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Abstract: Tool condition monitoring is one of the classical problems of manufacturing that is yet
to see a solution that can be implementable in machine shops around the world. In tool condition
monitoring, we are mostly trying to define a tool change policy. This tool change policy would
identify a tool that produces a non-conforming part. When the non-conforming part producing tool
is identified, it could be changed, and a proactive approach to machining quality that saves resources
invested in non-conforming parts would be possible. The existing studies highlight three barriers
that need to be addressed before a tool condition monitoring solution can be implemented to carry
out tool change decision-making autonomously and independently in machine shops around the
world. First, these systems are not flexible enough to include different quality requirements of the
machine shops. The existing studies only consider one quality aspect (for example, surface finish),
which is difficult to generalize across the different quality requirements like concentricity or burrs
on edges commonly seen in machine shops. Second, the studies try to quantify the tool condition,
while the question that matters is whether the tool produces a conforming or a non-conforming
part. Third, the qualitative answer to whether the tool produces a conforming or a non-conforming
part requires a large amount of data to train the predictive models. The proposed model addresses
these three barriers using the concepts of computer vision, a convolution neural network (CNN),
and transfer learning (TL) to teach the machines how a conforming component-producing tool looks
and how a non-conforming component-producing tool looks.
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1. Introduction

The last decade has been the decade of the fourth industrial revolution (Industry 4.0) for
manufacturing around the world using smart systems and technology. Industry 4.0 uses the concepts of
machine learning and big data to reduce wastage of time and resources and make the production process
more efficient [1,2]. The concepts of Industry 4.0 require machines that are smart and autonomous [3],
and this presents an excellent opportunity for the development of machine learning algorithms that
improve operations and help in the reduction of waste.

Smart systems are essential for the implementation of Industry 4.0 in machine shops, but what
is the definition of a smart machine in the context of machining quality control? There is no
clear definition proposed in past studies. A smarter machine in the context of machining quality
control can be envisioned as a machine with the intelligence to understand and implement the
quality requirements. This machine only produces the parts that meet the design requirements
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(i.e., conforming parts) and detects the changes in machining parameters or environmental factors.
These changes in environmental factors might result in the manufacturing of parts that do not meet the
design requirements (i.e., non-conforming parts). In other words, the machine has the intelligence
to predict whether the machine will produce a conforming or a non-conforming part based on the
environmental inputs.

In a mass manufacturing facility, the environmental factors like type of machine used, jigs,
and fixtures in which the machining is taking place are reasonably stable, and these are changed
only when the production lines are repurposed to produce different components. Given the stable
environmental factors, the quality of the machining largely depends on the consumables like cutting
tools, coolant oils, and others used by these machining processes [4,5]. If the consumables are used
for too long, they contribute to the production of non-conforming parts, and if the consumables are
underutilized, they add to the overheads and wastage [6]. The process of defining the limits for an
overused and an underused tool can be termed a tool change policy (TCP) and is illustrated in Section 4.
In an intelligent tool condition monitoring (TCM) system, the definition and implementation of a TCP
should be carried out autonomously and independently.

TCM is one of the classical problems of manufacturing, and it has been extensively studied in
the last four decades [7,8]. However, three barriers have been identified by the presented study that
challenge the deployment of existing solutions in machine shops around the world. First, the inflexibility
of the systems to accommodate different TCPs: tool condition affects different aspects of machining
like surface finish [9] and dimensional accuracy [10,11]. For example, a TCP for one tool is when the
chatter marks start to appear, while for another tool TCP it is related to a burr on the edge. The existing
studies fail to provide flexibility to accommodate different TCPs.

Quantification of tool wear ignores the concept of a TCP and diverts the attention to the
quantification of wear on inserts, and this is the second identified challenge for deployment of
current TCM systems. The studies try to quantify the wear on inserts in terms of millimeters of flank
wear [12–15]. This quantification provides no information about the usability of the tool. In machine
shops around the world, quality management is not seen as a process that directly adds value to
the component, and from an economic point this process must be limited to what is absolutely
necessary [16]; that is why the manufacturers are interested to know whether components meet the
design requirements (a conforming part) or do not meet design requirements (a non-conforming part).
One of the examples for this qualitative approach is GO (conforming part)/NO GO (non-conforming
part) gauges [17], which are discussed in Section 3. Therefore, the central objective of TCM must also
be qualitative so that it recognizes the GO quality tool (tool that produces conforming part) and the
NO GO quality tool (tool that produces non-conforming part).

