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Abstract: In the time of climate change, as heat waves become a more regular occurrence, indoor thermal
comfort is an important factor in day to day life. Due to such circumstances, many researchers have
focused their studies on finding an effective solution that will not only enable thermal comfort, but also
increase satisfaction within the indoor environment and, as a result, productivity. The fast development of the
biometrical field encouraged the study focused on the investigation of how bio-markers, in combination with
artificial intelligence algorithms, can be collected within an experimental setting to create a new approach
for non-invasive thermal discomfort detection. The developed experimental design provides synergy
between automatic facial coding, pulse, and galvanic skin response measurements via iMotions software in
a controlled environment. The iMotions software has built-in machine vision algorithms, and with Shimmer
sensors and a post-processing tool through Affectiva AFFDEX, is able to collect facial action data through
detection of the facial muscle movements and various bio-markers. The Zero Emission Building (ZEB) Test
Cell laboratory was used as the control environment and transformed to imitate an office space for the data
collection campaign at NTNU in Trondheim. The given experimental design provides an opportunity to
create an immense database with bio-markers that are linked to the subcortical level of the brain, indoor
parameters, and direct feedback on the comfort level of occupants within an office-like environment. In total,
111 data collection sessions were registered with iMotions. The discomfort button was pressed 240 times
and 1080 planned indoor comfort evaluation surveys were held during experiment. The discomfort button
was pressed 49 times to indicate that participant felt discomfort due to low temperature and 52 due to high
temperature. Collected data revealed a big deviation in the discomfort temperature values for experiment
participants with respect to performed temperature ramps. While it is common to use the same predefined
temperature range for facility management, it became clear that the complexity of the task is greater and
should not be approached on a human computational level. Implementation of AI can potentially provide
higher value accuracy within thermal discomfort detection and enable unique personal user experience at
the workplace.

Keywords: thermal comfort; non-invasive discomfort detection; machine learning; indoor environment;
bio-sensing
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1. Introduction

The indoor environment (IE) has become the leading space where people spend their time. IE can
provide protection from outdoor conditions and prevent overheating or overcooling. Indoor Environmental
Quality (IEQ) is a general criterion for IE and has a direct link to occupant satisfaction with indoor
parameters (e.g., temperature, visibility, levels of background noise) [1]. A number of studies have proven
that there is a strong association between IEQ and the health + productivity of the building occupants [2–6].
Furthermore, effective IEQ may reduce energy consumption and prevent peak loads in the grid [7–10].

The following research is focused on development of the experimental design for the indoor thermal
comfort (ITC) measure of IEQ. According to ASHRAE Standard 55, thermal comfort (TC) can be defined as
a condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective
evaluation [11]. However, an occupants’ perception of the thermal environment differs since ITC is
determined by a number of personal parameters, which define heat interchange within a person and the
built indoor conditions [12]. Variables such as age, activity level, clothing insulation, humidity and other
influences have a direct influence on the TC of a person [12–14].

The ITC is usually evaluated by the following indices: Predicted Mean Vote (PMV) and Predicted
Percentage of Dissatisfied (PPD) [15]. The PMV model proposed by Fanger contains a seven point scale,
which is also attributed as the seven-point ASHRAE thermal sensation scale [15] (see Figure 1).

Figure 1. Graphical representation of the seven-point ASHRAE thermal sensation scale.

The PPD represents a quantitative measurement of the TC for a number of people within a defined
temperature zone [16]. Both scales were adopted by ASHRAE Standard 55, ISO 7730 and other international
standards [11,17].

With technological innovation and the development of new algorithms [18], non-invasive bio-sensing
approaches for characterisation of the personal TC have been investigated in a number of studies [19–25].
The majority of these studies used thermal cameras or regular cameras in combination with post-processing
algorithms to extract local body temperature data from the images/videos. The given temperature values
were combined with other indoor/outdoor parameters and the results from comfort surveys. In addition to
skin temperature data, a number of biometrical parameters were collected such as: Heart Rate, Body Mass
Index (BMI), Sweat Rate, Electroencephalogram (EEG), Electrocardiogram (ECG) and various other data
(see Figure 2).

