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Abstract: This paper presents a MATLAB-based tutorial to conduct fault diagnosis of a rolling 
element bearing. While there have been so many new developments in this field, no studies have 
addressed the tutorial aspects in this field to help the engineers learn the concept and implement by 
their own effort. The three most common techniques—the autoregressive model, spectral kurtosis, 
and envelope analysis—are selected to demonstrate the bearing diagnosis process. Simulation 
signal is introduced to help understand the characteristics of fault signal and carry out the process 
toward the fault identification. The techniques are then applied to the two real datasets to 
demonstrate the practical applications, one made by the authors and the other by the Case Western 
Reserve University, which is known as a standard reference in testing the diagnostic algorithms. 

Keywords: fault diagnosis; bearings; MATLAB code; envelope analysis; spectral kurtosis; 
autoregressive model; diagnosis tutorial 

 

1. Introduction 

Prognostics and Health Management (PHM), which enables life extension while preventing 
unexpected failures in various engineering systems, have received great attention over the last 
decades for more efficient operation and maintenance. Generally, there are three main steps in the 
PHM development: (1) signal processing, (2) diagnosis, and (3) prognosis. Signal processing is the 
step in which the valuable information called features are extracted from noisy sensor signals such 
as vibrations or acoustic emissions. Diagnosis focuses on detecting the faults, isolating their locations, 
and identifying their severity based on the extracted features. Lastly, the prognosis is to predict the 
Remaining Useful Life (RUL) based on the accumulated diagnostic information, which indicates how 
long it will take until the system’s health reaches the failure threshold. Though the most important 
step is the prognosis, its performance is of no doubt dependent on the quality of prior steps: the signal 
processing and the diagnosis. 

To date, the PHM has mainly focused on the vibration signal-based techniques for rotating 
mechanical components such as gears [1,2] and bearings [3–7], since they usually lead to the critical 
failures [1,8]. Among them, the rolling element bearings, which support the shaft during the rotation, 
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have been of greatest importance in view of its widespread use and often cause of another failures. 
For example, the bearings are known to cause around 70% of gearboxes and 21–70% of generator 
failures in the wind turbine industries [9]. To prevent such failures, early fault detection and 
diagnosis of the bearings is important. A great deal of research has been conducted on this topic. 
Many review papers are available, addressing the state-of-the-art algorithms from various 
perspectives. Only a few are given here; among others, Rai et al. reviewed several signal processing 
techniques for the rolling element bearing fault diagnosis [10]. Cerrada et al. have reviewed fault 
severity assessment methods [11]. Hamadache et al. made review on artificial intelligence-based 
approaches including shallow and deep learning [12]. Reviews are available, too, on the bearings for 
specific applications; Caesarendra et al. presented feature extraction methods for the low-speed slew 
bearing [13]. de Azevedo et al. have reviewed condition monitoring methods for bearings in the wind 
turbine [9]. 

As such, a great number of new algorithms have been introduced and reviewed over the last 
decades. Despite the importance, however, no studies have dealt with the tutorial aspects except the 
one by Randall and Antoni, which have introduced a number of techniques covering the essential as 
well as advanced algorithms in the context of diagnostic procedure [14]. The paper was highly 
informative and enlightening in several aspects, but it was in some sense close to a collection of their 
recent achievements in a single article, and hence was less instructive in view of the self-explanatory 
aspects of the tutorial. In real practice, there are many instances that engineers without enough 
knowledge in this field fail to solve their problems due primarily to the lack of detailed 
understanding of the algorithms and of how to implement them. Motivated by this, a tutorial is 
presented in this paper to conduct the fault diagnosis of rolling element bearing, with the purpose to 
help the beginners learn by themselves the basic concepts along with implementing the algorithms 
with minimum resort to the external resources. 

Among the techniques currently available for the bearing diagnosis, envelope analysis is the 
most common and relatively well established, which enables to detect the fault with location by 
matching the frequency spectrum of the envelope to the fault frequencies. By the way, the bearing 
signal is usually masked by the resonant noise and those coming from other components (e.g., gears 
and engines), which should be filtered out as a first step. Spectral kurtosis and autoregressive model 
are the most commonly applied techniques for this purpose [14]. These are addressed in the context 
of diagnosis process using the MATLAB scripts.  

Simulation datasets are prepared to explain the characteristics of the raw signal and the process 
of how to retrieve the fault information out of it. The techniques are then applied to the real datasets 
made by the authors to demonstrate the practical applications. The datasets by the Case Western 
Reserve University, which have been a standard reference in testing the diagnostic algorithms, are 
also used to demonstrate the general nature of the techniques.  

The paper is organized as follows. In Section 2, the basic theory and procedures in the bearing 
diagnostics are introduced. Section 3 addresses how to implement the bearing diagnosis using the 
simulation data. Practical diagnoses using the MATLAB codes are also performed with the real 
datasets in Sections 4 and 5. Lastly, conclusions are presented in Section 6. 

2. Bearing Diagnostics 

In this section, fundamental characteristics of fault signal is addressed first in view of amplitude 
modulation. Then, a virtual signal is generated to illustrate what the real signal is like in terms of its 
components, which will be used in implementing the diagnosis procedure in the next section. 

2.1. Fault Signal Given by Amplitude Modulation 

Whenever the rolling element in the bearing strikes a local fault in the inner or outer race or vice 
versa during operation, an impact signal is produced at the period of one of the bearing fault 
frequencies, such as Ball Pass Frequency Outer race (BPFO), Ball Pass Frequency Inner race (BPFI), 
Fundamental Train Frequency (FTF), and Ball Spin Frequency (BSF), which are defined as follows 
[15]. 
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where 𝐷𝐷, 𝑑𝑑, 𝑐𝑐, 𝑛𝑛 and 𝑓𝑓𝑠𝑠 are the pitch diameter, ball diameter, contact angle between the ball and the 
cage, number of rolling elements, and the rotating speed of bearing (Hz), respectively. Usually, the 
impact signals at these fault frequencies are modulated by the much higher resonant frequencies of 
the bearings, which results in the signal like the one in Figure 1, the exponentially decaying ringing 
occurring periodically at the fault frequencies [16]. 

