
applied
sciences

Article

Generating Optimized Guessing Candidates toward
Better Password Cracking from Multi-Dictionaries
Using Relativistic GAN

Sungyup Nam , Seungho Jeon and Jongsub Moon *

Graduate School of Information Security, Korea University, Seoul 02841, Korea; synam@korea.ac.kr (S.N.);
ohgnu90@korea.ac.kr (S.J.)
* Correspondence: jsmoon@korea.ac.kr

Received: 8 September 2020; Accepted: 13 October 2020; Published: 19 October 2020
����������
�������

Abstract: Despite their well-known weaknesses, passwords are still the de-facto authentication
method for most online systems. Due to its importance, password cracking has been vibrantly
researched both for offensive and defensive purposes. Hashcat and John the Ripper are the most
popular cracking tools, allowing users to crack millions of passwords in a short time. However,
their rule-based cracking has an explicit limitation of depending on password-cracking experts to
come up with creative rules. To overcome this limitation, a recent trend has been to apply machine
learning techniques to research on password cracking. For instance, state-of-the-art password
guessing studies such as PassGAN and rPassGAN adopted a Generative Adversarial Network
(GAN) and used it to generate high-quality password guesses without knowledge of password
structures. However, compared with the probabilistic context-free grammar (PCFG), rPassGAN
shows inferior password cracking performance in some cases. It was also observed that each password
cracker has its own cracking space that does not overlap with other models. This observation led
us to realize that an optimized candidate dictionary can be made by combining the password
candidates generated by multiple password generation models. In this paper, we suggest a deep
learning-based approach called REDPACK that addresses the weakness of the cutting-edge cracking
tools based on GAN. To this end, REDPACK combines multiple password candidate generator
models in an effective way. Our approach uses the discriminator of rPassGAN as the password
selector. Then, by collecting passwords selectively, our model achieves a more realistic password
candidate dictionary. Also, REDPACK improves password cracking performance by incorporating
both the generator and the discriminator of GAN. We evaluated our system on various datasets
with password candidates composed of symbols, digits, upper and lowercase letters. The results
clearly show that our approach outperforms all existing approaches, including rule-based Hashcat,
GAN-based PassGAN, and probability-based PCFG. The proposed model was also able to reduce the
number of password candidates by up to 65%, with only 20% cracking performance loss compared to
the union set of passwords cracked by multiple-generation models.

Keywords: password cracking; relativistic discriminator; rPassGAN

1. Introduction

The password is the de-facto authentication method. It is popular due to its simplicity to
implement and easiness to use. Password authentication ultimately depends on human memory.
Thus, as revealed by the leaked passwords of websites, such as Rockyou, people tend to generate
easy-to-remember passwords, primarily composed of common English words or names [1–3].
Password cracking utilities provide many functions for attacking weak passwords when password

Appl. Sci. 2020, 10, 7306; doi:10.3390/app10207306 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9741-0561
https://orcid.org/0000-0002-7116-6062
https://orcid.org/0000-0002-6457-4316
http://www.mdpi.com/2076-3417/10/20/7306?type=check_update&version=1
http://dx.doi.org/10.3390/app10207306
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 7306 2 of 19

hashes are available. Cracking software’s effectiveness depends on being able to hash a large number
of password candidates and compare the hashed value with target hashes. Notably, a heterogeneous
computing system using multiple GPUs and GPU libraries (CUDA, OpenCL) accelerates the hash
computing speed. To maximize password cracking effectiveness, instead of trying all the possible
character combinations (exhaustive attack or brute-force attack), password cracking tools use words
that users are likely to generate, as can be inferred from cracked hashes dictionaries and plaintext
password leaks, as candidate passwords. Such an attacking method is referred to as the dictionary
attack. The most commonly used open-sourced password cracking software, such as John the
Ripper (JtR) [4] and Hashcat [5], have more advanced options because they supply heuristics
character changing grammars, which include addition and deletion of characters, letter transposition,
combination of multiple words, mixing of letter case, and leetspeak, for password transformations
(e.g., p@ssw0rd). All 31 transformation grammars are defined [6]. These heuristics are stored in several
files called rule files. The rule files enable JtR and Hashcat to generate several password candidates
that people are highly likely to use in the real world.

Although these rule-based heuristic approaches are successful to an extent in practice, they are
based on experts’ intuitions on how people build their passwords; further, these methods are not based
on a systematical analysis of a large number of passwords. Therefore, each technique covers only a
limited area of the total password space because it is based on the expert’s personal experience and
intuition. Further, creating new rules requires specialized expertise; as such, the new rules’ quality
and their cracking effectiveness depend on the specialist. It is also necessary to manually update these
heuristics whenever new password patterns appear. Therefore, these rule-based approaches are not
scalable. Furthermore, to crack high-complexity passwords, password cracking methods must first
overcome the inherent weakness in rule-based attacks.

Advanced password cracking technology is useful from a security perspective. A state-of-the-art
password strength estimator like Zxcvbn [7] has used a password cracking module to evaluate
passwords that users input and warn them of easily guessed passwords. This password cracking
module prevents a user from creating an easy password to crack. As password cracking tools’
performance is getting better, the quality of the password that users need to create becomes higher.
Additionally, from an offensive perspective, advanced password cracking methods can be utilized
in various ways. On an individual level, people sometimes forgot their passwords. At that time,
people need to crack their own passwords. On a societal level, law enforcement agencies need to crack
passwords to gather evidence that criminals have encrypted [8].

1.1. Our Previous Approach: Recurrent PassGAN

In our previous paper, we proposed some ways to improve PassGAN [9], which is a deep
learning-based password cracking model that is designed to make up for the limited password cracking
space of both rule-based approaches and data-driven probabilistic models, such as Markov models
e.g., the Ordered Markov ENumerator (OMEN) [2]. The PassGAN, proposed by Hitaj et al. [9], trained
deep neural networks to determine the letter distribution of passwords autonomously. Next, PassGAN
applied this learned knowledge to generate password candidates that followed the distribution of
real passwords. Basically, PassGAN exploits two properties of deep learning. First, deep neural
networks are sufficiently expressive to sketch the various letter patterns and context structures used
in most user-chosen passwords. Furthermore, they can be trained from data only, unlike legacy
machine learning. Therefore, a deep learning model does not require any prior knowledge (we usually
refer to this knowledge as a feature) of the passwords’ properties and structures. However, a deep
learning model can learn features only from the training data. These properties distinguish deep neural
networks from other contemporary methods such as Markov and rule-based models. In the case of
Markov models, such as OMEN [2], it is assumed that all the relevant characteristics of passwords can
be expressed in terms of the n-gram.

Appl. Sci. 2020, 10, 7306 3 of 19

However, only password candidates derived from the available rules, which reflect the expert’s
knowledge and experience, can be guessed for using the rule-based approaches. Hitaj et al.
used a GAN [10] as a deep learning model for password guessing [9]. Among the various GAN models,
the Wasserstein GAN-gradient penalty (WGAN-GP) [11] model was used in PassGAN. The base deep
neural network of the WGAN-GP was a Convolutional Neural Network (CNN)-based residual network.
The Recurrent PassGAN (rPassGAN), which was developed in our previous approach, improved the
password cracking performance by modifying PassGAN’s base neural network type and structure.
Our previous study proved that the password cracking performance of rPassGAN [8,12] was better
than that of PassGAN. The rPassGAN uses a Recurrent Neural Network (RNN) as its primary deep
neural network.