All of the data collected was used in varying combinations as sets of predictors under the assumption
that they can potentially reveal the thermal state of a person. The k-Nearest Neighbor, Support
Vector Machine, Random Forest and many other supervised learning algorithms were implemented
to build non-invasive TC prediction models, whose target functions are to predict the state of a person’s
comfort/discomfort.
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Figure 2. A reference of collected biometrical data among processed studies [26].

A number of studies have presented limitations with respect to the volume of collected data points,
sufficient number of participants in the sample group and other issues associated with the creation of an
appropriate database. In addition, only a few articles discussed their approach with significant problems
like overfitting during implementation of the machine learning algorithms [19,27–31]. A combination of
the following factors had a major part in the prevention of the model’s deployment in real life. As it
was elaborated in Marchenko and Temeljotov-Salaj [26], there is a great opportunity to utilize a novel
equipment, in combination with artificial intelligence algorithms to develop non-invasive methods for
thermal discomfort detection. Literature review suggested that it can be potentially helpful to use the
connection between the thermoregulation of the body and its interaction with the subcortical level of the
brain (or otherwise known as the lower brain) [26]. The overall research was divided into two stages:
the thermal comfort study; the study of facial muscle movements for non-invasive thermal discomfort
detection via bio-sensing technology (see Figure 3).

Based on the aforementioned arguments, the given paper deals with Part I: Stage 2, and seeks to
answer the following question: How can biometrical data, in combination with artificial intelligence
algorithms, be collected within an experimental setting to design a new approach for non-invasive thermal
discomfort detection?
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Figure 3. General overview of the research framework.

2. Experimental Design Approach

Based on the outcomes from a literature review within the field [26], it was determined to focus
on the bio markers which are associated with the subcortical section of the brain. One of the common
visible indicators for the general emotional state of a person, is a facial expression [26]. The facial muscle
movements are controlled by the facial nerve, which is directly connected to the brainstem and motor
cortex [32–35]. Since the brainstem belongs to the subcortical part of the brain and it is responsible for
involuntary muscle movements, it can be inferred that involuntary muscle movements may also contain
information with respect to a person’s TC or point out the events of thermal discomfort.

The amygdala controls the release of stress-related hormones (such as cortisol, thyroid hormone and
corticotropin-releasing hormone) into the blood stream. The heart rate, skin conductance, respiration,
and other observable behaviours are also controlled by the amygdala’s functioning.

Facial expressions are generated by facial muscle movement. The facial nerve is connected to the
brainstem and motor cortex [36]. It also branches out to different muscles located on the face. Traditionally,
emotions are divided by two categories: voluntary and involuntary [37–39]. Since the brainstem is the
oldest part of the brain area—it is responsible for involuntary/unconscious facial expressions and the
motor cortex is specifically active in consciously controlled/intentional facial expressions.

In 1988, the facial feedback hypothesis was proposed by Fritz Strack [40–42] and his research team:

“The facial feedback hypothesis postulates that selective activation or inhibition of facial muscles has a
strong impact on the emotional response to the stimuli”

Based on this, people have a number of facial expressions which can be correlated with different
types of emotions [43–45]. Moreover, there is is an uncountable number of different facial expressions,
only the following categories of emotions may be tracked at current stage of development within field: joy,
anger, surprise, fear, contempt, sadness and disgust [46]. The given categories of emotions do not depend
on age, ethical background or other parameters [47,48].
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The facial expressions can be collected and processed [49–51] via Facial electromyography (fEMG),
The Facial Action Coding System (FACS) [47,52] and Automatic Facial Coding (AFC) [53–56]. After
all benefits and limitations were evaluated (see Table 1), the AFC method, which is based on artificial
intelligence algorithms was chosen for collection of the facial muscle movement data.

Table 1. Benefits and limitations of the methods for facial expressions processing.

