot manipulators would be significantly
enhanced if they were made to be as accurate as they are repeatable. In producing and assembly,
many errors arise that could not be taken into account by the nominal geometric model. For that
reason, there is a demand to create model-based robotic calibrations that depend on an error model that
symbolizes the connection between the errors of geometric parameters and the end effector positioning
errors. The kinematic calibration method has been widely researched by numerous studies [2–13] to
describe the proper geometric model. Denavit, Hartenberg et al. proposed one of the most fundamental
calibration methods that is widely used. The DH model is based on homogenous transformation
matrices. The model is a description of the kinematic relations between the links of a kinematic
chain connected by 1 degree-of-freedom lower pair joints [6–8]. There are also other methods such
as the zero-reference position model that is proposed by Gupta et al., which has been widely used
by many studies [9,14,15]. Another fundamental model-based calibration method is the complete
and parametrically continuous (CPC) model, which relies on the singularity-free line representation
by Zhuang et al. [10,11]. Park and Okamura [12] employed the product of exponentials (POE) error
model to robot calibration. This model has been adopted by several researchers [4,13]. There have
been some attempts to replace the least square estimation with the Kalman filter, particle filter, fuzzy
theory, etc. [16–18]. However, those attempts did not seem to be very effective.
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In addition, the kinematic errors are not the only source of robot manipulator errors.
Whitney et al. [19] used a PUMA 560 robot to determine that the most significant error sources
for the robot were several nongeometric errors. Judd and Kasinski [20] studied an AID-900 robot
and found that the geometric errors were responsible for approximately 95% of the measured error.
Jean et al. [21] and Becque [22] reported that flexibility in joints and in links is responsible for 8–10%
of the total position and orientation errors. Therefore, more recently, researchers have been devoted
to the identification of compliance errors as well as kinematic errors in industrial robots [5,20,23].
Jian Zhou and Hee-Jun Kang [5] proposed a method for simultaneously identifying the kinematic and
compliance parameter of the robot. The model-based calibration has been widely applied due to its
fast computing and knowledge of error sources [5,24,25]. However, the accuracy of the model-based
calibration method is dependent on the model accuracy. It is practically impossible to create a model
that contains all the sources committing to the end effector errors. Some error sources such as gear
backlash, temperature variation, and other errors are difficult to model correctly and completely.

To archive further accuracy, nongeometric calibration has been widely studied for compensating
for the sources of errors that could not be taken into account by geometric calibration [17,21,26–33].
The conventional back-propagation neural network (BPNN) [34] is widely adopted by researchers [35]
for compensating the unmodeled errors to increasing the precision of the robot. In robotic calibration
processing, BPNN is usually employed to construct the relationship between the end effector position
and the corresponding joint angle configuration [36–39]. However, the conventional BPNN has some
drawbacks such as getting stuck in local minima and slowing convergence [40]. To overcome these
drawbacks, some heuristic algorithms have been used for training the network [41–45]. One among
them is the Invasive Weed Optimization (IWO) algorithm.

In 2016, Mehrabian et al. presented the Invasive Weed Optimization (IWO) algorithm [46].
This method is motivated by the spreading of weeds to find a suitable place for expanding and breeding.
The technique is characterized by fast convergence for global optimization. Based on the properties of
IWO, this algorithm is employed for optimizing the parameters of a neural network to reduce its cons
such as a high dependence on input data. Furthermore, the IWO prevents the neural network from
falling to local minima.

This work proposed a new calibration method that includes the model-based calibration
technique and unmodeled calibration method. At first, the kinematic and compliance parameters
are simultaneously determined by a model-based calibration method [5]. Then, the method needs to
compensate for some unmodeled errors that cannot be ignored such as friction, mechanical transmission
error, and thermal expansion. A suggested neural network optimizing by IWO is used to compensate
the residual positional errors. It should be noted here that the proposed method is a combination of
model-based and artificial neural network (ANN) methods that used the IWO technique to determine
the weight and bias. Meanwhile, most of the ANN-based technique is applied after the kinematic
calibration. This calibration method simultaneously calibrates both the kinematic errors and joint
compliances. After the simultaneous calibration, the IWO-NN-based compensation is accomplished
for the unmodeled nongeometric errors. By using the IWO neural network, the proposed calibration
method seems to reach the global minima easily. Therefore, the IWO neural network can be said
to have better convergence capability than the traditional backpropagation NN. Finally, a HH800
robot is employed for the experimental study of the proposed algorithm to compare with four other
calibration methods, including the conventional kinematic calibration method (KM), as well as the
simultaneous identification of joint compliance and kinematic parameters method (SKCM), and the
combination of an NN compensator and SKCM method (NN-SKCM). The advantages of the method
have been shown: the enhanced position accuracy of the manipulator after the calibration confirms the
feasibility and greater positional accuracy over the other calibration methods. Additionally, the adopted
IWO neural network has better convergence capability than the back-propagation neural network
in this calibration process. This advantage makes the proposed method more feasible in real offline
programming environments.
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2. Kinematic Model of the HH800 Robot