 
Figure 1. Bearing geometry and impact signal. 

This phenomenon is mathematically the same as the amplitude modulation (AM), of which the 
concept is illustrated by a simple example in Figure 2. The fault and the resonance signal of the 
bearings are assumed to be Figure 2a,b which are the modulating and carrier signal in the signal 
processing theory, respectively. Then, the AM signal becomes the carrier signal with variable 
amplitude given by the modulating signal as shown in Figure 2c. After taking the FFT, the frequency 
domains of modulating, carrier, and the AM signals are given in Figure 2e–g, respectively. The result 
shows that the AM spectrum has peaks at the resonance (carrier) frequency (𝑓𝑓𝑟𝑟) with the sidebands 
spaced apart by the fault (modulating) frequency (𝑓𝑓𝑓𝑓) [17]. The AM signal can be expressed by the 
following equation [18]: 

𝑥𝑥(𝑡𝑡)  =  [1 + 𝑓𝑓(𝑡𝑡)] × 𝑟𝑟(𝑡𝑡)  =  �1 + 𝑀𝑀𝑐𝑐𝑀𝑀𝑛𝑛�2𝜋𝜋𝑓𝑓𝑓𝑓𝑡𝑡��𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑟𝑟𝑡𝑡) (5) 

where f(t) is the fault signal (plus DC offset to ensure that the mean amplitude of AM signals is zero) 
with the amplitude M and frequency 𝑓𝑓𝑓𝑓 , r(t) is the resonance signal with the amplitude 𝐴𝐴 and 
frequency 𝑓𝑓𝑟𝑟, and 𝑥𝑥(𝑡𝑡) is the AM signal. Equation (5) can be transformed to 

𝑥𝑥(𝑡𝑡)  = 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑟𝑟𝑡𝑡) +
𝐴𝐴 · 𝑀𝑀

2
 �𝑐𝑐𝑀𝑀𝑛𝑛 2𝜋𝜋�𝑓𝑓𝑟𝑟 + 𝑓𝑓𝑓𝑓� 𝑡𝑡 − 𝑐𝑐𝑀𝑀𝑛𝑛 2𝜋𝜋�𝑓𝑓𝑟𝑟 − 𝑓𝑓𝑓𝑓� 𝑡𝑡� (6) 

which shows that the spectrum of the AM signals consists of three components 𝑓𝑓𝑟𝑟, 𝑓𝑓𝑟𝑟 ± 𝑓𝑓𝑓𝑓, with the 
amplitudes 𝐴𝐴 and 𝐴𝐴·𝑀𝑀/2, respectively, as shown in Figure 2f. Therefore, it can be concluded that, 
when a bearing has fault, it appears as the sideband around the resonance signal. Then, the remaining 
task is to extract or separate the original fault signal Figure 2a or its FFT (e) from the AM signal Figure 
2c or its FFT (g). This is realized by the envelope analysis, which is an amplitude demodulation 
technique as will be addressed in the subsequent section. 
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(a) (e) 

  
(b) (f) 

  
(c) (g) 

  
(d) (h) 

Figure 2. Amplitude modulation and envelope signal: (a) modulating signal, (b) carrier signal, (c) AM 
signal, (d) envelope signal, in the time domain; (e) modulating signal, (f) carrier signal, (g) AM signal, 
(h) envelope signal, in the frequency domain. 

2.2. Simulation of Fault Signal 

With this understanding, more complex signal closer to the reality is considered. Toward this 
end, a virtual signal is generated using the MATLAB code given in Appendix A. A fault signal is 
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created as shown in Figure 3a by an exponential function, 𝑥𝑥1(𝑡𝑡) = 𝐴𝐴 ∙ 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑐𝑐𝑡𝑡′) to represent the 
transient impact signal with the frequency 𝑓𝑓𝑓𝑓 = 10𝐻𝐻𝐻𝐻 , where 𝑡𝑡′ = 𝑚𝑚𝑐𝑐𝑑𝑑(𝑡𝑡, 1/𝑓𝑓𝑓𝑓)  and A and α 
represent the magnitude of impulse signal and the damping parameter of the bearing, respectively. 
They are given by 5 and 75.4 in this example. The mod stands for the modulus after division, which 
is to make repeated signal over time [19]. The FFT of this signal becomes Figure 3d, where the 
fundamental frequency is 10 Hz with amplitude 1.0 with the subsequent ones being its harmonics. 
This is modulated by a carrier signal given by the sinusoidal function 𝑥𝑥2(𝑡𝑡) = 𝑐𝑐𝑀𝑀𝑛𝑛 (2𝜋𝜋𝑓𝑓𝑟𝑟𝑡𝑡)  with 
frequency 𝑓𝑓𝑟𝑟 = 600𝐻𝐻𝐻𝐻 which is much higher than ff, as shown in Figure 3b–c. This corresponds to 
the resonance of the bearing. Then, the modulated signal becomes 𝑥𝑥3(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡) ∗ 𝑥𝑥2(𝑡𝑡), and is shown 
in Figure 3c in which the carrier contains the fault in its amplitude [20]. Its FFT becomes Figure 3f, 
where the sidebands are present around 600 Hz. 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 3. Modulation of simulation fault signal: (a) fault signal, (b) resonance signal, (c) AM signal, 
in the time domain; (d) fault signal, (e) resonance signal, (f) AM signal, in the frequency domain. 