Method Benefits Limitations

fEMG non-invasive method needs electrodes and other equipment

has no language dependency electrode placement may contribute to experiment subject
awareness regarding measurements being collected

doesn’t require cognitive effort sensitive to motions

able to measure even subtle facial
muscle activity

analysis is expensive because it can only be performed by
a specialist with biosensor processing skills

FACS very reliable requires high quality video resolution

non-intrusive requires a trained expert to perform score evaluation

contains a 5 step intensity rating expensive with respect to the time needed for expert
video processing

AFC reliable requires high quality video resolution

non-invasive requires acomputer vision specialist who is also familiar
with FACS

easy to use requires a number of pre- and
post-processing stages

The quantitative method was chosen based on the objectives of previous research, which provided
a foundation for the framework of facial muscle movements data collection in combination with other
biometrical parameters for potential non-invasive thermal discomfort detection at the workplace.

Experimental design for the given research should fulfill the following steps:

• Define the research problem and research questions
• Define the population of interest
• Describe the needs for sampling
• Design of the experiment

Since the main goal of experimental design is to make sure that data collected during the experiment
will answer predefined research question(s), it is important to define those questions in advance [57].

The next step of a successful experimental design is to define the population that fits the purpose
of the research. The sample from which data is going to be collected should, as much as possible, reflect
variability within the actual population [58].

The experimental design should be seen as a model, which consists of controlled, uncontrolled and
fixed variables. The given model should be developed in a way that best fits the research objective.
The anticipated result is to create a layout of the design, which will reflect all important structural
components and the envisioned data analysis.It should also contain the following sections: definition of
the experimental unit, variable types and design structure. The experimental unit, or as it is also called
a sampling unit, is the smallest unit of the analysis for which data is going to be collected within an
experiment. The data collection campaign should consider and clearly define the main four variable
types: background, constant, uncontrollable and primary. Background variables are those which can
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be measured, yet can not be controlled. As opposed to constant variables, which can be controlled and
measured. These variables are going to be held constant throughout the data collection campaign due to
reasons predefined by the scope of the study. Primary variables are independent variables which are a
possible source of variation—they are controlled by the research.

The data collection equipment should be placed in the most efficient locations and should not be
moved throughout the duration of data collection. Equipment should be configured to the predefined
manufacturer settings as most appropriate.

The treatment structure should account for a number of factors that will be studied and the
conclusion(s) that will be performed. In the majority of cases, the experimental design needs experimental
units to be divided into treatments either randomly or randomly with constraints.

Data collection should strictly follow a defined protocol. The created data collection protocol should
be detailed, structured and easy to follow since the researcher(s) will usually be collecting data with
laboratory workers and in scheduled shifts. So, it is essential to check that data is consistently collected
and not reshaped.

The last section of the experimental protocol should contain a list of assumptions and limitations
within the study. Each possible source of error should be discussed and evaluated.

3. Methodology

The given research is focused on designing the proper experiment for utilization of biometrical data
in combination with artificial intelligence, in order to provide a new approach for non-invasive thermal
discomfort detection at the workplace.

The study was performed at The Norwegian University of Science and Technology (NTNU). Due to
the need of bio metrical data collection, a notification form/request was submitted to the Norwegian
Center for Research Data (NSD). Each NSD application should contain information about what type of
data will be collected and how it will be saved. It is important to be conscientious about the collection of
personal data. It should be stored safely and encrypted in order to prevent links to the internet or access by
third parties, which might make it public. Each type of personal data should be discussed and the need for
collection should be proved. The research team applied to NSD when the final version of the experimental
design was completed. The ethical committee evaluated application within a few weeks and approved it.
The trial data collection sessions started in September 2019.

Several sensing modalities, including the automatic facial expression detection, pulse monitoring,
and galvanic skin response, were introduced and included in this experiment. The collected database is
going to be preprocessed for better understanding of its variance, elimination of the missing data and bugs
which can bring bias into the future data processing. In order to see whether there are clear patterns in
facial muscle movements with respect to temperature profile, unsupervised learning cauterization will
be performed. Based on the cauterization results, the collected biomarkers will be synergistically used
to monitor the subject’s thermal discomfort by creating a feature vector. Afterwards, each feature vector
is going to be paired with a recorded outcome (e.g., moment of discomfort). As result, sorted database
will be perfect for any algorithm which trains on supervised learning principle. General framework of the
initial data flow and data types presented at Figure 4.
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Figure 4. The overview of data collection flow for pre-processing.