Furthermore, rPassD2CGAN, a dual discriminator version of rPassGAN, outperformed
rPassGAN. However, during the training of rPassD2CGAN, it sometimes becomes unstable.
Therefore, we overcome this weakness by using another model, rPassD2SGAN. We demonstrated the
effectiveness of the password candidates generated by the rPassGAN for enhancing the password
strength estimator through several experiments.

1.2. Our New Approach: REDPACK

In our previous studies, the rPassGAN series outperformed PassGAN. Nevertheless, compared with
Probabilistic Context-Free Grammar (PCFG) and other Markov models, such as the OMEN [1], rPassGAN
sometimes cracked fewer passwords. In this study, we propose a model to maximize the password
cracking performance using a small number of guessing. With our model, we can selectively collect
more realistic password candidates to improve the efficiency of password cracking. Then, we can make
an effective cracking dictionary with these collected candidates. If password candidate dictionaries
from various models are available, prior knowledge of the password’s properties and structure is not
required for selecting a more realistic password candidate. The relativistic average standard GAN [13]’s
discriminator operates as an estimator, which evaluates how realistic input passwords are from the
various pre-generated candidates. Although a GAN generator is typically used, our model introduces
a novel way of using the GAN’s discriminator in password guessing. We refer to this model as a
relativistic discriminator for password candidates effective pack(REDPACK). We demonstrate that our
model can compete favorably with the Hashcat transformation rules (rockyou-30000, dive), PCFG [14],
and OMEN [2]. Our new approach’s contributions are as follows:

• GAN is a generative deep learning model. Generally, the generator of a GAN is used for
producing fake samples. However, the trained discriminator of the GAN is not utilized for
the inference. The discriminator is only used in the training phase for training the generator.
Our first contribution is that we propose how to utilize the discriminator of the GAN not for
training the generator but for enhancing password cracking performance. To the best of our
knowledge, our approach is the first model that has been proposed in the field of password
cracking. The discriminator of the GAN estimates how realistic password candidates are. Then,
we use these estimates as criteria to select the best candidates among the multiple dictionaries.

• If there are multiple pre-generated password candidate dictionaries, REDPACK enables us to make
a more effective and efficient password candidate dictionary without any background knowledge
about the pre-generated dictionaries. If we provide this efficient and effective password candidate
dictionary to a password strength estimator like Zxcvbn, we are able to make the criteria of the
password strength estimator stricter [7,8,12].

• Our last contribution is the building of a custom ruleset for REDPACK. This custom ruleset helps
the password candidates from REDPACK maximize its cracking performance.

Appl. Sci. 2020, 10, 7306 4 of 19

1.3. Organization

The rest of this paper is organized as follows. In Section 2, we provide an overview of the relevant
password guessing models. In Section 3, we provide a brief overview of GANs and relativistic average
GANs as background knowledge for REDPACK. In Section 4, we explain the concept of REDPACK
and describe its architecture. In Section 5, we explain the process of training the hyperparameter
configuration. Then, we evaluate the password cracking performance of REDPACK. In this section,
we present the results of REDPACK and compare them with other advanced password guessing
techniques. Finally, the conclusions are presented in Section 6.

2. Related Works

In this section, we discuss related works regarding password guessing that use categories,
probability-based approaches, and deep learning-based approaches. The probability-based approaches
are divided into whole-string methods and template-based methods. These terms were defined in
Ma et al. [15]

2.1. Rule-based Approaches

Basically, in the password-guessing attack, the adversary attempts to match one or more users’
passwords by repeatedly testing large numbers of password candidates. This attack could be conducted
in offline or online modes. Password-guessing attacks might be as old as password authentication
themselves [16]. JtR [4] and Hashcat [5] are two popular modern password guessing (or cracking)
open-source software. This software provides multiple types of password cracking strategies, including
exhaustive brute-force attacks, dictionary-based attacks, rule-based attacks (also called hybrid-attack).
The rule-based attack generated password candidates by transforming the words in the dictionary
according to its own grammar [6,17]; and Markov-model-based attacks [18,19], in which each letter of
a password candidate is chosen via a certain statistical and probabilistic process that considers one
or more preceding letters, and this model is trained on dictionaries of plaintext passwords. In the
practical password cracking field, JtR and Hashcat are promising and useful. Heterogeneous computing
technology enhances the cracking performance of both tools. There have been several instances in
which well over 90% (370 of 1321 sites’ password hash files of Hashes.org have been recovered 90%
over in April 2020) of the passwords leaked from online services have been successfully recovered [20].
However, both Hashcat and JtR have an explicit limitation. If their cracking target password is in a
complex form and their pre-defined rulesets do not cover the target password, both tools are totally
unable to succeed in cracking the target password.

2.2. Markov-Based Approaches & PCFG

In the stochastic approach, a method incorporating the Markov model has been proposed.
Narayanan et al. proposed a method of generating a fake password (or password candidates) using the
Markov model for the alphanumeric characters and the Turing machine for special symbols [21].
This method’s the fundamental idea is that frequently used words and patterns are limited to
easy-to-remember passwords; further, the passwords in this space are included in a specific probability
distribution of alphanumeric combinations. Narayanan et al. used the Markov model as a filter to
eliminate the low-probability password candidates. Furthermore, they applied the rainbow table
concept (time-space tradeoff) to speed up password cracking. Finally, to handle the passwords with
special symbols, the Turing machine concept was adopted. Based on a password generation rule,
various alphabets and numbers were combined into regular expressions, and the probability for each
combination created was defined. This pioneering work was subsequently extended by Ma et al. [15]
and Dürmuth et al. [2].

Dürmuth et al. [2] proposed an efficient password guesser based on Narayanan’s model.
This model was called the OMEN. Basically, OMEN aimed to improve the cracking speed of

Appl. Sci. 2020, 10, 7306 5 of 19

Narayanan’s model. It incorporated an improved enumeration algorithm called “enumPwd”,
which enabled it to produce candidates in order of probability by implementing multiple bins. In each
bin, candidates of similar probabilities were stored.

The most important aspect of these password guessing studies was incorporating the PCFG
concept into the password-guessing method. PCFG was invented by Weir et al. [22] originally as
a password guesser. Current complex passwords have grammatical structure. This grammatical
structure is a combination of alphanumerical sequences, special characters, and keyboard-walks.
PCFG analyzes the grammatical structure of leaked passwords and calculates the distribution
probability from these leaked passwords. For generating password candidates, PCFG uses the
grammatical structure in order of the probability. Recently, several studies have improved upon
the performance of the PCFG [23–25]. Based on common current password usage patterns and
on government recommendations [26], password guessing must be able to produce grammatical
structures that include not only simple alphabetical and numerical combinations but also complex
combinations that include special characters and keyboard-walks. PCFG has enabled us to generate
these complicated password patterns. In experiments, PCFG exhibited a higher cracking success rate
than dictionary-based attacks using Hashcat built-in rules. This method could expand the cracking
area of the password space effectively. Houshmand et al. [24] focused on improving the cracking
performance for keyboard-walk structures and employed a smoothing technique. In their experiments,
they achieved good performance on cracking keyboard-walk patterned passwords. Furthermore,
Houshmand et al. proposed the use of PCFG as a target-oriented cracking approach [25].

Finally, Ma et al. [15] attempted to maximize the performance of the probability-based password
cracking approaches through optimized configuration and usage. Additionally, they proposed a new
way of measuring the password cracking performance. Ma et al. categorized password guessing
methods as whole-string or template-based. Narayanan et al.’s model and OMEN were included
in the whole-string models. PCFG was classed as a template-based model. Ma et al. attempted to
derive each model’s best configuration and introduced the n-gram model for statistical language
modeling into password modeling. In the experiments conducted by Ma et al., in several
cases, the whole-string Markov models outperformed PCFG. However, specific configurations,
such as smoothing, enhanced the performance of PCFG in such a way that it outperformed the
whole-string approach.