Added to this, the signal may include a certain discrete signals from other components such as 
gears and shafts as well as the background noise. In this example, they are represented by another 
low-frequency sinusoidal function 𝑥𝑥4(𝑡𝑡)  =  𝑐𝑐𝑀𝑀𝑛𝑛 (2𝜋𝜋𝑓𝑓𝑑𝑑𝑡𝑡)  with amplitude 2 and frequency 𝑓𝑓𝑑𝑑  =
 13 Hz  and Gaussian white noise 𝑥𝑥5(𝑡𝑡)~𝑁𝑁(0,𝜎𝜎2)  with variance 𝜎𝜎2  =  0.52 , which are given by 
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Figure 4a,b, and their FFTs (d) and (e), respectively. Putting all these together, the resulting raw signal 
𝑥𝑥(𝑡𝑡)  =  𝑥𝑥3(𝑡𝑡) + 𝑥𝑥4(𝑡𝑡) + 𝑥𝑥5(𝑡𝑡)  becomes Figure 4c with its FFT being (f). Note that the governing 
sinusoidal wave shown in Figure 4c is the discrete signal 𝑥𝑥4. The amplitudes at the high-frequency 
region in Figure 4f represent the carrier at 600 Hz (resonance) and surrounding sidebands (faults), 
which is a more complex version of the AM mentioned in Figure 2. The frequency amplitudes of the 
discrete and AM signal are 2 and 0.6, respectively, which means that the fault is buried by the carrier 
and another discrete signals. This agrees with the finding that the signals from the gears and shafts 
often show higher amplitudes than those of faulty bearing; typically, the amplitudes of the shaft 
rotation, gear meshing and the bearing fault signals are on the order of 0.1, 10 and 0.001 g [21,22]. 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 4. Simulation of bearing fault signal: (a) discrete signal, (b) white noise, (c) raw signal, in the 
time domain; (d) discrete signal, (e) white noise, (f) raw signal, in the frequency domain. 

3. Diagnosis Using Simulation Data 

The goal of the diagnosis is to isolate the fault information from the raw signal mixed with other 
noisy sources. The steps are taken in reverse order of the way the virtual raw signal is made and are 
summarized in Figure 5. It consists of three steps: First is the discrete signal separation to remove 
signals from the other components. Second is the demodulation band selection to find out the band 
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containing resonance frequencies, using which the band pass filtering is carried out to obtain only 
the signal in the band while removing those elsewhere. Last is the envelope analysis to restore the 
original fault signal out of the modulated signal around the resonance frequencies. Usually, the first 
two steps are denoted as the signal pre-processing. Note that the raw signal includes the mixture of 
four signals: bearing fault signal, resonance signal, and discrete signal with frequencies 𝑓𝑓𝑓𝑓, 𝑓𝑓𝑟𝑟 and 𝑓𝑓𝑑𝑑 
and the background noise. 

 
Figure 5. Procedure for bearing fault diagnosis. 

Regarding the algorithms in each step, autoregressive (AR) models are applied [14,23] for the 
discrete signal separation at first. Spectral kurtosis (SK) and Short Time Fourier Transform (STFT) are 
employed in the second step to select frequency band where the bearing resonance is dominant. In 
the third step, Hilbert transform is applied for the envelope analysis to obtain the analytic signal. 
Then, its magnitude becomes the envelope signal. By taking the FFT of the envelope signal, the fault 
information is retrieved from the amplitudes at the fault frequencies. More details are explained in 
the following sub-sections. MATLAB code with 63-lines is provided in the Appendix B to implement 
the process, which consists of four parts: (1) problem definition, (2) discrete signal separation, (3) 
demodulation band selection, and (4) envelope analysis. 

3.1. Problem Definition (Lines 1–7) 

In the code, six parameters are required in the problem definition. The first four are related to 
the data acquisition and bearing dimensions, and thus should be fixed for the same applications. Raw 
data are stored in the variable rawData. Simulation data generated by Appendix A are loaded into 
this variable. The parameters sampRate, rpm and bearFreq denote the sampling rate in Hz, shaft 
rotation speed in rpm and bearing fault frequency. Note that there are four fault frequencies in the 
bearing, which are calculated by the Equations (1)–(4) based on the shaft frequency in rpm and 
bearing specifications. In the simulation, however, a single fault frequency is directly assigned, which 
is 𝑓𝑓𝑓𝑓  =  10Hz as shown in Figure 3a. Therefore, the rpm is just set at 60 here. The last two parameters 
maxP and windLeng are to control the performance of the algorithm: maxP is the maximum order of 
the AR model, which is given by 300 from the ratio of the sampRate = 3000 and bearFreq = 10. 
This is based on the criteria that the model order should not be greater than the number of data within 
a fault interval [23]. The parameter windLeng is a row vector of the lengths in the window function 
of STFT. In this example, four different window lengths [2^4 2^5 2^6 2^7] are used. More details 
about how to set optimum window length can be referred to in Ref. [24]. 

3.2. Discrete Signal Separation (Lines 8–22) 

The first step is the discrete signal separation that removes the signals from the other sources 
such as gears and shafts, which we call the discrete (deterministic) signal. The discrete signal can be 
obtained by the autoregressive (AR) model, which is to estimate the current value of time series data 
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via weighted sum of the past values. Then, the residual signal is obtained by subtracting the AR 
model, i.e., the discrete part, from the raw signal, as shown in Figure 6. 

 
Figure 6. Flow chart on how the residual signals are obtained. 