3.1. Sampling Strategy

To define an appropriate dimension for the sample, it was decided to refer to the statistics accumulated
from a Systematic Literature Review [26] within the field (see Table 2). The average number of participants
per study was 14. Even though women are assumed to express facial actions more often than men [59],
the study performed by McDuff et al. [60] showed that general expressiveness is predefined by emotional
status of the person. Due to described conditions, it was agreed to not differentiate gender of participants
and in general to make sure that there is not less than 14 participants involved in the study.

Participation in the test cell experiment was voluntary. Posters with an invitation to attend the
experiment for a minimum of 1 session and a maximum 8 sessions were disseminated across the University
campus. Scheduling was also flexible. Each participant could agree to a suitable time to fit into their
schedule. In general, the main concern was that participants should not be scheduled more than 2 times in
a row to avoid generic answers.

Table 2. Overview of the amount of people involved in each processed study and their age.

Reference: Publication Type Year Number of People Age

Cheng et al. [19] Journal article 2019 16 20–29
Ueda et al. [61] Journal article 1997 62 22–36
Cheng et al. [62] Journal article 2017 16 20–29
Ueda et al. [63] Journal article 1997 11 29–41
Matalucci et al. [64] Journal article 2017 12 18–36
Chaudhuri et al. [27] Conference Paper 2018 20 21–25
Bermejo et al. [65] Journal article 2012 3 NaN
Lee et al. [66] Journal article 1998 13 NaN
Lopez et al. [20] Conference Paper 2018 1 NaN
Lopez et al. [67] Conference Paper 2016 5 20–29
Zhai et al. [68] Conference Paper 2017 20 21–26
Vesely and Zeiler [24] Conference Paper 2014 6 NaN
Li et al. [23] Journal article 2019 10 NaN
Ghahramani et al. [69] Journal article 2016 15 NaN
Salamone et al. [70] Journal article 2018 8 33–61
Cosma and Simha [28] Journal article 2019 24 NaN
Katić et al. [29] Journal article 2018 2 29
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Table 2. Cont.

Reference: Publication Type Year Number of People Age

Li et al. [30] Journal article 2018 12 22–27
Chaudhuri et al. [71] Journal article 2018 20 21–25
Pavlin et al. [72] Journal article 2017 10 27–28
Yang et al. [73] Conference Paper 2019 22 23–26
Choi and Yeom [74] Journal article 2017 15 30–39
Barrios and Kleiminger [75] Conference Paper 2017 7 23–30
Cosma and Simha [76] Journal article 2018 30 20–42
Lu et al. [31] Journal article 2019 2 NaN
Ghahramani et al. [77] Journal article 2018 10 NaN
Burzo et al. [78] Conference Paper 2014 14 22–35

3.2. Experiment Location and Facility

In order to recreate an office-like environment, the experiment was conducted at SINTEF (SINTEF is
one of Europe’s largest independent research organisations, which has developed solutions and innovation
for society and customers all over the world. For more information please follow the link: https://www.
sintef.no/en/this-is-sintef/)

and NTNU’s Zero Emission Building (ZEB) Test Cell Laboratory on the Gløshaugen campus in
Trondheim [79]. This is a PASSYS instrumented test cell that is comprised of two thermal chambers
(Chamber A and Chamber B) inserted in the same guard room, which have one wall hosting a non-operable
window exposed to the outdoor climate. Both chambers have internal dimensions of approximately
4.36 m × 2.50 m × 3.39 m [width × depth × height]. The interior of the test cell is furnished with typical
office furniture: desk, a chair, a mouse and a large PC monitor, which served as the main work screen for
participants. For our experiment a Chamber B was used (see Figure 5).