2.3. Deep Learning-Based Approaches

The first password guessing method that employed deep learning was proposed by
Melicher et al. [27]. They incorporated an RNN [28] into their model. The purpose of Melicher’s
study was to enhance the password strength estimator based on a deep-learning password guesser.
RNNs, a deep learning neural network that has been popularly adopted in the field of Natural
Language Processing (NLP), usually exhibit good performance in various applications, such as chat-bots,
translation, and auto-completion. In Melicher et al.’s method [27], leaked passwords were used as the
training data. Subsequently, a guessing candidate was produced letter by letter. In the RNN model,
the characters that constitute the password are based on all the previously selected characters.

In addition to the method by Melicher et al. [27], Hitaj et al. proposed PassGAN [9] based
on the most popular generative model, a GAN. In detail, Hitaj et al.’s PassGAN employed
IWGAN [11]. Throughout their experiments, PassGAN competed favorably with state-of-the-art
password generation tools. PassGAN is the first approach to apply GAN to the password guessing
problem. PassGAN used the original IWGAN model, which used the WGAN-GP cost function,
for training the generator of the GAN without any modifications. In the original IWGAN model,
both the generator and discriminator of the GAN used a Convolutional Neural Network (CNN)
as their primary components. However, CNNs are usually used for processing images in deep
learning studies. So, in our previous studies, a Recurrent Neural Network (RNN) based model was
used to improve the password cracking performance [8,12]. We named our models rPassGAN and

Appl. Sci. 2020, 10, 7306 6 of 19

rPassD2SGAN, which indicates a dual discriminator architecture. When Jensen-Shannon Divergence
(JSD) is high between the training dataset and the cracking target set, rPassGAN cracked more
passwords than PCFG. That is to say, the general performance of rPassGAN is better than PCFG.
Otherwise, PCFG cracked more passwords than rPassGAN. Although PassGAN could not outperform
other password guessing models, Hitaj et al. emphasized that their model was able to crack
some passwords that could not be cracked by other stochastic models [9]. rPassGAN was able
to achieve similar results. Furthermore, this trend can be observed among the RNN-based PassGAN
models [8,12].

3. Background for REDPACK

In this section, we provide a brief overview of a standard GAN and a relativistic average GAN.
First, we describe GAN’s development history, following which we explain relativistic GANs, which are
at the core of our model.

3.1. Generative Adversarial Networks

GANs have brought about remarkable advances in the field of deep learning. A GAN is composed
of two neural networks. The first is a generative deep neural network G, which performs the main task
of training. The other is a discriminative deep neural network D, which functions as the supervisor.
Given an n-sized input batch I = {x1, x2, ..., xn}, the main goal of G is to generate fake samples that D
can confuse with the real ones based on the responses of D; otherwise, the goal is to learn to distinguish
the fake samples from G from the real ones coming from I. The optimization problem for GANs is a
minimax problem. Goodfellow et al. [10] solved this problem by allowing the GAN to have a global
optimum when the distribution of fake samples produced by G was mathematically identical to the
distribution of the given real data. When z is a noise input from the uniform distribution, the minimax
problem can be expressed as follows:

min
G

max
D

V(D, G) = E
x∼Pdata(x)

[logD(x)] + E
z∼Pz(z)

[log(1− D(G(z)))] (1)

The learning of the generator can be regarded as optimized when D cannot distinguish between
the fake samples generated by G and the real samples from I. Since Goodfellow et al. proposed the
initiative GAN, various GAN models with more stable training performance have been proposed.
Among these GAN models, the PassGAN-related ones are the Wasserstein GAN (WGAN) [29] and
the improved Wasserstein GAN (IWGAN) [11]. WGAN, which was introduced by Arjovsky et al.,
improves the training stability of a standard GAN by employing the Wasserstein distance for loss.
The benefits of this approach include reduced mode collapse and meaningful learning curves, which are
helpful in identifying optimal hyperparameters. WGAN incorporates a new cost function; however,
experiments on the WGAN focus on generating realistic images. Gulrajani et al. [11] proposed IWGAN
to find the global optimum more effectively, compared to WGAN. They introduced the concept
of the gradient penalty to replace the gradient clipping of WGAN. Gulrajani et al. proposed the
use of IWGAN to solve the text generation problem. In Gulrajani et al.’s IWGAN, both G and D
consisted of simple residual CNNs. The residual architecture makes the training of the GAN fast
and stable [30,31]. G takes as input a latent noise vector, transforms it by forwarding it through its
convolutional layers, and outputs a sequence of 32 one-hot character vectors. The output layer of G
adopts a softmax nonlinearity function and forwards it to D. Each output character of a fake sample is
determined by the result of the argmax function, which takes each output vector generated by G as
input. The IWGAN experiment motivated Hitaj et al. [9] to apply IWGAN to the password guessing
problem. They referred to the model that they created as PassGAN.

Appl. Sci. 2020, 10, 7306 7 of 19

3.2. Relativistic average GAN

The applications of GAN, a groundbreaking framework for learning generative models, are varied.
However, standard GAN (SGAN), originally proposed by Goodfellow et al. [10], is unstable in the
learning phases, and optimizing the model is difficult. Many alternatives, including WGAN, have been
proposed to mitigate this problem. GAN-based models can be broadly divided into integral probability
metric (IPM)-based GANs and non-IPM-based GANs. Generally, IPM constraints provide stability
for training the GAN. Jolicoeur [13] analyzed the loss function of SGAN to analyze the limitations
of the non-IPM-based GAN and proposed a relativistic GAN to address this. Goodfellow et al. [10]
proved that GAN training attains the global optimum when the discriminator classifies real data with
0.5 probability. However, in many cases, the discriminator classifies both real and fake data as real,
which is disadvantageous in training a good generator. This is because the discriminator is not aware
that half of the data in the learning process is fake; the IPM-based GAN is relatively stable during
learning because it implicitly accounts for this fact. From the perspective of divergence minimization,
the discriminator is trained to increase D(x f), whereas D(xr) does not decrease accordingly, where xr

and x f denote the real and fake data, respectively. To address this issue, Jolicoeur [13] designed the
output of the discriminator to depend on both the real and fake data:

D(xr, x f) = σ(C(xr)− C(x f)) (2)

Where C(x) is the presumed critic (D(x) = σ(C(x))). Equation (2) can be interpreted as the
discriminator’s estimation of the probability of the given real data being more realistic than the
fake data (D(x f , xr) can be interpreted in the opposite manner). If the discriminator is set according to
Equation (2), unlike the generator of SGAN, which relies solely on the fake data, the generator from the
relativistic GAN will depend on both the real and fake data. However, it has O(m2) complexity when
calculating the loss (m means the size of the mini-batch) because it calculates the pair-wise differences
of the critic between the real and fake data in the mini-batch. To solve this problem, Jolicoeur [13]
proposed a relativistic average GAN (RaGAN), which takes the expectation of the opposite type of
data for some given data. The RaGAN uses the following loss functions to learn the discriminator and
generator:

LD = −Exr [log(σ(C(xr)−Ex f [C(x f)]))]−Ex f [log(1− σ(C(x f)−Exr [C(xr)]))]

LG = −Ex f [log(σ(C(x f)−Exr [C(xr)]))]−Exr [log(1− σ(C(xr)−Ex f [C(x f)]))]
(3)

where LD and LG represent the loss for learning the discriminator and generator,
respectively. Equation (3) has O(m) complexity. The discriminator of RaGAN estimates the probability
of some given data being more realistic than the opposite type of data, on average. Using different
datasets, Jolicoeur [13] showed that training RaGAN, compared to other GAN models, was faster and
more reliable, and the generator of RaGAN generated high-quality fake data.