Let us consider a time series x(n) with n = 1, N, which is the raw vibration signal acquired with 
sampRate per seconds. The AR model is then constructed to predict the next value in a time series 
by using a series of previous observations, which is described by the following equation [22] (line 15): 

𝑥𝑥𝑝𝑝(𝑛𝑛)  =  −∑ 𝑎𝑎(𝑘𝑘)𝑥𝑥(𝑛𝑛 − 𝑘𝑘)𝑝𝑝
𝑘𝑘 = 1  or in a matrix form 𝐱𝐱𝑝𝑝  =  −𝐗𝐗𝐗𝐗 (7) 

where 𝑥𝑥𝑝𝑝(𝑛𝑛) is the predicted value at nth time step as a weighted sum of its p previous values in the 
sequence, p is the order of the model, a(k) is the weighting coefficients, and x(n-k) is n-kth data. The 
matrix 𝐗𝐗 is an 𝑁𝑁 × 𝑒𝑒 matrix consisting of the past series values of 𝑥𝑥 (line 13-14). The coefficient 
𝑎𝑎(𝑘𝑘) can be obtained by solving the Yule–Walker equation [14,22] (line 12): 
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where 𝑟𝑟𝑥𝑥𝑥𝑥(𝑘𝑘) is the autocorrelation function of x(n), which is defined by 
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In order to illustrate the process, an example is given when p = 2. Then, Equation (8) becomes 
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where 
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𝑟𝑟𝑥𝑥𝑥𝑥(2)  =  [𝑥𝑥(1)𝑥𝑥(−1) + 𝑥𝑥(2)𝑥𝑥(0) + 𝑥𝑥(3)𝑥𝑥(1) … + 𝑥𝑥(𝑁𝑁)𝑥𝑥(𝑁𝑁 − 2)]/𝑁𝑁  

In the equations, the items 𝑥𝑥 exceeding the range [1, N] do not exist, hence, are assigned zero. 
Then, the AR model at nth step becomes by Equation (7) 

𝑥𝑥𝑝𝑝(𝑛𝑛)  =  −𝑎𝑎(1)𝑥𝑥(𝑛𝑛 − 1) − 𝑎𝑎(2)𝑥𝑥(𝑛𝑛 − 2) (11) 

Once the deterministic signal 𝑥𝑥𝑝𝑝 is obtained from the AR model, the residual signal is obtained 
by subtracting the prediction from this (line 16). 

Since the order p affects the prediction performance, it should be determined to make the 
residual signal represent the fault as best as it can. Depending on its uses, there are several different 
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criteria to determine the order p, such as Akaike information criteria (AIC) [25–28], Bayesian 
information criterion (BIC) [29], Minimum description length (MDL) [30], and Partial Autocorrelation 
Function (PACF) [31]. In the bearing fault diagnosis, the order p is usually determined such that the 
kurtosis of the residual signal is maximized, as are addressed in many literatures (e.g., [23]). The latter 
is used here because it is simpler to calculate and the kurtosis is the impulsiveness indicator of fault 
signal. For this objective, the kurtosis is calculated by increasing the order p from 1 to maxP = 300 
(lines 10–18). The result is in Figure 7a, where the maximum is at p = 82, hence, is used for optP (line 
19). Then, the AR model is constructed again using this, which is to repeat lines 12–15. In this case, 
however, it is implemented by the MATLAB function filter, which does the same but in more simple 
way (line 21). Residual signal thus obtained can be plotted by entering plot(rawData.t 
(optP+1:end),e) in the MATLAB command window, and is shown in Figure 7b along with its 
kurtosis value. Additionally, the raw signal and its kurtosis are given in Figure 7c for comparison. 
Kurtosis is higher by about four times after removing the discrete signals, reflecting the fault presence 
more clearly. For more advanced results, however, another criteria as mentioned above may be 
applied to determine the model order p and choose the one with better performances after 
comparison. This may be beyond the scope of this paper. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Kurtosis variation in terms of model order and corresponding signals: (a) model order 
selection based on maximum kurtosis, (b) residual signal for p = 82, and (c) raw signal. 

3.3. Demodulation Band Selection (Lines 23–49) 

As the second step of the signal pre-processing, a frequency band enclosing the resonance 
frequencies is sought from the residual signal. It is determined based on the spectral kurtosis (SK), 
which is the kurtosis at each frequency line in a time- frequency diagram. When the fault occurs, the 
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SK becomes higher around the region of resonance frequencies onto which the fault signal is 
modulated. The SK is defined by the functions of short time Fourier transform (STFT) [14,32] (line 
39): 

𝐾𝐾(𝑓𝑓)  =  
〈|𝐵𝐵(𝑡𝑡, 𝑓𝑓)|4〉
〈|𝐵𝐵(𝑡𝑡, 𝑓𝑓)|2〉2 − 2 (12) 

where 〈∙〉 is the time-averaging operator, and S(t,f) is the STFT of the residual signal. The STFT is a 
local Fourier transform for a finite time window at time t, which varies from 𝑡𝑡 =  0 to 𝑡𝑡end (lines 
27–37). The process is illustrated in Figure 8, in which the top figure is the raw signal, and middle 
figure is the window function to restrict the signal to the range at each time point t = t0 ~ tw, from 
which the local signals are made as shown in the figures below. Then, one obtains the bottom figure 
by taking the Fourier transform for each signal. Among various window functions, this paper 
employs the Hann window as follows with length L [24] (line 27): 

𝑤𝑤(𝑙𝑙)   =   0.5�1 − 𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋
𝑙𝑙

𝐿𝐿 − 1
�� , 0 ≤ 𝑙𝑙 ≤ 𝐿𝐿 − 1 (13) 

 
Figure 8. Concept of STFT. 

The time interval of Fourier transform is given by the half of the window length. Remembering 
that the sampling rate of the signal is 3000 Hz, which means 3000 data are in a second, when the 
window length is 27 = 128; for example, the first signal at 𝑡𝑡0 = 0 in the middle figure resides in the 
range of 0≤ 𝑡𝑡 ≤ 0.0427 (1 ≤ 𝑛𝑛 ≤ 128), and the second at 𝑡𝑡1  =  0.0213 (𝑛𝑛 =  65) , in the range of 
0.0213 ≤ 𝑡𝑡 ≤ 0.0640 (65 ≤ 𝑛𝑛 ≤ 192), etc. 
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The results of FFT in Figure 8 can also be plotted in the 2D form called spectrogram, as shown 
in Figure 9a, which shows the frequency spectrum where the x and y axes are the time and frequency. 
Finally, the SK can be computed using Equations (1) and (2) to obtain as a function of frequency, as 
shown in Figure 9b (lines 38–40). Based on the figure, the frequency range for high SK can be selected 
visually, which is around 400-800 Hz in this case (lines 43–47). The frequency band thus obtained is 
used to band-pass filter the residual signal, which leaves only the spectrum in the band (lines 48–49). 