The detailed overview of the materials used to construct ZEB laboratory and their specifications are
presented in work of Cattarin et al. [79]

Figure 5. The test cell dimensions (mm) and layout.

https://www.sintef.no/en/this-is-sintef/
https://www.sintef.no/en/this-is-sintef/
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4. Results

Based on the literature review in the field and chosen methodology, the following experimental design
is developed as a model which contains controlled, uncontrolled, fixed and blocked variables. Detailed
specification of the variables are described in the following steps:

1. Step: preparation

One subject is located in the test cell with thermally comfortable conditions for 1 h. Meanwhile
instruments are going to be assembled on body parts. Administration of the Preassessment thermal
comfort questionnaire. Data collection on:

• Comfort assessment questionnaire; CLO; Fat percentage % Height [m]; Weight [kg]; Age;
Gender; Amount of time spent in Norway

Instruction of the experiment subjects and signing of the consent form.
2. Step: experiment

• Air velocity (fixed variable); Relative humidity (no control); Black globe temperature [deg.C]
(variable); Air temperature (degrees C) (variable); Galvanic skin response (variable); Hart rate
(variable); Facial Expressions (variable); Event of discomfort

3. Blocked variables:

• CLO; Position of the desk

4.1. Facial Mapping and Bio-Sensing Equipment

The iMotions software was chosen to facilitate the AFC method for facial muscle movement data
collection. It is a facial muscle movement tracking software (see Figure 6) that is able to recognize different
emotions of a person by collecting data on each involuntary facial expression.

Figure 6. The iMotions data collection flow and processing.

To get more precise data from the iMotions software we used high-definition camera Logitech C925e
Webcam (Height × Width × Depth: 1.2 in (29 mm) × 5.0 in (126 mm) × 1.3 in (32 mm)) for accurate
processing of the input video. The camera is placed on 60 cm distance to participant’s face. The face
and position detection is performed via face detection algorithms (such as SIFinder (SIF) or University of
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Surrey (UniS) and others [80–82]) when image/video of the person is acquired (see Figure 7). After the
face is detected and allocated into the so-called “box”, the feature extraction algorithm performs marking
of the facial landmarks (e.g., nose, corners of the eyes and mouth etc.) and classifies them. Afterwards,
all facial landmarks are fed into classification algorithms as inputs which decode features into Action Code
units. The overview of the graph with decoded features is presented at Appendix A: Figure A2.

Figure 7. The iMotions software interface (see Appendix A for bigger resolution).

While main parameters of the Shimmer (level of the charge, intensity of signal and other) are presented
on the left side of software interface, the live data flow from the sensors is presented in form of the graphs
on the right side.

The Affectiva AFFDEX is a part of iMotions’ software and is used for post-processing of the collected
data (see Figure 8). The given program is able to detect 7 basic emotions including: valence, engagement,
attention, joy, surprise, fear and anger [83,84]. The Affectiva has 14 facial expression metrics and is able to
detect head orientation, which contributes to detection of yaw, pitch, roll and others.

Another biometrical piece of equipment is the Consensys GSR Kit, which contains an Optical Pulse
Sensor Ear Clip (earlobe), two GSR Finger Electrodes, two Biophysical Leads, one Optical Pulse Sensor
(finger), a Wrist Strap and the Shimmer3 GSR (see Figure 9).

The main function of the GSR unit is to measure galvanic skin response, which is also known as
electro-dermal resistance or skin resistance, between two reusable electrodes attached to the fingers of one
hand. Another electrode, which is also connected to the Shimmer device, is an optical pulse sensor that
can be placed on the finger or earlobe. It is preferred that any person who participates in the experiment,
uses slow hand movements in order to prevent sensors from moving and creating outliers in the data set.
An example of sensor placing can be observed in Figure 10.
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Figure 8. The AFFDEX post-processing graph of the detected emotions.

Figure 9. The GSR and optical pulse signal.
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Figure 10. Consensys GSR Kit overview and placement.

4.2. Monitoring of IE Parameters

The Test Cell control and monitoring system is a custom made Real Time LabVIEW application,
using cRIO technology from NI. It allows for monitoring of about 500 parameters, such as temperatures,
CO2 level, indoor lighting, outdoor weather and much more. Data can be seen in real time on the computer
screens in the experiment control room. Data, both measured values, set points and derived values is
stored in a database, as well as stored locally.

The air temperature inside test cell was measured by three Pt 100 sensors, which were placed on
adjustable tripod. Given sensors can measure temperature on different levels for better monitoring of
the temperature next to the experiment participant (see Figure 11 ). Pt 100 has measurement range from
−5 ◦C to 60 ◦C and accuracy from −0.3 ◦C to +0.3 ◦C. The globe sensor was placed in the center of test cell
to measure operative temperature. Given sensor is also Pt 100 and has same accuracy range as sensors
placed on tripod.