4. Proposed Model: REDPACK

In this section, we describe the structure of REDPACK. At first, we explain the overview of
REDPACK. Next, the discriminator training structure of REDPACK and the password candidate
selecting structure of REDPACK will be described in detail.

4.1. Overview

Generally, GAN models are trained for solving generative problems. So, after the training of
the GAN model is finished, the generator of the GAN should be used for achieving its goal. In our
previous research [8,12], we used the generator of our GAN for producing more realistic password
candidates. However, in the case of REDPACK, the discriminator of the GAN is used after finishing
the training of the model. Figure 1 shows the train phase and selection phase. In the training phase,

Appl. Sci. 2020, 10, 7306 8 of 19

the generator produces fake passwords. Then, the discriminator tries to distinguish fake passwords
from real passwords. Next, the discriminator sends feedback to the generator. By using the feedback
from the discriminator, the generator learns how to make fake passwords that are almost the same
as real passwords. After training the generator, the discriminator should solve the more difficult
problem of differentiating real passwords from fake passwords than it was in the previous training
step. This process makes the discriminator stronger. Then, the training process continues until the
training parameters converge. In the selection phase, multiple password generators can be used for
producing the password candidates. As a result of the training phase, the discriminator calculates the
probability of how realistic each generator’s password candidates are. The closer the probability is
to one, the closer the password candidates are to realistic passwords. In the final step, the password
candidates of the highest probability are supplied to a password cracking tool like Hashcat (or John the
Ripper). From an implementation perspective, there is no limit to the number of password candidate
generators that can be used in the selection phase. In this paper, we use three or four password
candidate generators for REDPACK.

Train
Phase

Selection
Phase

Generator Discriminator

Fake passwords

Judgement

Real passwords

Discriminator

Fake passwords

Password
Cracking Tool

More realistic
passwords

Multiple
Password
Candidate
Generators

Figure 1. Overview Diagram of REDPACK.

4.2. The Discriminator Training Structure

Figure 2 shows a process to optimize the parameters of an RNN-based GAN. The RNN-based
GAN is built upon a generator (G) and a discriminator (D). We employ an RNN as the base model of
the GAN because passwords are a type of sequential data. As with a standard GAN [10], G is trained
to generate fake passwords, but these are very similar to real passwords; D tries to distinguish real
passwords from the fake passwords. However, our RNN-based GAN adopts the concept of both
relativistic average GAN [13] and IWGAN [11] to achieve a more powerful discriminator. In Figure 2,
G produces fake passwords from a given arbitrary noise distribution Pz(z), which is depicted by a
green path; following Equation (3), D determines the fake passwords as real if and only if the critic for
the fake password is larger than the real one described as blue storage in the figure. Likewise, the real
passwords on the blue path are regarded as real in the opposite case; D gives gradients as a penalty to
encourage G to generate more authentic passwords, which is depicted by a red path. This learning
framework forces D to achieve stronger judgment criteria than the standard GAN.

Algorithm 1 summarizes the learning procedure for the above described RNN-based GAN.
It mainly originates from IWGAN but uses the loss function of a relativistic average GAN.
Most notations follow Equation (3). The primary differences are the loss function in lines 9 and
15. These loss functions depend on the relativistic discriminator, estimating the critic for one type
of passwords over the average critic of the opposite type. This direct comparison allows G to
quickly converge to an optimum point and produce high-quality fake passwords. Also, since our
RNN-based GAN adopts IWGAN, we add the gradient penalty to the discriminator’s loss function.
This penalty forces a 2-norm of gradients for x̂ to be less than 1, where x̂ is a random sample on a
straight line between the pair of points (xr, x f). This gives great stability to the training of the GAN.
Another important factor is the iteration for optimizing G from lines 13 to 16. Although most GANs
have a loop for optimizing D on a given G, this is insufficient to maximize the GAN’s performance.

Appl. Sci. 2020, 10, 7306 9 of 19

So, we add the loop for training G to stabilize and enhance our GAN. According to our experiments,
described in Section 5, this factor has a critical effect on the cracking performance of REDPACK.
In general cases, once the model is optimized, the generator is used as a generative model. Instead,
we utilize the discriminator as a genuine password estimator for REDPACK.

Noise
Generator

RockYou
LinkedIn

Real passwords for
the relativistic estimation

Discriminator (D)
RNN

FC

…

FC
RNN

RockYou

LinkedIn

Leaked Password

RNN

Generator (G)

Real passwords

Fake passwords

Judgment
(gradients)

Figure 2. REDPACK Training Phase Diagram.

Algorithm 1 The learning procedure for the RNN-based GAN.

Require: Gradient penalty coefficient λ, number of critic iterations per generator ncritic, number of

generator iterations per discriminator ngen, batch size m, and Adam hyper-parameters α, β1, and β2.

Critic C’s parameters w and generator G’s parameter θ. Random samples x̂ on straight line between

real passwords xr and fake passwords x f .
1: while θ has not converged do

2: for t = 1, ..., ncritic do

3: for i = 1, ..., m do

4: Sample real data xr ∼ Pdata, latent variable z ∼ Pz, and a random number ε ∼ U [0, 1].
5: x f ← Gθ(z)
6: x̂ ← εxr + (1− ε)x f
7: D̃(xr) = sigmoid(Cw(xr)−E[Cw(x f)])
8: D̃(x f) = sigmoid(Cw(x f)−E[Cw(xr)])
9: Li

D ← −E[log(D̃(xr))]−E[log(1− D̃(x f))] + λE[(‖∇x̂Cw(x̂)‖2 − 1)2]
10: end for
11: w← Adam(∇w

1
m ∑m

i=1 L(i)
D , w, α, β1, β2)

12: end for
13: for t = 1, ..., ngen do

14: Sample a batch of latent variable {z(i)}m
i=1 ∼ Pz

15: θ ← Adam(∇θ
1
m ∑m

i=1(−E[log D̃(Gθ(zi))]−E[log(1− D̃(xr))]), θ, α, β1, β2)
16: end for
17: end while

4.3. Password Candidates Selecting Structure

The REDPACK consists of multiple password-guessing models: for example, Hashcat, PCFG,
rPassGAN with WGAN-GP, and rPassGAN with RaGAN-GP. Two rPassGAN with different loss
functions can be used with different hyperparameter configurations as a component of multiple
password candidate generators. This is because each RNN-based PassGAN has its own password
cracking results that other models could not crack. In our previous research [8,12], both single
discriminator rPassGAN and dual discriminator rPassGAN had their own cracked password
candidates. So, various deep learning-based password guessing models are used as password

Appl. Sci. 2020, 10, 7306 10 of 19

candidate sources for REDPACK, as shown in Figure 3. One billion candidates, which are generated
by each password generating model, are transformed from strings to tensors. These tensor inputs are
supplied to the discriminator (D). The discriminator consists of two fully connected neural networks
and one layer of an RNN. The RNN uses GRU cells. The discriminator (D) estimates how realistic
each password input is and provides the probability of each tensor input as an estimated result.
The MAX Probability Selector in Figure 3 chooses the password candidate with the highest probability
and transforms the tensor into a password string. Then, these selected candidates are transferred
to Hashcat or saved in the refined password candidates dictionary. Then, the final step is Hashcat
password cracking, as shown in Figure 3. Hashcat’s mode is a hybrid attack using transformation
rules like the best64, dive, and Rockyou-30000 rules.