The HH800 robot [36] model is given in Table 1 and Figure 1. The homogeneous transformation
matrix from the robot base frame to the end effector frame can be computed by:

0
ET = 0

1T(θ1)
1
2T(θ2)

2
3pT

(
θ3p

)3p
4 T(θ4)

4
5T(θ5)

5
6T(θ6)

6
ET. (1)

Table 1. Nominal D-H parameters of a Hyundai robot HH800.

D-H Parameters of the Main Open Chain

i αi−1 (deg) ai−1 (m) βi−1 (deg) bi−1 (m) di (deg) θi (deg)
1 0 0 0 0 0 θ1
2 90 0.515 - - 0 θ2
3 0 1.6 0 - 0 θ3
4 90 0.35 - - 1.9 θ4
5 −90 0 - - 0 θ5
6 90 0 - - 0.445 θ6
T - −0.45 - 0.11 0.930 -

D-H Parameters of the Main Open Chain

L5 (m) 0.8 L4 (m) 1.6 L3 (m) 0.8
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The homogenous transformation matrix from the robot 6th frame to the end effector frame:

6
ET = TrX(a6)TrY(b6)TrZ(d6). (2)

The passive joint position θ3p is formed from the joints θ2 and θ3 as follows [36,47]:

θ3p = θ3 − θ2 − 90 (3)

3. Simultaneous Joint Stiffness and Kinematic Parameters

In a robot static configuration, a robot joint torque causes a twist deformation about a rotation
shaft (that represents the entire drive train from the motor to the associated robot link). Therefore,
the shaft can be considered as a torsional spring in the compliance modeling. This study investigates
the characteristics of a torsion spring because they are related to modeling of rotational joint compliance.
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The characteristics of torsion springs are basically presented by non-linear functions: for example,
τ = k1 ∗∆θc + k2 ∗ (∆τc)

3, where τ is the spring torque, ∆θc is the spring rotational deformation, and k1

and k2 are the coefficients. When the robot joint deformation is small, the linear part becomes dominant.
Now, we can assume that the functional relationship between the joint torque and its deformation is
linear in this calibration process.

Assuming that the compliance of the robot links is small and can be neglected, therefore, the elastic
errors are mostly dependent on the compliance of joints under the link self-gravity and external
payload. Accepting that the robot joint deformations can be expressed by a linear function of the joints
torque, the deformation of the ith joint can be expressed by the effective torques τi:

∆θci =
τi
ki

= τici (4)

where ki is the joint stiffness value of the ith joint.
The Cartesian position errors due to small joint deflections can be modeled as:

∆Pc = Jθ∆θc = (Jθτ)C (5)

The compliance vector is denoted by C =
[

c1 c2 · · · cn
]T

. The deflection vector is

∆θc =
[

∆θc1 ∆θc2 · · · ∆θcn
]T

. At the equilibrium position, τ = diag(τ1, τ2, · · · , τn) is the
effective torque of robot joints. The real position vector of the robot end-effector can be expressed as:

Preal = Pkin + ∆Pkin + ∆Pc + ∆Pextra (6)

where Pkin is the end effector position that is calculated by the kinematic parameters. ∆Pkin, ∆Pc,
and ∆Pextra are the position errors due to the kinematic parameter errors, joint deflections, and the
residual errors due to the unmodeled sources, respectively. Jian Zhou and Hee-Jun Kang [5] presented
a method for simultaneous identifying the kinematic and compliance parameter of a robot:

∆X = ∆Pkin + ∆Pc

= J∆φ+ Jθ∆θc

= J∆φ+ JθCτ

=
[

J Jθτ
][ ∆φ

C

]
= JΦ∆Φ

(7)

where ∆X is a (3× 1) vector of three position errors of the robot end-effector. J is a (3×p) matrix
that relates the column vectors ∆X and ∆Pkin (p = 27 is the total number of kinematic parameters).
By using the least-square method, the kinematic and joint compliance parameter can be computed at
the same time.