By the sensors which were installed at the wall we measured relative humidity, air temperature and
CO2 (Figure 12). The indoor relative humidity was measured with range from 0% to 100% and accuracy
from −5% to 5%. Temperature measured with range from 0 ◦C to 50 ◦C and accuracy from −8 ◦C to +8 ◦C.
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Figure 11. The temperature sensors placement overview next to the experiment participant.

Figure 12. Sensor for temperature / humidity and CO2.

4.3. Equipment Installation and Utilization during the Experiment

All communication with the participant in the test cell was performed via Skype messenger using
a PC which was located in the right corner of the worktable. Participants had an open Skype window
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with chat options, so they could communicate in case they had any questions or they needed to have a
toilet break. The same computer was used to present the participant with surveys, and featured a red
button that the participant could click to stop the experiment due to discomfort. Reports from surveys
were stored in an organized structure with timestamps and ID numbers.

The experiment control room is situated next to the guard room of the ZEB Test Cell laboratory (see
Figure 13). It is equipped with a main computer, used for controlling and monitoring the guard room and
both cells. Data from both cells can be monitored from here, and historic data can be accessed using the
database. An additional PC was installed to operate the other data collection software such as Shimmer
and iMotions.

Figure 13. The experiment control room.

Visualising data from the cell in real time proved important for the operator of the experiment,
for better control of ramp parameters. A researchers view of the data was developed to facilitate this.
A screenshot of this can be seen in Figure 14.

In total, 4 heating and 4 cooling ramps were created. Each ramp has its steady rate of increase or
decrease in temperature per hour:

• heating 1.4 ramp = +1.4 ◦C per hour
• heating 2.2 ramp = +2.2 ◦C per hour
• heating 3.4 ramp = +3.4 ◦C per hour
• heating 4.4 ramp = +4.4 ◦C per hour

• cooling 1.4 ramp = −1.4 ◦C per hour
• cooling 2.2 ramp = −2.2 ◦C per hour
• cooling 3.4 ramp = −3.4 ◦C per hour
• cooling 4.4 ramp = −4.4 ◦C per hour
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Figure 14. Real time monitoring of ramp control.

4.4. Temperature Ramps Implemented during Experiment

Operation of temperature ramps were implemented on the main computer using LabVIEW. In total,
4 heating and 4 cooling ramps were developed and randomly distributed within each experiment [11].
Normally, the temperature in the cell is regulated to reach a certain temperature, and maintain it. For this
experiment a new approach was developed, where the derivative of the cell temperature was kept constant,
giving us a steady rate of change (increasing or decreasing). This worked well for heating, but was more
challenging when cooling. Cooling in the cell is done using a heat exchanger in the ventilation ducts, which
gets cold water from a heat pump. The heat pump would not deliver a constant rate of cold water, making
the regulating difficult. Since outside weather and temperature also varied throughout the experiment
period, manual adjustments to ramp parameters were necessary to ensure the most ideal linear ramp.

A graph of the temperature ramp was saved for each experiment,and some samples are presented in
Figures 15 and 16.
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Figure 15. The samples of implemented heating ramps.

Figure 16. The samples of implemented cooling ramps.
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4.5. Comfort Evaluation and Survey Structures

In total, 4 hard-copy surveys were developed for the given experiment: Survey1 was used to collect
data on age, gender, height, weight of the person and the duration of time spent in Norway; Survey2
focused on collection of the CLO value and other parameters of indoor comfort (e.g., temperature,
air humidity and other); Survey3 contained questions regarding sources of the discomfort and possibility
to decrease it; and Survey4 contained questions designed to sum-up the total satisfaction experienced with
the environment. Study participants were asked to answer these surveys during experiment participation.

Survey3, was generated every time the discomfort button was pressed. It contains sections dedicated
to each aspect of the office environment. Each section contained 3 types of scale: (1) Thermal sensation, (2)
Thermal Preference and (3) Thermal acceptability (see Figure 17). The participants were asked to mark
the scale under each question with a pencil . This approach enabled all answers to be transformed into a
numeric variable instead of categorical, if needed [85].