Hashcat(JtR)
Candidates Dic.

Read a candidate
Convert to Tensor

Read a candidate
Convert to Tensor

Read a candidate
Convert to Tensor

PCFG
Candidates Dic.

Hashcat-rule
Candidates Dic.

…

Discriminator (D)
RNN

FC

…

FC
RNN MAX

Probability
Selector

real(1)

fake(0)

Hashcat

More realistic
Password candidates
Selector

Figure 3. REDPACK Selecting Phase Diagram.

5. Evaluation

In this section, we explain the configuration of our experiment in detail. Then, we comparatively
evaluate the cracking performance and password estimation performance of our approach.

5.1. Experimental Data Preparation

In various studies [2,8,12,14,22,32], a significant amount of leaked passwords have been analyzed.
These have notably provided insight into the usage patterns of real-world users. For the experiments in
this study, we used publicly available cracked plaintext passwords and leaked password dictionaries.
In most of the previous studies on password cracking, leaked Rockyou and LinkedIn passwords
were used [2,8,9,12,22,24]. However, our team used additional password dictionaries containing long
and 4class passwords for our cracking performance experiments. We use the password classification
of Melicher et al. [27]. Melicher et al. defined test datasets by 1class, 2class, 3class, 4class. 2class:
passwords in this dataset must contain at least two character classes, 3class: passwords must consist of
at least three character classes. 4class: password must contain all classes(symbols, digits, lower and
upper letters). Rockyou and LinkedIn contained a few 4class passwords. We also used four cracked
password dictionaries from Hashes.org, where several cracked and leaked plaintext passwords were
provided. A total of seven training and cracking datasets were present. With these datasets, password
cracking performance could be observed in relation to each password length. Information on these
datasets is summarized in Table 1. Dataset 1 has been used in several passwords cracking studies.
Therefore, through experiments with dataset1, it was possible to compare the performance between our
approach and previous studies. With datasets 2–7, we show the cracking performance of our approach
in practical situations. Hashcat-Rockyou30000, Hashcat-dive, OMEN, PCFG, and rPassGAN-WGAN
were used as the password generators. Subsequently, we applied the best64 rule to all the models’
password candidates to maximize cracking performance. This is the method typically used in practice.
Each generator model produced one billion password candidates for repeated experiments.

Appl. Sci. 2020, 10, 7306 11 of 19

Table 1. Experimental Dataset Summary: we used the plaintext passwords from Hashes.org. 4class set
consists of symbols, digits, and upper- and lowercase letters.

Id Length Training No. Cracking No. Class Sources

1 1–10 9,421,713 2,481,871 1class Rockyou
2 11–16 561,552 140,405 4class Rockyou, LinkedIn, iMesh, Zoosk, Myspace
3 11 224,328 56,083 4class Rockyou, LinkedIn, iMesh, Zoosk, Myspace
4 12 153,912 38,478 4class Rockyou, LinkedIn, iMesh, Zoosk, Myspace
5 13 92,156 23,039 4class Rockyou, LinkedIn, iMesh, Zoosk, Myspace
6 14 55,432 13,858 4class Rockyou, LinkedIn, iMesh, Zoosk, Myspace
7 15 27,341 6836 4class Rockyou, LinkedIn, iMesh, Zoosk, Myspace

5.2. REDPACK Training Configuration

To optimize the deep learning model’s performance, it is essential to define the training
hyper-parameters’ values. Unlike other deep learning models, GAN has the G/D training iteration as
its specific hyper-parameter. This parameter affects training stability and performance. The essential
training hyper-parameters for our experiments are as follows.

• The G/D iteration number represents the number of generator and discriminator training
iterations. Although 1:1 and 1:10 are typically used for the discriminator in RaSGAN, 40:10 is
usually used for WGAN-GP.

• The batch size represents the number of passwords from the training set that are transferred to
the model at each step of the optimization. Although higher values improve the generality of the
model, they can result in unstable training. Thus, using the optimal value is important. Typically,
a batch size of 128 is used. A batch size of 64 is used to counter training instability.

• An epoch represents the duration of a phase of model training. Longer epochs result in the model
fitting the training data better. Although increasing the number of training datasets can enhance
the model’s performance, it may worsen the general performance of a trained model.

All the parameters are summarized in Table 2.

Table 2. REDPACK Hyper-parameters.

Parameter Name Value

G/D Training Ratio RaGAN: 1:1, 1:10
WGAN-GP: 40:10, 20:5, 1:10

Batch Size
Train phase: 128

Train phase(unstable): 64
Select phase: 5000

Training Epochs 100,000, 200,000(WGAN-GP)
GP Lambda 10

Learning Rate 0.0001
Adam opt. β1 0.5
Adam opt. β2 0.9

We used Tensorflow-gpu 1.10.1 with Python version 3.5.4 for GPU computing. All the experiments
were conducted on the OpenHPC system that NMLab of Korea Univ. developed. Each node of
OpenHPC runs on a CentOS 7 server with 32GB Memory; the nodes use Intel Xeon E5 2.20GHz
CPUs(x2) and Nvidia TitanXP 12GB GPUs(x4).

5.3. GAN Training and Testing

As inferred from our previous research [8,12], the major factors that determine cracking
performance are the epoch, G/D ratio, and recurrent neural network (RNN) cell type. In the case
of the training epoch, models trained for too many epochs are prone to overfitting, as shown in

Appl. Sci. 2020, 10, 7306 12 of 19

Figure 4a. Overfitting should be avoided to maximize the effectiveness of selecting realistic password
candidates. The G/D ratio also has a powerful effect on the cracking performance. To improve the
cracking performance, it is necessary to apply a wide range of G/D ratios to the model. However,
this is time-consuming. Therefore, we conducted experiments using G/D ratios of 1:1 and 1:10 for
the RaSGAN-GP cost function, as shown in Figure 4b. Although neither may be the optimal value,
they suffice to show the effectiveness of the model. The final factor to consider is the cell type. It is
necessary to determine which is better between Long Short-Term Memory (LSTM) [28] and Gated
Recurrent Unit (GRU) [33] for the RNN-based relativistic discriminator. Throughout experiments for
testing these factors, 200k training epochs, a 1:10 G/D ratio, and the GRU cell type were settled on as
the optimal settings for password cracking and to ensure generality, as shown in Figure 5.

(a) Configuration Training Epoch (b) Configuration G/D Ratio

Figure 4. Cracking performance per training epoch: After 190k epochs, the password cracking
performance was degraded. Training for too many epochs has a bad effect on relativistic discriminator.
Based on the number of cracked passwords, G/D ratio of 1:10 yielded better password cracking
performance. We could not ascertain whether 1:10 was the best value or not. However, G/D ratio of
1:10 is better than 1:1, which was proposed by Jolicoeur-Martineau [13].

1,350

1,400

1,450

1,500

1,550

1,600

1,650

1,700

1,750

1,800

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k 110k 120k 130k 140k 150k 160k 170k 180k 190k 200k

x1
0
0
0

GRU LSTM

N
u

m
b
e
r

o
f
c
ra

c
k
e
d

(a) LSTM vs. GRU(Dataset1)

15,000

15,500

16,000

16,500

17,000

17,500

18,000

18,500

19,000

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k 110k 120k 130k 140k 150k 160k 170k 180k 190k 200k

GRU LSTM

N
u

m
b
e
r

o
f
c
ra

c
k
e
d

(b) LSTM vs. GRU(Dataset2)

Figure 5. The GRU cell performed better than LSTM. Although LSTM exhibited a lower JSD value
during training, it was outperformed by GRU, with respect to generality.