  
(a) (b) 

Figure 9. Results of STFT and SK: (a) STFT S(t, f) and (b) SK K(f). 

By the way, the results of STFT may vary by different window lengths, which leads to the 
different SK. For better results, it is necessary to set a proper window length in the STFT. In case the 
fault interval can be identified visibly as is found as 0.1 s (𝑛𝑛 =  300) in Figure 7b, it is advised that 
the length be smaller to some degree than the number of data within the interval, which is the same 
as maxP. In practice, however, since the signal is not so clear, several window lengths are usually 
attempted [14], which are in this example given arbitrarily by [2^4 2^5 2^6 2^7] (line 7). Upon 
obtaining the SK with each window lengths (lines 26–42), they are plotted in superposition (line 45), 
from which the frequency band for higher SK is visually determined (lines 47). The result is shown 
in Figure 10a, where demodulation bands are set between [500 700] for the range of higher kurtosis 
in common. This should be input in the command window as shown in Figure 10b. Then, the residual 
signal goes through band-pass filtering to result in the signal in Figure 10c of which the kurtosis 
increases by twice to 23.1865 from 10.5885. 
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(a) 

 
(b) 

 
(c) 

Figure 10. Demodulation band selection: (a) spectral kurtosis for different window lengths, (b) 
frequency band selection input in MATLAB, and (c) vibration signal after band-pass filtering. 

3.4. Envelope Analysis (Lines 50–64) 

After two pre-processing techniques—discrete signal separation and band-pass filtering—one 
obtains the AM signal that includes only components of resonance (carrier) and fault (modulation) 
frequency. Then, the envelope analysis is used as the last step for the diagnosis of bearing faults, 
which consists of three sub-steps: First, Hilbert transform is applied to the AM signal to obtain the 
analytic signal [14,15,17] (line 51). Next, its magnitude is calculated to obtain the envelope signal, 
which is the absolute value of the analytic signal (line 52). It is further translated to have zero mean 
by removing the DC offset (line 53). Last, FFT is taken to the envelope signal to retrieve the fault 
information from the amplitudes at the fault frequencies (lines 54–55). 

The Hilbert transform is referred to as a 90° phase shifter and results in the analytic signals, 
expressed as follows [18]: 

𝑎𝑎𝑥𝑥(𝑡𝑡)  =  𝑥𝑥(𝑡𝑡) + 𝑗𝑗𝑥𝑥�(𝑡𝑡)  =  �𝑥𝑥2(𝑡𝑡) + 𝑥𝑥�2(𝑡𝑡)𝑒𝑒𝑗𝑗𝜙𝜙𝑥𝑥(𝑡𝑡)  =  𝐴𝐴𝑥𝑥(𝑡𝑡)𝑒𝑒𝑗𝑗𝜙𝜙𝑥𝑥(𝑡𝑡) (14) 

where 𝑎𝑎𝑥𝑥  indicates the analytic signal, in which the real part 𝑥𝑥 (t) is the original AM signal, 
imaginary part 𝑥𝑥�(𝑡𝑡)  is its Hilbert transform, 𝜙𝜙𝑥𝑥(𝑡𝑡)  is the instantaneous phase, and 𝐴𝐴𝑥𝑥  is the 
instantaneous amplitude, i.e., the envelope signal. The resulting envelope signal with the DC offset 
is shown in Figure 11a. The envelope spectrum after taking FFT is given in Figure 11b, in which the 
fault is identified by examining the amplitude at the given fault frequencies (lines 56–64). In the 
figure, the peaks near the fault frequency 10 Hz and its harmonics are apparent, which indicates that 
the fault has occurred indeed. Compare the Figure 11a,b with the original ones in Figure 3a,d to find 
out that result of the envelope spectrum is different, which we call smearing. The reason is because 
the sampling rate is low and the length of residual signal is changed from the original one after the 
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AR filtering. Though not addressed here, it is left to the reader to implement and figure out what the 
result will be when the fault is small or nonexistent by assigning smaller value to A. For comparison, 
envelop analysis results of healthy bearing are also given in Figure 11c,d, which can be easily made 
by assigning A = 0 in the MATLAB code (Bearing fault simulation). Comparing Figure 11a,b with the 
fault, the normal bearing does not show periodic impulse representing the fault in the time domain 
and the peak at the fault frequency in the frequency domain either. Furthermore, the kurtosis value 
is about 3 in the normal bearing, which is much smaller than that of fault and the typical of the 
Gaussian distribution. 

  
(a) (b) 

  
(c) (d) 

Figure 11. Result of envelope analysis: envelope signal in (a) time domain (b) frequency domain of 
faulty bearing, in (c) time domain and (d) frequency domain of normal bearing. 

4. Diagnosis of Korea Aerospace University (KAU) Bearing Faults 

In this section, diagnosis is performed using the real vibration data made by the authors’ test rig 
in the Korea Aerospace University (KAU). It is shown in Figure 12 which consists of DC motor, 
support bearings, and two roller bearings for the test. Vertical load is applied to the support bearing. 
The test bearing is given by NSK NJ 2306, with its geometry and dimensions in Table 1. Fault is seeded 
at the inner race with an artificially induced notch (0.2 mm depth, 0.3 mm width). The accelerometer 
is installed on top of the test bearing’s housing using bolt to acquire the vibration signals. The test is 
performed under four different conditions as listed in Table 2. 
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Figure 12. Korea Aerospace University (KAU) bearing test rig. 

Table 1. Bearing dimensions. 

Parameter Name Value Parameter Name Value 
Bearing type NJ 2306 Width (w) 27 mm 

Inner diameter (id) 30 mm Dynamic load rating 51500 N 
Outer diameter (od) 72 mm Static load rating 51000 N 

Number of rollers (n) 11   

Table 2. Operating conditions. 