Figure 17. Example of Survey3.

4.6. Action Protocol

An action protocol was developed in order to synchronize steps of the experiment and define what is
not allowed to do in the test cell (see Table 3).
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Table 3. Action protocol.

Time Procedure Comments

8:30

Participants are expected to arrive. They are invited to the
acclimatization area, asked to take off non-needed clothes

i.e., jacket (it will be saved in special space
during experiment).

Participants should not adjust their
clothes during the experiment.

8:35

Instructions will be provided to participants. Afterwards
they need to sign a consent form. IMPORTANT:

Participants should NOT take part in the experiment if
they do not agree to sign the consent form.

8:55

Survey is handed out to experiment participants.
They have 5 min to fill in answers. In case they do not fill

in all of the questions—they can take the survey to the
experiment room and finalize it there. Afterwards,

the survey should be placed on the corner of the desk.

9:00

Start of the experiment. Participant asked to get inside test
room and start to work on his/her regular tasks. During

given period it is not allowed to change clothes,
open windows or walk around the room. Participant
should be allocated within given experiment space.

Participants should use adjustment
(discomfort) BUTTON which is

situated at their tables to indicate
event of discomfort.

12:30

Lunch brake. Opportunity to drink coffee will be
provided. Participant can leave test space for 1 hour.

During this time, window in the room will be opened to
provide fresh air, completed questionnaires will be

collected. It is forbidden to perform sport activities or do
any other actions which increase heart rate (e.g., running,

jumping or smoking).

During this period, a new study
should be generated with unique ID
since some participants would stay
for only half of the day and a new

person would arrive for
the afternoon.

13:30

Lunch brake is over. Opportunity to take one cup of coffee
with you and return to the test cell. It is important that

person’s don’t forget to visit the WC before the
experiment starts to avoid interruptions.

Participants should use the
adjustment (discomfort) BUTTON
which is located at their tables to
indicate an event of discomfort.

16:30

The end of the experiment, opportunity to drink more
coffee, finalize surveys and agree on the schedule for the

next meeting. Person should not lose code which was
assigned to the participant at the beginning of

the experiment

All collected data within a given
day of experiment should be

collected on the hard drive and
backup files should be generated.

4.7. The Overview of Collected Data

During September 2019–January 2020, 38 participants took part in the experiment, among which
29 were female and 9 male participants. The majority of participants have been living in Norway more
than 5 years (see Figure 18). All participants were either students or exchange students, professors or
researchers at NTNU.
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Figure 18. Time participants lived in Norway.

The following age groups were represented:

• 20–30 years old—27 participants
• 30–40 years old—8 participants
• 40–50 years old—2 participants
• 60–70 years old—1 participant

In total, 111 data collection sessions were registered with iMotions. The discomfort button was
pressed 240 times and 1080 planned indoor comfort evaluation surveys were held during experiment.
In Survey1, the experiment participants were asked to rank the three physical features that in their opinion
are the most important in making a workplace a pleasant one. The survey results revealed that TC and air
characteristics are in the first place for a pleasant workplace environment for the majority of experiment
participants (see Table 4).

Table 4. Rank of the three physical features which are the most important for pleasant workspace.

Physical Feature 1st Place 2nd Place 3rd Place

ViewFromTheWindows 2 0 0
AcousticComfort 6 11 6

OfficeLayout 1 1 2
VisualComfort 4 4 5

AirQuality 14 7 7
Cleanliness 2 1 4

ThermalComfort 15 10 5
Privacy 3 1 5

The discomfort button was pressed 49 times to indicate that the participant felt discomfort due to low
temperature and 52 due to high temperature (see Figure 19). Collected data revealed a big deviation in the
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discomfort temperature values for experiment participants with respect to performed temperature ramps.
While it is common to use the same predefined temperature range for facility management, it became clear
that the complexity of the task is greater and should not be approached on a human computational level.
Implementation of AI can potentially provide higher value accuracy within thermal discomfort detection
and enable unique personal user experience at the workplace.
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heating 3.4
heating 4.4

Figure 19. The frequencies of pressing the button.