5.4. Password Cracking

In this section, we present the results of several experiments. Multiple datasets, which are
mentioned in Table 1, were used in these experiments. Our model, REDPACK, outperformed all other
models at password cracking across all the experiments. First, dataset 1 (a short length Rockyou dataset)
was used. This dataset has been used in many previous passwords cracking studies [2,8,9,12,14,24].
Figure 6 shows a cracking performance comparison between REDPACK and other password candidate
generators. The x-axis shows the number of password guesses (or the used password candidates).
The y-axis is the number of cracked target passwords. In the experiment with dataset 1, all the

Appl. Sci. 2020, 10, 7306 13 of 19

password-guessing models exhibited similar performance. REDPACK cracked 5%(87,946) more
passwords than the PCFG. Although the short Rockyou dataset test was sufficient for theoretic
performance comparison, it does not reflect recent password usage trends.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1 PCFG Hashcat OMEN rPassGAN REDPACK

Number of Guessing

N
u

m
b

e
r

o
f
c
ra

c
k
e
d

1.5 ╳ 1010 3.0 ╳ 1010 4.5 ╳ 1010 6.0 ╳ 1010

x106

0K

5K

10K

15K

20K

25K

30K

35K

40K
PCFG Hashcat OMEN rPassGAN REDPACK

2.5 ╳ 1010 5.0 ╳ 1010 7.5 ╳ 1010 1.0 ╳ 1011

N
u

m
b

e
r

o
f
c
ra

c
k
e
d

Number of Guessing

Dataset 1(1–10, 1class) & Dataset 2(11–16, 4class)

0

5,000

10,000

15,000

20,000 PCFG Hashcat OMEN rPassGAN REDPACK

N
u

m
b

e
r

o
f
c
ra

c
k
e
d

Number of Guessing

2.5 ╳ 1010 5.0 ╳ 1010 7.5 ╳ 1010 1.0 ╳ 1011

0

2,000

4,000

6,000

8,000

10,000

12,000 PCFG Hashcat OMEN rPassGAN REDPACK

Number of Guessing

N
u

m
b

e
r

o
f
c
ra

c
k
e
d

2.5 ╳ 1010 5.0 ╳ 1010 7.5 ╳ 1010 1.0 ╳ 1011

Dataset 3(11, 4class) & Dataset 4(12, 4class)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000 PCFG Hashcat OMEN rPassGAN REDPACK

N
u

m
b

e
r

o
f
c
ra

c
k
e
d

Number of Guessing

2.5 ╳ 1010 5.0 ╳ 1010 7.5 ╳ 1010 1.0 ╳ 1011

0

500

1,000

1,500

2,000

2,500

3,000

3,500 PCFG Hashcat OMEN rPassGAN REDPACK

N
u

m
b

e
r

o
f
c
ra

c
k
e
d

Number of Guessing

2.5 ╳ 1010 5.0 ╳ 1010 7.5 ╳ 1010 1.0 ╳ 1011

Dataset 5(13, 4class) & Dataset 6(14, 4class)

0

500

1,000

1,500

2,000 PCFG Hashcat OMEN rPassGAN REDPACK

Number of Guessing

N
u

m
b

e
r

o
f
c
ra

c
k
e
d

2.5 ╳ 1010 5.0 ╳ 1010 7.5 ╳ 1010 1.0 ╳ 1011

Dataset 7(15, 4class)

Figure 6. REDPACK exhibits better password cracking performance than any single password
generation model.

For a practical password cracking comparison, datasets 2–7 were created and used.
Multiple experiments were conducted repeatedly. These experiments used only 4class passwords
for a comparison of extremely difficult password cracking. First, Hashcat (best64, rockyou-30000,

Appl. Sci. 2020, 10, 7306 14 of 19

and dive), PCFG, and rPassGAN were used for the password generation unit. Overall, REDPACK
showed 5–20% better cracking performance than any single password guessing model on dataset2 to
dataset7. In the case of dataset1 (short-length password), PCFG showed strong performance in the
early cracking stages. In the second half of cracking, REDPACK eventually overtook PCFG. However,
as password-length gets longer (from dataset3 to dataset7), REDPACK outperformed PCFG and other
password candidate generators clearly. That is to say, the effectiveness of REDPACK was shown clearly
with complicated and long-length passwords. In the case of datasets 6 and 7, our team could not create
one billion Hashcat candidates because of the small amount of training data. Rule-based candidate
generation was defined as the multiplication of the number of rules and the number of candidates.

In Table 3, the number of each model’s candidate selected by the MAX Probability Selector from
the Figure 3 was proportional to the single model’s password cracking performance. This result shows
that REDPACK did not select candidates randomly but chose candidates selectively. Additionally,
this means that the discriminator of REDPACK correctly evaluates the probability of how realistic
passwords are generated.

Table 3. Number of candidate of each model consisting of REDPACK candidates. Number in
parenthesis denotes cracking performance rank among input sources.

Dataset Id Hashcat PCFG rPassGAN

1 388,369,672 (2) 375,427,872 (1) 236,202,456 (3)
2 391,559,411 (2) 405,053,223 (1) 203,387,366 (3)
3 348,230,515 (1) 426,854,183 (2) 224,915,302 (3)
4 453,200,929 (1) 369,617,876 (2) 177,181,195 (3)
5 533,483,250 (1) 288,233,760 (2) 178,282,990 (3)
6 39,213,755 (1) 455,574,382 (3) 505,211,863 (2)
7 19,847,837 (1) 419,593,769 (3) 560,558,394 (2)

5.5. Limitation of REDPACK

REDPACK showed better performance than any single guessing model. However, its cracking
performance was also limited. The relativistic discriminator apparently selected more realistic
password candidates. However, more realistic password candidate selection does not always guarantee
effective password cracking. Although REDPACK compressed the number of password candidates by
up to 66% in the case of three generators, it also missed some candidates that could be important to
password cracking. Table 4 shows the performance loss of REDPACK. In the experiment, we included
OMEN as a password candidate generator component. The inclusion of OMEN as a password
generating unit worsened the cracking performance of the candidate dictionary by REDPACK.
OMEN prevented the discriminator from selecting PCFG candidates. This degradation was caused by
REDPACK’s incorrect selections. OMEN hindered the selection of the PCFG candidates, which could
potentially crack the password. Both OMEN and PCFG have similar characteristics. They both generate
password candidates with high-order probabilities. To make up for the loss of these two probability
based-models, we simply apply a random shuffle to the password candidate sets from both OMEN
and PCFG. This simple approach cannot remove the loss of cracking performance completely.

When models based on three different approaches (Hashcat: rule-based, PCFG: probability-based,
rPassGAN: deep learning-based) were used as generators, REDPACK was at its most efficient in
our experiments.

Appl. Sci. 2020, 10, 7306 15 of 19

Table 4. Performance loss of REDPACK was compared with the union set of unit generator
models’ cracking results. When there were three unit models, REDPACK consisted of PCFG,
Hashcat (dive, rockyou-30000), when there were four it consisted of rPassGAN, and PCFG, OMEN,
Hashcat and rPassGAN.