Data Name RPM LOAD 
bearing 1 1200 rpm 0 N 
bearing 2 1200 rpm 200 N 
bearing 3 1000 rpm 0 N 
bearing 4 1000 rpm 200 N 

In order to diagnose the bearing fault, the fault frequencies as stated in Equations (1)–(4) should 
be available. In practice, however, most of the bearing manufacturers do not provide the values of 
ball and pitch diameter. To solve this problem, a commercial bearing fault frequency calculator [33] 
is adopted in this study and the results are listed in Table 3. The bearing data are acquired through a 
sampling frequency of 51.2 kHz. 

Table 3. Bearing fault frequencies. 

Frequency Name Value Frequency Name Value 
BPFO 4.4423 × 𝑓𝑓𝑟𝑟 FTF 0.4038 × fr 
BPFI 6.5577 × 𝑓𝑓𝑟𝑟 BSF 5.0079 × fr 

𝑓𝑓𝑟𝑟: shaft rotating speed [Hz] 

In order to illustrate the process, the dataset for “bearing 1” is taken, which is operated with a 
rotating speed of 1200 rpm and a 0 N vertical load (note that the load by the weight of bearing housing 
still exists). Figure 13 shows the raw signal, of which the kurtosis is 4.9923. The four datasets listed in 
Table 2 can be downloaded from https://www.kau-sdol.com/ and https://sites.google.com/view/sg-
kim. 
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Figure 13. Raw vibration signals (bearing 1). 

The raw data for bearing 1 are loaded by the name bearing1. Referring to Table 2, sampRate 
and rpm are set at 51.2e3 and 1200, respectively. Bearing fault frequencies are assigned in 
bearFreq, which is [4.4423 6.5577 0.4038 5.0079] for BPFO, BPFI, FTF, and BSF, 
respectively, based on Table 3. The maximum order of the AR model maxP is set at 390 based on the 
ratio of the sampling frequency versus the highest fault frequency (51200/(6.5577*1200/60)) as 
mentioned before. Vector of the window lengths windLeng for STFT are given by [2^4 2^5 2^6 
2^7 2^8] under the constraint of maximum length being smaller than maxP (390). As a result, the 
commands in the Problem definition (lines 1–7) are modified as follows: 

- Line 2: rawData = load('bearing1'); 
- Line 3: sampRate = 51.2e3;  
- Line 4: rpm = 1200; 
- Line 5: bearFreq = [4.4423 6.5577 0.4038 5.0079]*rpm/60; 
- Line 6: maxP = 390; 
- Line 7: windLeng = [2^4 2^5 2^6 2^7 2^8]. 

After going through the discrete signal separation (lines 8–22), one obtains the optimum order 
optP being 318 for the AR model by maximizing the kurtosis of the residual signal. Then, the 
resulting residual signal becomes Figure 14 and its kurtosis is 44.0245, roughly a nine-fold increase. 
Demodulation band selection (lines 23–49) is then carried out using the four sets of SK made with 
five window lengths, which are given in Figure 15a. The proper frequency band for higher SK is 
selected by visual examination of this figure, which is given arbitrarily as [1.8e4 2.3e4] by the 
authors. The residual signal after applying band-pass filter is then obtained as shown in Figure 15b, 
of which the kurtosis increases to 208.849, five times greater than the previous one. 

 
Figure 14. Residual signal after the AR filtering. 
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(a) (b) 

Figure 15. Demodulation band selection for data of bearing 1: (a) spectral kurtosis, and (b) vibration 
signal after band-pass filtering. 

After typing in the frequency band, it continues to the envelope analysis (lines 50–64), and the 
results are shown in Figure 16. In the figure, the four fault frequencies are plotted as vertical lines, at 
which the peak is examined to identify whether the fault has occurred or not. The result, however, 
should be interpreted with caution. It shows multitude of peaks at the several frequencies: the first 
group is at the shaft frequency (20 Hz = 1200 rpm/60 s) and its harmonics (black arrows), which can 
be caused by unbalance, misalignment, or coupling lock up. Details associated with shaft harmonics 
can be referred to the literature [34]. Next is at the BPFI (130 Hz) and sidebands with harmonics 
spaced at the interval of shaft frequency (20 Hz) around it (orange arrows). Once the peaks like these 
are identified around the BPFI, it indicates the inner race fault occurrence. Note that, in case of inner 
race fault, sidebands typically appear around the BPFI, whereas it is not so in the other faults [35]. 
Note also that sometimes the peaks can overlap by chance in the same frequency range, as is found 
at BPFO, which should not be mistaken as the fault. 

 
Figure 16. Frequency domain of envelope analysis. 

5. Diagnosis of CWRU Bearing Faults 

Vibration data provided by the Case Western Reserve University (CWRU) Bearing Data Center 
are employed [36,37] to demonstrate another application of the diagnosis code. In this case, artificial 
faults ranging in diameter from 0.007 to 0.028 inches were seeded with the electro-discharge 
machining (EDM) on drive-end (SKF 6205-2RS JEM) and fan-end (SKF 6203-2RS JEM) bearings. 
During the tests, data were collected at 12 and 48 kHz sampling rates for several datasets. Test 
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bearings were driven with different rotation speeds ranging from 1797 to 1720 rpm. Accelerometers 
were installed on three different locations: on the drive-end bearing (DE), the fan-end bearing 
housing (FE), and the motor supporting base plate (BA). 

Among others, this paper considers the bearing with inner race fault on the fan end. Geometry 
information and fault frequencies of the bearings are listed in Table 4 (the number of rolling elements 
and contact angles are not provided directly, and they are calculated by using the suggested fault 
frequencies), and the sampling rate and rotation speed are 12 kHz and 1796 rpm, respectively. The 
data are also available with the name “bearing 270” (the original data was resaved with two variables: 
vib for vibration data, and t for measuring time in rawData) at https://www.kau-sdol.com/. Further 
details regarding the data and test rig can be found in references [36,37]. 