5. Discussion

Indoor thermal comfort is a complex parameter which consists of different physiological,
psychological and functional aspects. Until now, researchers have tried to develop various strategies to
ensure that the indoor environment is comfortable and, as such increase the satisfaction and productivity
of occupants [2–4]. Among those strategies, which are mainly based on direct user survey feedback,
non-invasive TC detection by implementation of the bio-sensing technology provides a solution from a
different angle. Several studies investigated various sets of biological parameters in combination with usual
indoor/outdoor parameters as well as system parameters [19,20,22]. The skin temperature has shown
to be the most frequent criterion for thermal comfort prediction. Some studies directly extracted images
with a thermal camera and others collected regular photos/videos with post-processing afterward [28,86].
While other studies were using face mapping and temperature extraction from the defined regions via
temperature sensors [61,69].

In general, the main assumption behind the data accumulation from images of the skin surface, heart
bit, systolic + diastolic pressure and other biological data is that the our body is expected to to balance
conditions via set of biological features defined by nature in order to be in comfort. So, it should be possible
to track biological changes within the body that occur before the actual event of thermal discomfort. Due to
the fast development of novel technology in the field of biometrical data collection, it is feasible to conclude
that a more structured approach should be applied for the bio-markers selection. Moreover, a constructive
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background must be provided with respect to why certain biometrical variables were chosen. Only few
studies discussed points of validity for chosen biometrical parameters [30,69].

A thorough literature review of the field found that no one has used facial muscle movement data
as a feature for evaluation of TC. The given experimental design is a novel approach to resolve the
long-standing concern of indoor thermal discomfort events, and enables further investigation into the
application of such novel technology for real-life solutions [26].

Studies that applied iMotions before were mostly focused on the monitoring and evaluation of user’s
feedback, interaction, level of attention or consumer preference in marketing purposes [87–91]. While
given frameworks are convenient since the Affectiva AFFDEX post processing algorithm provides results
which can be directly used for the next stages of the study evaluation, we have a bigger ambition for
iMotions use. The presented experimental design provides abnormal framework for iMotions software
and hardware modules, which involves post processing of the extracted data before it’s directly used with
machine learning algorithms or other type of processing.

6. Conclusions

The experimental design, which was developed in the framework of PhD research, suggests how novel
technologies may be implemented in the field of thermal discomfort detection. Tracking of the involuntary
facial muscle movements within a built environment is a big step forward since such biometrical data has a
direct link to the subcortical level of the brain, which is also responsible for thermal regulation of the body.
By synthesizing bio-markers, it is possible to create a more logically structured database. A generated
database is used for the implementation of the artificial intelligence and machine learning algorithms in
the final stage of non-invasive thermal discomfort detection.

The article presents a developed framework on how facial muscle movement data can be extracted via
iMotions software, which is a synergy between FACS and AFC with its built-in machine vision algorithms
and post processing tool Affectiva AFFDEX. It also provides an approach for synchronised real time
biometrical data collection via Shimmer equipment that directly interacts with iMotions software during
the data collection process.

The software enables synchronization of the data from Shimmer device and actual facial expressions.
While iMotion synchronization feature is useful and provides a nicely organized file for each session,
it doesn’t allow the direct inclusion of temperature data from other sensors. Due to the given circumstances,
the time step for a number of variables needs to be readjusted at a post-processing step in order to create
the proper feature vector afterword.

With development of the technology, it is foreseen to use Electromyography and many other features
in future data collection campaigns. The given hardware will allow tracking of brain wave activity and to
determine which parts of the brain are active during indoor temperature changes and at the moment of
discomfort.

The experiment has shown there is a general curiosity with the development of the thermal comfort
field and a desire to actively participate in data collection campaigns. While the issue of concern was
that people would not feel comfortable with facial muscle movement data collection, since they would
need to be continuously monitored via camera. It turned out, that in the world of smartphones that use
facial scanning to unlock, people have become accustomed to this technology since we provide our facial
biometrical data many times a day. The given insight suggests that a majority of people will not feel
discomfort if a new non-invasive thermal discomfort detection model were deployed in the workplace
environment.
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Appendix A

Figure A1. The iMotions software interface.
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Figure A2. The iMotions facial feature coding overview.
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