Dataset ID Number of Generators REDPACK Union Set Being Cracked

1 3 1,978,429 (−6.7%) 2,119,814
4 1,995,126 (−6.4%) 2,132,173

2 3 35,699 (−19.2%) 44,200
4 35,344 (−24.9%) 46,495

3 3 17,659 (−18.9%) 21,801
4 17,378 (−26.4%) 22,655

4 3 11,039 (−17.4%) 13,375
4 10,464 (−25.2%) 13,859

5 3 6022 (−17.4%) 7293
4 5754 (−21.8%) 7505

6 3 3277 (−16.6%) 3933
4 3128 (−22.2%) 4024

7 3 1846 (−12%) 2128
4 1798 (−16.8%) 2163

5.6. Further Improvement of Cracking Performance Using Proper Rules

Throughout the password cracking experiments, the best64 rule was applied for all the datasets.
The best64 rule is considered the most efficient ruleset because it has been updated through cracking
competitions held by the Hashcat team. In the practical field, the best64 rule is used in the first cracking
step. However, it was not the optimal rule set for REDPACK. Therefore, to further improve REDPACK’s
cracking performance, seven Hashcat rules (best64, dive, specific, generated, InsidePro-PasswordPro,
Incisive-leetspeak, and T0X1Cv1) were combined into a huge rule file. Then, the number of chances to
contribute to password cracking based on each rule for Dataset 2 was noted. For the custom Hashcat
rule set of REDPACKU4, 100 rules(the same amount as best64) were chosen. REDPACKU4 consists
of Hashcat, PCFG, OMEN, and rPassGAN. REDPACKU3 consists of Hashcat, PCFG, and rPassGAN.
Our team evaluated the generality of this custom set of rules using the other datasets, 3, 4, 5, 6, 7 with
REDPACKU3. The candidates of REDPACKU3 were distinct from those of REDPACKU4. Furthermore,
we created another dataset to establish the generality of the test. The dataset was based on LinkedIn
passwords; the length of the dataset, which was composed of 4class (symbol, digits, lower and upper
letter) passwords, was from 8 to 10. The ID of this dataset was 1-1. In Table 5, the efficiency of this
REDPACK rule was higher than that of best64 in the case of the REDPACK candidates. When the
REDPACK rule was applied to PCFG, the REDPACK rule was as effective as best64. This custom set of
rules can be improved progressively through various cracking experiments.

Appl. Sci. 2020, 10, 7306 16 of 19

Table 5. Cracking performance of custom rule set for REDPACK; this custom set of rules was effective
when applied to REDPACK. When this custom rule was applied to both the PCFG and OMEN,
cracking performance of custom set of rules was less than that of best64 in some cases. Number in
parentheses shows percentage increase or decrease in relation to best64.

Dataset ID Rule REDPACKU3 PCFG OEMN rPassGAN

1-1 best64 69,473 69,133 53,224 33,278
custom 72,387 (4%) 66,793 (−3.8%) 55,391 (4%) 35,323 (6%)

2 best64 35,699 14,796 8184 5858
custom 43,442 (22%) 16,014 (8%) 11,106 (36%) 8568 (46%)

3 best64 17,475 14,796 8184 3871
custom 22,042 (26%) 16,013 (8.2%) 11,106 (35%) 6427 (66%)

4 best64 10,819 7830 4185 2588
custom 13,309 (23%) 8482 (8%) 5179 (23%) 3077 (19%)

5 best64 5984 3253 2042 1819
custom 7058 (17%) 3558 (9%) 2369 (16%) 2071 (14%)

6 best64 3252 1376 1070 1500
custom 3728 (14%) 1491 (8%) 1145 (7%) 1555 (4%)

7 best64 1803 523 661 1210
custom 2050 (13%) 565 (8%) 671 (1.5%) 1233 (2%)

6. Conclusions

In this paper, we proposed a deep learning-based method to build an effective password cracking
dictionary from multiple models’ password candidates. Our model is particular in that it is the first
approach to apply a GAN discriminator to the password cracking domain. Generally, because GANs
are a generative deep learning model, the generator of the GAN is used. However, in our model
(REDPACK), the discriminator of the GAN is a core component. For accomplishing the goal of making
the discriminator of the GAN choose more realistic password candidates, we adopt the RaSGAN-GP
cost function, which was proposed by Jolicoeur [13]. Through several password-cracking experiments,
we showed that the deep learning-based password candidate selector, REDPACK, outperformed every
other individual password candidate-guessing model (Hashcat, PCFG, OMEN, and rPassGAN) in
password cracking performance experiments. These experiments also showed the effectiveness of the
GAN’s discriminator. Finally, we demonstrated that our custom set of rules for REDPACK improved
its cracking performance, compared to ready-made rules such as the best64. Significantly, this set
of rules were successfully applied to REDPACK and rPassGAN. However, in the case of PCFG and
OMEN, this set of rules worsened the cracking performance compared to the best64. Although there
are some defensive studies [34–37] that counter offline dictionary attacks, REDPACK, by facilitating
the creation of a small and effective password cracking dictionary, enabled us to execute a fast attack.
From a security perspective, the outperformed cracking model’s candidates can enhance password
strength estimators, such as Zxcvbn [7], by filtering the guessable password candidates from our
previous study [12]. Therefore, it is clear that the candidates produced by REDPACK can fortify the
password strength estimator. REDPACK can be used for both attacking and defending the security of
passwords. Through the rPassGAN [8,12] and REDPACK studies, we achieved a new way to improve
password cracking performance by incorporating both the generator and discriminator of a GAN.
In the future, we will continue to conduct research into improving the performance of REDPACK.

Author Contributions: Conceptualization, S.N.; methodology, S.N.; software, S.N., S.J.; validation, S.N, S.J.;
data curation, S.N.; writing—original draft preparation, S.N.; writing—review and editing, J.M.; supervision, J.M.;
All authors have read and agreed to the submitted version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This research was supported by a Korea University Grant.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2020, 10, 7306 17 of 19

Abbreviations

The following abbreviations are used in this manuscript:
CNN Convolutional Neural Network
GAN Generative Adversarial Networks
GRU Gated Recurrent Unit
JtR John the Ripper
JSD Jensen-Shannon Divergence
LSTM Long-Short Term Memory
PCFG Probability Context-Free Grammar
OMEN Ordered Markov ENumerator
REDPACK Relativistic Discriminator for Password Candidates Effective Pack
RNN Recurrent Neural Network
rPassGAN Recurrent PassGAN

References

1. Dell’ Amico, M.; Michiardi, P.; Roudier, Y. Password Strength: An Empirical Analysis. In Proceedings of the
2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 1–9. [CrossRef]

2. Dürmuth, M.; Angelstorf, F.; Castelluccia, C.; Perito, D.; Chaabane, A. OMEN: Faster Password Guessing
Using an Ordered Markov Enumerator. In Proceedings of the International Symposium on Engineering
Secure Software and Systems, Milan, Italy, 4–6 March 2015.

3. Ma, W.; Campbell, J.; Tran, D.; Kleeman, D. Password Entropy and Password Quality. In Proceedings
of the 2010 Fourth International Conference on Network and System Security, Victoria, Australia,
1–3 September 2010; pp. 583–587.

4. John the Ripper Password Cracker. Available online: http://www.openwall.com/john/ (accessed on
12 July 2018).

5. Hashcat Advanced Password Recovery. Available online: https://hashcat.net/wiki/ (accessed on
12 July 2018).

6. Hashcat Rules. Available online: https://github.com/hashcat/hashcat/tree/master/rules (accessed on
12 July 2018).

7. Daniel Lowe, W. zxcvbn: Low-Budget Password Strength Estimation. In Proceedings of the 25th {USENIX}
Security Symposium ({USENIX} Security 16), Austin, TX, USA, 10–12 August 2016; {USENIX} Association:
Berkeley, CA, USA, 2016; pp. 157–173.