4. IWO-NN Errors Compensator Technique

In Equation (6), the position errors ∆Pextra are still large after applying the algorithm of simultaneous
identification of joint compliance and kinematic parameters. This occurred because of some unmodeled
sources such as friction, thermal extension, mechanical transmitting errors, which are hardly considered
in geometric calibration. To decrease these unmodeled errors, a nongeometric compensator should be
carried out for compensating. In this study, an IWO-NN errors compensator is taken to eliminate the
residual positional errors. The method is fully described as follows.

First, the robot geometry error ∆φ and joint compliance parameter C are identified together
(Equation (7)) using the least squares method. The total positional error vector is denoted by ∆P (3× 1):

∆P = Pm − Pc = ∆Pkin + ∆Pc + ∆Pextra (8)
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where Pm, Pc indicate the positions of the end effector by measuring and computing. ∆Pkin, ∆Pc are
the kinematic error and compliance error that are calculated by applying the method in Ref. [5].
The residual position error after the modeled-based calibration process is ∆Pr. Here, the IWO-NN is
hired to compensate the residual error ∆Pr.

∆Pr = ∆P− ∆Pkin − ∆Pc (9)

The IWO-NN containing six inputs representing the joint configurations is θn = [θ1,θ2, · · · ,θ6].
There are five nodes in the hidden layer (Figure 2). The tag-sigmoid is selected as the activate function
for the hidden layer as follows [36]:

z = tansig(a) =
2

1 + e−2a . (10)
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Three outputs of the NN have the linear activation function. The outputs of the NN are used for
compensating the residual errors ∆Pr.

The error in the output layer is
e = ∆Pr − Pnn (11)

where Pnn is the output of the neural network.
The mean square error is calculated as follows:

E =
1
m

m∑
k=1

e2
k (12)

where m = 3 represents the three dimensions of the end-effector position. The IWO is a recently
proposed population-based heuristic optimization algorithm that mimics the spreading of weeds to
find a suitable place for expanding and breeding [46]. IWO has four main stages: (i) initialization,
(ii) reproduction, (iii) space distribution, and (iv) ranking and selection.

(i) Initialization: The population of solution is generated. The seeds are randomly distributed
over all the space problem. The number of seeds is chosen.

(ii) Reproduction: In this step, every seed reproduces the next generation. The number of every
seed’s heir depends on its fitness in the community. If the seed has a good fitness, it will produce more
seeds than another seed that has a worst fitness in the society.

(iii) Space Distribution: This is the progress by which the offspring are randomly spread over
all the searching space. The spreading process is made to distribute the offspring close to their
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parents’ location. Therefore, the seeds with lower fitness in the population are deleted over time.
The distribution function is described as below:

σiter =
(itermax − iter)n

(itermax)
n

(
σinitial − σ f inal

)
+ σ f inal (13)

where σiter is the standard deviation (SD) at the present step, itermax is the maximum number of
iterations before stopping the algorithm, σinitial is the initial value of the SD, σ f inal is the final value of
the SD, and n is the non-linear modulation index.

(iv) Ranking and Selection: When the maximum number of populations in the colony is hit, all the
seeds are evaluated, including new seeds and their producers. The unqualified fitness seeds will
be eliminated.

In this work, the IWO is introduced for optimizing the weights and biases of an NN. The optimizing
process is described by the flowchart in Figure 3.
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Assume that Xi = {xi1, xi2, · · · , xin} is the ith member that contains the weights and biases of
the NN. An initial population including 10 members is randomly spread over the searching space.
The maximum population size is 50. The minimum number of seeds is Smin = 0, and the maximum
number of seeds is Smax = 5. The variance reduction exponent is n = 2 (Equation (13)). The initial
value of the SD is σinitial = 0.05, while the final value of the SD is σ f inal = 0.0005. The dimension of
member Xi of the population is i = 53 according to the number of the weights and biases of the fully
connected NN, which has six inputs, three outputs, and five hidden nodes.
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The loss function is used for evaluating the fitness of member Xi of the population:

LFi = l1 ∗mean(Ei) + l2 ∗max(Ei). (14)

Here, Ei is the matrix of mean square errors (Equation (12)) of the ith set of NN respectively
to 50 inputs and outputs of the calibration data. l1 = 1; l2 = 0.7 are the weights that represent the
contribution of mean and max function in forming the cost function of each solution i.