The final barrier identified is the large amount of data and time required to collect and train these
systems, which is the most significant barrier in the accommodation of different TCPs. The models
have to be retrained for different quality requirements that require changing the parameters learned by
the predictive systems. For example, Wu et al. [15] used 5880 images to train a model for the detection
of different wear patterns. Considering four cutting edges per insert, the model used 1470 inserts
for training. Collecting these extensive data for every machine and TCP is infeasible considering the
hundreds of different quality requirements in machine shops around the world.

The proposed system is an integrated solution to the three barriers mentioned above. The system
relies on monitoring the wear of cutting tools and classifies the tools as GO/NO GO tools that help
the machine operator make the decision on whether the tool can be used for the next machining
cycle. The system uses state-of-the-art tool wear classification in the form of a convolution neural
network (CNN) and principles of transfer learning (TL). These concepts are discussed in Section 3.
The novelty of the system is its ability to correlate the tool condition with machining quality and the
accommodation of different quality requirements using a TCP with the requirement of fewer data to
achieve the accommodation.
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The rest of the research paper is structured as follows. In Section 2, the relevant studies are
discussed. Section 3 explains the methodology used in the system, which can be divided into training,
offline state, and online state. In Section 4, the case study and the implementation of the proposed
system are discussed and the evaluation of the proposed system is performed in Section 5, followed by
the suggested future direction of tool condition monitoring. In the final section, the conclusions drawn
from the study are discussed.

2. Literature Review

Tool condition monitoring methods are classified into direct and indirect methods [18];
direct methods mostly involve the use of computer vision [14,15], radiation [19], and electrical
resistance [20], whereas indirect methods involve online monitoring methods that use vibration [21–23],
force [22], and temperature and sound [24] signals. Indirect methods are less complicated and can be
implemented straightforwardly and monitored in real-time [10], but they are prone to making noise
and are less accurate than the direct methods [25]. Real-time monitoring is also not a crippling
disadvantage for direct systems as there is enough time in between machining operation and
cycles [26] to get the required data without disturbing the sequence of operations of a machine
shop. In addition, the unidirectional execution of existing G-code-based systems does not allow for
real-time changes in the machining parameters [27–29]; therefore, there is no way to integrate the
response generated by indirect systems in real-time. Considering direct methods are more accurate
systems, the study adopts the direct monitoring methodology.

Vision-based systems are the most popular systems when it comes to direct tool condition
monitoring. Vision systems have also improved in recent years and are being used in different facets
of machining like collision avoidance [2,30], which also demonstrates the ability of vision systems to
detect changes while maintaining distance from the cutting process. Computer vision systems are used
to monitor changes in the wear morphologies of an insert. Wear morphology classification has been
the subject of many studies in past years; Lanzetta [31] employed vision systems for wear morphology
classification using quantitative definitions of different wear patterns. The conventional tool condition
monitoring used in machine shops involves the quantitative approach. For autonomous systems,
the quantitative approach proves difficult for implementation considering the variety of qualitative
parameters that need to be hardcoded into the system to identify a variety of wear morphologies.
The hard coding of parameters is also computationally expensive; thus, there is a need for a system that
identifies the features of different types of wear. The need for identification of different morphologies
is satisfied to an extent using CNN by Wu et al. [15]; this study has inspired the base wear classification
model discussed in Section 3.1.

Autonomously detecting damage to the inserts before they are used in machining is one of the
essential requirements for making tool monitoring autonomous. Fernandez-Robles et al. [32] developed
a vision-based system to detect broken inserts in milling cutters automatically. Sun et al. [14] used image
processing and image segmentation techniques to develop a system that could identify built-up edges,
fractures, and other insert deformations. These studies used image processing techniques, which require
human intervention to develop feature descriptions; this limits the independent implementation of
these systems for a variety of wear morphologies. As opposed to image processing techniques, the CNN
approach learns to identify the region of interest (ROI) and features descriptions to identify different
wear morphologies, and this eliminates the need for the human feature descriptions step needed in
other techniques [33]. Considering the utility of autonomous feature extraction, the proposed study
uses the CNN approach for tool condition monitoring.