8. Nam, S.; Jeon, S.; Moon, J. A New Password Cracking Model with Generative Adversarial Networks.
In Information Security Applications; You, I., Ed.; Springer International Publishing: Cham, Switzerland, 2020;
pp. 247–258, [CrossRef]

9. Hitaj, B.; Gasti, P.; Ateniese, G.; Perez-Cruz, F. PassGAN: A Deep Learning Approach for Password Guessing.
arXiv 2017, arXiv:1709.00440.

10. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative Adversarial Networks. In Advances in Neural Information Processing Systems 27; Curran Associates,
Inc.: Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

11. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved Training of Wasserstein
GANs. In Advances in Neural Information Processing Systems 30; Curran Associates, Inc.: Long Beach, CA,
USA, 4–9 December 2017; pp. 5767–5777.

12. Nam, S.; Jeon, S.; Kim, H.; Moon, J. Recurrent GANs Password Cracker For IoT Password Security
Enhancement. Sensors 2020, 20, 3106. [PubMed]

13. Jolicoeur-Martineau, A. The relativistic discriminator: A key element missing from standard GAN.
arXiv 2018, arXiv:1807.00734.

14. Weir, M.; Aggarwal, S.; Collins, M.; Stern, H. Testing metrics for password creation policies by attacking
large sets of revealed passwords. In Proceedings of the ACM Conference on Computer and Communications
Security, Chicago IL, USA, 4–8 October 2010; ACM Press: New York, NY, USA, 2010; pp. 162–175. [CrossRef]

15. Ma, J.; Yang, W.; Luo, M.; Li, N. A Study of Probabilistic Password Models. In Proceedings of the 2014 IEEE
Symposium on Security and Privacy, Berkeley, CA, USA, 18–21 May 2014; pp. 689–704.

http://dx.doi.org/10.1109/INFCOM.2010.5461951
http://www.openwall.com/john/
https://hashcat.net/wiki/
https://github.com/hashcat/hashcat/tree/master/rules
http://dx.doi.org/10.1007/978-3-030-39303-8_19
http://www.ncbi.nlm.nih.gov/pubmed/32486361
http://dx.doi.org/10.1145/1866307.1866327

Appl. Sci. 2020, 10, 7306 18 of 19

16. Bidgoli, H. Handbook of Information Security, Threats, Vulnerabilities, Prevention, Detection,
and Management. In Handbook of Information Security; Wiley: Hoboken, NJ, USA, 2006.

17. KoreLogic’s Rules in John the Ripper. Available online: https://contest-2010.korelogic.com/rules.html
(accessed on 12 July 2018).

18. Hashcat Per Position Markov Chains. Available online: https://www.trustwave.com/en-us/resources/
blogs/spiderlabs-blog/hashcat-per-position-markov-chains/ (accessed on 12 July 2018).

19. JTR Markov Generator. Available online: https://openwall.info/wiki/john/markov (accessed on 12 July 2018).
20. Hashes.org Leaked Hashes. 2020. Available online: https://hashes.org/leaks.php (accessed on 5 October 2018)
21. Narayanan, A.; Shmatikov, V. Fast dictionary attacks on passwords using time-space tradeoff. In Proceedings

of the 12th ACM Conference on Computer and Communications Security–CCS 05, Alexandria, VA, USA,
7–11 November 2005.

22. Weir, M.; Aggarwal, S.; de Medeiros, B.; Glodek, B. Password Cracking Using Probabilistic Context-Free
Grammars. In Proceedings of the 2009 30th IEEE Symposium on Security and Privacy, Oakland, CA, USA,
17–20 May 2009; pp. 391–405.

23. Yazdi, S.H. Probabilistic Context-Free Grammar Based Password Cracking: Attack, Defense and Applications.
Ph.D. Thesis, Department of Computer Science, Florida State University, Tallahassee, FL, USA, 2015.

24. Houshmand, S.; Aggarwal, S.; Flood, R. Next Gen PCFG Password Cracking. IEEE Trans. Inf. Forensics Secur.
2015, 10, 1776–1791. [CrossRef]

25. Houshmand, S.; Aggarwal, S. Using Personal Information in Targeted Grammar-Based Probabilistic
Password Attacks. IFIP Adv. Inf. Commun. Technol. 2017, 511, 285–303. [CrossRef]

26. National Institute of Standards and Technology. Digital Identity Guidelines. 2004. Available online:
https://pages.nist.gov/800-63-3/ (accessed on 10 June 2017).

27. William, M.; Blase, U.; Sean M., S.; Saranga, K.; Lujo, B.; Nicolas, C.; Lorrie Faith, C. Fast, Lean, and Accurate:
Modeling Password Guessability Using Neural Networks. In Proceedings of the 25th {USENIX} Security
Symposium ({USENIX} Security 16), Austin, TX, USA, 10–12 August 2016; pp. 175–191.

28. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

29. Arjovsky, M.; Chintala, S.; Bottou, L. {W}asserstein Generative Adversarial Networks. In Proceedings of
the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70,
pp. 214–223.

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778.

31. Shang, W.; Chiu, J.; Sohn, K. Exploring Normalization in Deep Residual Networks with Concatenated
Rectified Linear Units. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 4–9 February 2017; pp. 1509–1516.

32. Castelluccia, C.; Dürmuth, M.; Perito, D. Adaptive password-strength meters from Markov models.
In Proceedings of the Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA,
21–24 February 2012.

33. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y.
Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Stroudsburg, PA, USA, 2014;
pp. 1724–1734. [CrossRef]

34. Bellare, M.; Pointcheval, D.; Rogaway, P. Authenticated Key Exchange Secure against Dictionary Attacks.
In Proceedings of the 19th International Conference on Theory and Application of Cryptographic Techniques,
Bengaluru, India, 5–13 December 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 139–155.

35. Bellovin, S.M.; Merritt, M. Encrypted Key Exchange: Password-Based Protocols SecureAgainst Dictionary
Attacks. In Proceedings of the 1992 IEEE Symposium on Security and Privacy, Oakland, CA, USA,
4–6 May 1992; p. 72.

https://contest-2010.korelogic.com/rules.html
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/hashcat-per-position-markov-chains/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/hashcat-per-position-markov-chains/
https://openwall.info/wiki/john/markov
https://hashes.org/leaks.php
http://dx.doi.org/10.1109/TIFS.2015.2428671
http://dx.doi.org/10.1007/978-3-319-67208-3_16
https://pages.nist.gov/800-63-3/
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.3115/v1/D14-1179

Appl. Sci. 2020, 10, 7306 19 of 19

36. Lucks, S. Open key exchange: How to defeat dictionary attacks without encrypting public keys. Lect. Notes
Comput. Sci. 1998, 1361, 79–90. [CrossRef]

37. Katz, J.; Ostrovsky, R.; Yung, M. Efficient Password-Authenticated Key Exchange Using Human-Memorable
Passwords. In Proceedings of the International Conference on the Theory and Application of Cryptographic
Techniques: Advances in Cryptology, Innsbruck, Austria, 6–10 May 2001; Springer: Berlin/Heidelberg, Germany,
2001; pp. 475–494.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BFb0028161
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Our Previous Approach: Recurrent PassGAN
	Our New Approach: REDPACK
	Organization

	Related Works
	Rule-based Approaches
	Markov-Based Approaches & PCFG
	Deep Learning-Based Approaches

	Background for REDPACK
	Generative Adversarial Networks
	Relativistic average GAN

	Proposed Model: REDPACK
	Overview
	The Discriminator Training Structure
	Password Candidates Selecting Structure

	Evaluation
	Experimental Data Preparation
	REDPACK Training Configuration
	GAN Training and Testing
	Password Cracking
	Limitation of REDPACK
	Further Improvement of Cracking Performance Using Proper Rules

	Conclusions
	References