By using Equation (14), the number of seeds for member Xi of the population can be calculated:

S = f loor(Smin + (Smax − Smin) ∗ ri) (15)

where f loor is the function that rounds to the nearest integer less than or equal to the input number. ri
is the ratio calculated by the following equation:

ri =
LFi −max(LF)

min(LF) −max(LF)
. (16)

The seed S j of member Xi can be calculated by

S j = Xi + σiter ∗K (17)

using σiter (Equation (15)). K is a matrix that has the same dimension as Xi. Every element of K is a
random number between 0 and 1. For speeding the process, the values of elements of S j are bounded.
The lower and upper bounds are −1.7 and 1.7, respectively.

After this process, all the seed S j of member Xi are merged into the population and considered
members of the population. If the number of members overcomes the maximum population size,
the worst members having the highest valued loss function are eliminated. Then, the processing is
repeated again until it reaches the maximum iteration or one of the members archives the desired loss
function value.

Figure 4 shows the flowchart of the proposed method.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 13 
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5. Experiment and Validation Results

An HH800 robot is employed to examine the proposed method to clarify the effectiveness and
practicability of it. The proposed method is examined in contrast with the other four methods to
show its advantages. To demonstrate the effectiveness of the proposed method (IWO-NN-SKCM) in
improving the robot position accuracy, four calibration methods are carried and compared in both
the calibration and validation process. The conventional kinematic calibration method (KM) [6],
as well as the simultaneous identification of joint compliance and kinematic parameters method
(SKCM) [5], and the combination of NN compensator and SKCM method (NN-SKCM) [36] are used in
this experiment calibration.

5.1. Experimental Calibration Results

In this experiment, a robot calibration system consists of a Hyundai HH800 robot (6 degree of
freedom (d.o.f)) that has one closed-loop actuating mechanism, a 3D point sensing device (API Laser
Tracker, measurement accuracy of 0.01 mm/m, repeatability of +/−0.006 mm/m), and an accompanying
laser reflector. The reflector is fixed at a particular location of the robot end-effector. The system is
arranged as shown in Figure 5.
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In order to acquire suitable measurement data for robot parameter identification and IWO-NN
training, the robot moves its end-effector to positions such that they entirely cover the workspace.
The three-dimensional coordinates of the end points are measured by the Laser Tracker and saved in a
computer. At the same time, the associated robot joint readings also are recorded.

These measurements are grouped as follows: A set of 40 robot configurations (Q1) is used
for parameter identification and collected over all the workspaces. By using the SKCM method,
the kinematic and joint compliance parameters are identified. These parameters are presented in
Tables 2 and 3, including four joint compliance parameters and 29 kinematic parameters. Another
set (Q2) of 50 robot configurations is also randomly selected to determine the weights and biases of
the neural network that has five hidden nodes, six inputs, and three outputs. The reason why we use
a different set (Q2) from the first set (Q1) is that the neural network compensator has more general
error compensation capability over the entire robot workspace. A set of 50 arbitrary endpoints (Q3) for
robot accuracy validation is collected over all the workspaces.
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Table 2. Stiffness identification.

K2 K3 K4 K5

Stiffness 6.159 × 107 4.388 × 106 3.151 × 106 2.220 × 106

Table 3. Identified D-H parameters of Hyundai robot HH800 (“-”: unavailable, “X”: unidentifiable).

D-H Parameters of the Main Open Chain

i αi−1 (deg) ai−1 (m) βi−1 (deg) bi−1 (m) di (deg) θI (deg)
1 0.8752 0.0003 0.006 0.0001 0.0976 0.3468
2 89.9412 0.5157 - - 0 (X) −0.8836
3 0.0133 1.5998 0.001 - −0.0014 −1.2385
4 90.1172 0.3545 - - 1.8862 3.3033
5 −90.038 0.0002 - - 4.087 × 10−5 2.5786
6 90.0371 0.0003 - - 0.445 (X) 0 (X)
T - −0.4511 - 0.0111 0.9279 -

D-H Parameters of the Main Open Chain

L5 (m) 0.7996 L4 (m) 1.601 L3 (m) 0.8 (X)