Even though tool condition monitoring is one of the classical problems, there are fewer publications
in the context of the correlation of tool condition with the quality of the component. Jain and Lad [34]
developed a system that correlates tool condition and production quality. The study also developed a
multi-level categorization of the wear using a support vector machine methodology. Jain and Lad [35]
explored the relationship between surface finish and tool wear and found the Pearson correlation
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coefficient between surface finish and tool condition to be significant to establish a strong correlation.
The study used a random forest-based fault estimation model to determine the relation between surface
finish and tool condition. Grzenda and Bustillo [36], developed a semi-supervised model to predict
the surface finish using vibration signals; Fourier transformation was used to transform signals to
frequency space, and only the relevant frequency ranges were considered for the study. Wu et al. [15]
developed a two-stage system that aimed to determine the type of wear in the first stage and tried to
quantify the wear of the insert in a milling cutter. The system used CNN to determine the type of wear,
and the wear value was obtained using the relation between image pixel value and actual value and
width of the minimum circumscribed rectangle. Dutta et al. [37] used surface texture descriptions to
determine tool life using the grey level co-occurrence matrix; the images of the resulting surface finish
were captured, and the tool wear was measured using a microscope. García-Ordás et al. [25] used a
computer vision system to determine the usefulness of milling cutters. The system used a support
vector machine methodology to classify the wear patterns. The system identified the state of the tool
with about 90 percent accuracy.

The studies mentioned above correlate tool condition with the specific quality and design
requirements like surface finish. As discussed in Section 1, there are a variety of quality and design
requirements that are defined by TCP. These different TCPs form the ultimate definition of TCM;
considering this, a TCM that is flexible enough to accommodate different TCPs is the need of the hour.
Most of the studies are also limited by the materials and tool geometries they have used, and changing
any one of the factors means the findings of the studies cannot be used. For the TCM to be autonomous
and independent, it must be capable of working with different materials, tool geometries, and tool
coating grades. The requirements of flexibility to work with different TCPs and the ability to generalize
the system for different working materials, tool geometries, and tool coating grades, form the basis for
the development of the proposed system.

3. Qualitative Tool Condition Monitoring System

The system is developed to operate in three stages, as shown in Figure 1. The training of the
base model is where the architecture of the base model and the central intelligence of the system
are developed; this training is done remotely. The architecture and training parameters of the base
model are discussed in Section 3.1. The offline state of the system is operational in the machine shops
when the production lines are set up. In this state, the system is receiving training to identify the
TCP. The knowledge from the base wear classification model is used to expedite this training process
using the TL technique discussed in Section 3.2. The output of the system is inspired by the GO/NO
GO gauges. The goal of the GO gauge is to accept as many good parts as possible that satisfy the
material condition specification, and NO GO gauges are designed to reject all the parts that violate
the material condition specification [17]. The GO/NO GO gauge in this system is envisioned as an
implementation of a TCP. When a tool of GO quality is detected, the tool is accepted and used for
production. When a NO GO quality tool is detected, the operator is asked to change the tool before
resuming the production. The GO/NO GO arrangement allows for the flexibility to adapt the system
for different TCPs. In the online state of the system discussed in Section 3.3, the system is executing the
TCP autonomously after every machining cycle, making sure the tools are in GO condition before they
are used, and in this way provides a proactive approach to TCM.
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Figure 1. Overview of the system architecture.