Table 4. Bearing information. 

Parameter Name Value Parameter Name Value 
Pitch diameter (D) 1.122 inch BPFO 3.0530𝑓𝑓𝑟𝑟 
Ball diameter (d) 0.2656 inch BPFI 4.9469𝑓𝑓𝑟𝑟 

Number of rolling element (n) 13 FTF 0.3817𝑓𝑓𝑟𝑟 
Contact angle (α) 0 BSF 1.994𝑓𝑓𝑟𝑟 

Based on the information provided by the literature, the code to test the bearings is changed as 
follows: 

- Line 2: rawData = load (‘bearing270’); 
- Line 3: sampRate = 12e3;  
- Line 4: rpm = 1796; 
- Line 5: bearFreq = [3.053 4.947 0.382 1.994]*rpm/60;  
- Line 6: maxP = 82; 
- Line 7: windLeng = [2^4 2^5 2^6]. 

In line 6, since the highest fault frequency is BPFI with 148.0802 Hz (4.947*1796/60), the 
maximum order of the AR model should be 82 (12000/148.0802), which is the number of data within 
a fault interval. In line 7, window lengths are set based on the criteria mentioned in Section 3.3. The 
results are shown in Figure 17. Based on the visual inspection of spectral kurtosis in Figure 17a, 
[5.3e3 5.9e3] Hz is selected in the command window for the demodulation band selection. After 
band-pass filtering by this interval, the results of the envelope analysis are shown in Figure 17b, 
which shows a dominant peak at BPFI (148.08 Hz) and sidebands with harmonics at the interval of 
shaft frequency (29.93 Hz), convincing that the bearing has inner race fault. 

  
(a) (b) 

Figure 17. Results obtained from the code: CWRU bearing data (bearing280.mat) (a) Spectral 
kurtosis for bearing 270, and (b) Envelope spectrum after SK filtering. 
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As a supplementary explanation, the effects of each step in the signal preprocessing are also 
demonstrated in Figure 18, in which the envelope analysis are carried out to the raw signal (a) and to 
the residual signal that went through the AR filtering (b), respectively. In Figure 18a, the peak at BPFI 
in the spectrum is apparent but is smaller than the others, which is doubtful of the fault. Another 
peak appeared at BSF (59.69 Hz) also does not give us the confidence because it coincides with the 
harmonic of shaft frequency, which are the multiples of 29.93 Hz. After the AR filtering, the peak at 
the BPFI is increased greatly along with the sidebands with the intervals of shaft frequency in Figure 
18b. This confirms the fault at that frequency. On the other hand, the height at the BSF is not changed 
relative to the neighbors, which suggests that it may not be the fault but the harmonic of the shaft 
frequency. In this case, the fault at BPFI is already identified at this step without further 
preprocessing, i.e., the demodulation band selection, although the result may be better interpreted as 
shown in Figure 17b. As such, not all bearings have to resort to the full preprocessing steps for the 
fault identification. 

  
(a) (b) 

Figure 18. Envelope spectrum reflecting the raw and AR filtered signals: (a) envelope spectrum of the 
raw signal, and (b) envelope spectrum after AR filter. 

Refer to the following code to obtain the results in Figure 18. 
aX = hilbert(rawData.vib); %=== (a) Raw signal  

envel = abs(aX);  

envel = envel-mean(envel);  

fftEnvel = abs(fft(envel))/Ne*2; 

fftEnvel = fftEnvel(1:ceil(N/2)); 

freq = (0:Ne-1)/Ne*sampRate; 

freq = freq(1:ceil(N/2)); 

figure(3) 

stem(freq,fftEnvel,’LineWidth’,1.5); hold on;  

[xx,yy] = meshgrid(bearFreq,ylim); 

plot(xx(:,1),yy(:,1),’*-’,xx(:,2),yy(:,2),’x-’,xx(:,3),yy(:,3),’d-

’,xx(:,4),yy(:,4),’^-’) 

legend(‘Envelope spectrum’,’BPFO’,’BPFI’,’FTF’,’BSF’); 

xlabel(‘Frequency [Hz]’); ylabel(‘Amplitude[g]’); xlim([0 max(bearFreq)*1.8]) 

aX = hilbert(e); %=== (b) Residual signal  

envel = abs(aX);  

envel = envel-mean(envel);  

fftEnvel = abs(fft(envel))/Ne*2; 

fftEnvel = fftEnvel(1:ceil(N/2)); 

figure(4) 
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stem(freq,fftEnvel,’LineWidth’,1.5); hold on;  

[xx,yy] = meshgrid(bearFreq,ylim); 

plot(xx(:,1),yy(:,1),’*-’,xx(:,2),yy(:,2),’x-’,xx(:,3),yy(:,3),’d-

’,xx(:,4),yy(:,4),’^-’) 

legend(‘Envelope spectrum’,’BPFO’,’BPFI’,’FTF’,’BSF’); 

xlabel(‘Frequency [Hz]’); ylabel(‘Amplitude [g]’); xlim([0 max(bearFreq)*1.8]) 

6. Conclusions 

Signal processing for feature extraction is an important step in the fault diagnosis and prognosis, 
but the process in detail are not fully understood for the beginners of PHM to implement by 
themselves. With this motivation, this paper has presented a tutorial for how to identify the fault 
using the envelope analysis along with the preprocessing steps such as AR filtering and SK filtering 
to remove the unnecessary signals and noises, which are widely used in the area of bearing fault 
diagnostics. MATLAB codes for the algorithms are provided, which consists of 64 lines and can be 
simply modified for the other applications. Two sets of bearing vibration data (data made by the 
authors and CWRU bearing data) are used to help the user to implement and understand the 
algorithms. The code and bearing data are available at https://www.kau-sdol.com/ and 
https://sites.google.com/view/sg-kim. Apart from the datasets in this tutorial, there are several more 
datasets open to the public, and some of those are listed in Table 5 to help the user practice diagnosis 
themselves. 