In this calibration progress, the HH800 robot is used to apply four different calibration algorithms.
Table 4 and Figure 6 demonstrate the results of these calibration methods. Figure 6 provides a visual
result of the absolute position errors of each calibration pose using four calibration methods, including
the conventional kinematic calibration method (KM), as well as the simultaneous identification of joint
compliance and kinematic parameters method (SKCM), and the combination of NN compensator and
SKCM method (NN-SKCM). It shows that the position errors generated by the proposed method are
the lowest and better converging in comparison with the other methods. By using the IWO-NN SKCM,
the mean of errors is reduced from 0.5961 to 0.3450 mm by as much as 42.12% compared to the KM
method. This mean of errors is also decreased as much as 31.52% in comparison to the SKCM method
(0.5038 mm). In comparison to the NN-SKCM method, the mean of errors result is declined 15.92%
(0.4103 mm). The IWO-NN is better than NN-SKCM in reducing the maximum of absolute position
errors (41.88%). The proposed method also generates the lowest maximum position error (0.6374 mm)
and standard deviation (0.1624 mm).

Table 4. Absolute position accuracy of the HH800 robot (calibration).

Mean (mm) Max. (mm) Std. (mm)

Before calibration 4.5969 6.6664 0.8408
KC 0.5961 1.5967 0.3299

SKC 0.5038 1.005 0.2346
NN-SKC 0.4103 1.0967 0.2814

IWO-NN-SKCM 0.3450 0.6374 0.1624

5.2. Experimental Validation Results

The validation process is examined to illustrate the general capability of the suggested calibration
technique over the entire robot workspace. In this progress, the set Q3 includes 50 robot configurations
of the manipulator that are not used in the calibration process, and it is taken to examine the four
different methods. The results of the validation process are demonstrated in Figure 7 and Table 5.
Figure 7 shows the residual error of 50 poses using four methods in the validation process. It is clear to
see from the figure that the proposed method is the best over both the positions used in the calibration
process and the general position in the overall workspace.
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By using the proposed method, the mean of errors is reduced from 0.5981 to 0.4662 mm by as
much as 22.07% better in comparison to the KM method. The mean of errors is also decreased by as
much as 26.72% in comparison to the SKCM method (0.5458 mm), and there is a 10.14% decline from
the mean of errors by using the NN-SKCM method (0.5187 mm). The proposed method also generates
the lowest maximum position error (0.6538 mm) and standard deviation (0.1333 mm).

5.3. Advantages of the IWO-NN Compensator

In this work, the robot configurations are divided into several datasets that are compensated by
the NN and the proposed IWO-NN. From this experimental application, the NN appear to be usually
fallen into the local minima, and a reinstalling of random weights and bias is required to reach the
global minima. On the other hand, the IWO-NN seems to archive the global minima quite efficiently.
For that reason, the proposed IWO-NN can be said to have better convergence capability. Moreover,
an accuracy consistency of experimental calibration (0.345 mm) and validation (0.4662 mm) confirms
the abilities of the suggested calibration method.

6. Conclusions

In this study, a new calibration method with an error compensating IWO neural network is
proposed for enhancing the robot positional accuracy of the industrial manipulators. By combining the
joint deflection model with the conventional kinematic model of a manipulator, the geometric errors and
joint deflection errors can be simultaneously considered to increase its positional accuracy. Then, a neural
network is designed to additionally compensate the unmodeled errors, such as friction, mechanical
transmission error, thermal expansion specially, and nongeometric errors. The teaching–learning-based
optimization (IWO) method is employed to optimize the weights and biases of the neural network.

Real experimental studies are carried out on the HH800 manipulator to show the efficiency of the
proposed method. The advantages of the method had been shown, such as the enhanced position
accuracy of the manipulator after the calibration confirms the feasibility and its greater positional
accuracy over the other calibration methods. Additionally, the adopted IWO neural network has better
convergence capability than the back-propagation neural network in this calibration process. From this
implementation experience, while the back-propagation neural network seems to be easily got into the
local minima and to need reiteration by randomly resetting the weights and biases to reach the global
minima, the IWO-NN seems to quite easily reach the global minima. This advantage allows that the
proposed method is more feasible in a real offline programming environment. However, a heuristic
optimization method is used to determine the weights and bias of the NN. Therefore, the proposed
method takes time for computing.

In the future, the work could be expanded by modeling the relationship of the joint deflections of
the robot and the effective torques as a polynomial function to increase the precision of modeling the
robot’s joints compliance.
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