Table 5. Open Data for Fault Diagnosis and Prognosis of Bearings. 

Data Set Name Diagnosis Prognosis Failure Type Operating Condition 
FEMTO [38] X O Natural Different load and speed 
MFPT [39] O X Artificial Different load 
IMS [40] X O Natural Single condition 
WT [41] X O Natural Single Condition 

Paderborn [42] O X Artificial, Natural Different operating condition 
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Appendix A. Bearing Fault Simulation 

%% Bearing fault simulation signal 

% Parameter setting =================================================== 

fr = 600; % Carrier signal 

fd = 13; % discrete signal 

ff = 10; % Characteristic frequency(Modulating signal) 

a = 0.02; % Damping ratio 

T = 1/ff; % Cyclic period 

fs = 3e3; % Sampling rate 

K = 50; % Number of impulse signal 

t = 1/fs:1/fs:2; % Time 

A=5; % Maximum amplitude 

noise = 0.5; 

%===================================================================== 
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for k = 0 : K-1 

 for i = 1 : length(t) 

  if t(i)-k*T>=0 

  x1(i) = A*exp(-a*2*pi*fr.*(t(i)-k*T)); 

   x2(i) = sin(2*pi*fr.*(t(i)-k*T)); 

   x3(i) = x1(i).*x2(i); 

end;end;end 

x5 = normrnd(0,noise,1,length(x3)); 

x4 = 2*sin(2*pi.*t.*fd); 

vib = x3 + x4 + x5; 

save(‘Simulation’,’vib’,’t’) 

Appendix B. Bearing Fault Diagnosis 

1 %======================PROBLEM DEFINITION =========================== 

2 rawData = load(‘Simulation’); % Data load 

3 sampRate = 3e3; % Sampling rate (Hz) 

4 rpm = 60; % Shaft rotating speed 

5 bearFreq = [10]*rpm/60; % BPFO, BPFI, FTF, BSF 

6 maxP = 300; % Maximum order of AR model 

7 windLeng = [2^4 2^5 2^6 2^7]; % Window length of STFT 

8 %==============Discrete signal separation (AR model) ================== 

9 x=rawData.vib(:); N=length(x); 

10 for p = 1 : maxP  

11  if rem(p,50)==0; disp([‘p=‘ num2str(p)]); end 

12  a = aryule(x,p); % aryule returns the AR model parameter, a(k) 

13  X = zeros(N,p); 

14  for i = 1 : p; X(i+1:end,i) = x(1:N-i); end 

15  xp = -X*a(2:end)’;  

16  e = x-xp;  

17  tempKurt(p,1) = kurtosis(e(p+1:end)); 

18 end 

19 optP = find(tempKurt==max(tempKurt)); %==== Optimum solution 

20 optA = aryule(x,optP); 

21 xp = filter([0 -optA(2:end)],1,x); 

22 e = x(optP+1:end) - xp(optP+1:end); % residual signal 

23 %============Demodulation band selection (STFT & SK) ================= 

24 Ne = length(e); 

25 numFreq = max(windLeng)+1; 

26 for i = 1 : length(windLeng) 

27  windFunc = hann(windLeng(i )); %==== Short Time Fourier Transform 

28  numOverlap = fix(windLeng(i)/2);  

29  numWind = fix((Ne-numOverlap)/(windLeng(i)-numOverlap));  

30  n = 1:windLeng(i); 

31  STFT=zeros(numWind,numFreq); 

32  for t = 1 : numWind  

33   stft = fft(e(n).*windFunc, 2*(numFreq-1));  

34   stft = abs(stft(1:numFreq))/windLeng(i)/sqrt(mean(windFunc.^2))*2;  

35   STFT(t,:) = stft’; 

36   n = n + (windLeng(i)-numOverlap); 

37  end 

38  for j = 1 : numFreq %==== Spectral Kurtosis 

39   specKurt(i,j) = mean(abs(STFT(:,j)).^4)./mean(abs(STFT(:,j)).^2).^2-2; 

40  end 

41  lgd{i} = [‘window size = ‘,num2str(windLeng(i))]; 
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42 end  

43 figure(1) %==== Results 

44 freq = (0:numFreq-1)/(2*(numFreq-1))*sampRate; 

45 plot(freq,specKurt); legend(lgd,’location’,’best’) 

46 xlabel(‘Frequency[Hz]’); ylabel(‘Spectral kurtosis’); xlim([0 sampRate/2]); 

47 [freqRang] = input(‘Range of bandpass filtering, [freq1,freq2] = ‘);  

48 [b,a] = butter(2,[freqRang(1) freqRang(2)]/(sampRate/2),’bandpass’); 

49 X = filter(b,a,e); % band-passed signal 

50 %=======================Envelope analysis ============================ 

51 aX = hilbert(X); % hilbert(x) returns an analytic signal of x 

52 envel = abs(aX);  

53 envel=envel-mean(envel); % envelope signal 

54 fftEnvel = abs(fft(envel))/Ne*2; 

55 fftEnvel = fftEnvel(1:ceil(N/2)); 

56 figure(2) %==== Result plot 

57 freq = (0:Ne-1)/Ne*sampRate; 

58 freq = freq(1:ceil(N/2)); 

59 stem(freq,fftEnvel,’LineWidth’,1.5); hold on;  

60 [xx,yy]=meshgrid(bearFreq,ylim); 

61 plot(xx(:,1),yy(:,1),’*-’) 

62 % ,xx(:,2),yy(:,2),’x-’,xx(:,3),yy(:,3),’d-’,xx(:,4),yy(:,4),’^-’) 

63 legend(‘Envelope spectrum’,’BPFO’,’BPFI’,’FTF’,’BSF’); 

64 xlabel(‘Frequency [Hz]’); ylabel(‘Amplitude [g]’); xlim([0 max(bearFreq)*1.8]) 
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