3.1. The Base Wear Classification Model

A CNN is one of the most promising approaches to image processing and pattern recognition [33].
CNN layers are part of the architecture; it is standard practice to use convolution layers at the start of
the model to develop feature descriptions of the images. These layers are good at narrowing down
the ROI and require less computational memory when compared to conventional models. These are
the reasons they have seen a wide range of applications in a variety of areas, from hand gesture
recognition [38] to disease recognition in plants [39]. One of the other advantages of the convolution
layers is their ability to extract features autonomously. Some of these transformations are shown in
Figure 2. In Figure 2b, each row is the output of convolution or max pooling layers. It can be seen in
the successive layers. The layer transformation and filtering further define the description of the wear
features. This step in image processing techniques is done manually, which is the disadvantage of
image processing techniques.
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The base model architecture used by the system is shown in Figure 3. The input to this architecture
is a 200 × 200 × 3 Red Green Blue image (RGB). The convolution layers have sparse interaction with
the input of the previous layer [40]. For the convolution layer, a 3 × 3 kernel is used with 32 filters in
the first and second convolution layers. For the last two convolution layers, 64 filters are used with
a 3 × 3 kernel. A kernel can be imagined as a 3 × 3 window sliding over 200 × 200 in the step of a
one-pixel slide. This concept helps in the detection of small meaningful features and also reduces the
parameters to be stored and computed [40]. The output of the convolution layer is then fed to the
pooling layer, in the case of the developed model, it is the max pooling layer, where the kernel reports
the maximum value of the kernel size input. This layer helps in making the model more robust in
response to small translations to the inputs [40]. This is summarized in Equation (1), where A is the
corresponding pixel value in row i and column j, and this equation is valid for the 2 × 2 kernel used for
max pooling layers.
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Max pooling layer
Oi,j = max {Ai,j, Ai+1,j, Ai,j+1, Ai+1,j+1} (1)

The output of the last max pooling layer is then flattened to a 1 × n vector, which forms the input
to the fully connected layers (FCLs) for further processing, where n is the number of inputs to the
neural network. The number of inputs n also determines the width of the FCLs of the network.

FCLs are the basic type of neural network where each input interacts with each output of the
previous layer [40], the different layers in the network are modeled as different functions, which are the
function of the previous layer. In the proposed base model shown in Figure 3, we have four FCL layers,
which can be written as f(1), f(2), f(3)

, and f(4)
. Using the chain concept we can rewrite these functions as

f(xi) = f(4)(f(3)(f(2)(f(1)(xn)))) [40], where xn is the data from the convolution layers. The objective of the
neural network is to best estimate f(xn; θ) to function f * (xn), where f * (xn) is the ideal (real-world
relation) function that maps the inputs from the convolution layer to their classes of wear and θ is a
free parameter adjusted to optimize the best estimation of an ideal function [40].

The architecture in Figure 3 uses a rectified linear unit (ReLU) activation function in the intermediate
layers, which is a common practice for CNNs to improve the training speed [39]. The ReLU returns
zero for half of its domain and is the input for the other half of the domain that is zero for inactive
nodes and is the node output for active nodes, which helps make the gradients of the loss function
large and constant [40]. The ReLU is used in all the layers except the output layer in the proposed
model shown in Figure 3. The ReLU is summarized in Equation (2), where z is the output of the node.

ReLU(z) = max{0, z} (2)
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The softmax activation function was used in the last layer of the base model architecture, which is
also common in multiclass classification CNNs [39]. Softmax activation usually used in the output
layers of the neural networks gives the probability distribution over n possible values. It ensures
that the prediction of z belonging to a class for n different classes is between 0 and 1, and the sum of
probabilities is equal to 1 [40]. This is summarized in Equation (3), where zp is the output of the node
for the p class.

softmax
(
zp

)
=

ezp∑3
c=1 ezc

(3)

The loss of a model can be defined as a function that quantifies the performance of the system [33];
the study uses categorical cross-entropy as the loss function. ADAM, which is a stochastic optimizer
that is computationally efficient and combines the advantages of RMSProp and AdaGrad [41], was used
to optimize the weights of the base model. This facilitated faster convergence to an optimal solution [40].
The parameters used in ADAM were learning rate = 0.001, beta1 = 0.9, and beta2 = 0.999. The algorithm
for ADAM implementation can be found in [41].

3.2. CNN Image Classifier Trained for TCP

The base model developed and discussed in Section 3.1 forms the central intelligence for the
TCM. The base model helps narrow down the ROI and extract useful features and descriptions of
the tool, as shown in Figure 2. This intelligence is developed in the base model and rolled out as a
trained network. The offline stage of the system is in the machine shops, where the model has to
be repurposed to identify and implement different TCPs. Considering that there are thousands of
different TCP unique to each machine shop, retraining a complete network presents a significant data
and training time challenge. TL is one of the lifelines to overcome this data and training time challenge.

Given the importance of TL, we now adapt the definitions of TL in [42] for our application.
In the proposed system, the knowledge developed during the training of the wear classification
model to identify what type of wear pattern or damage the cutting tool has is optimized using TL
to differentiate between a good tool that produces conforming parts and a bad tool that produces
non-conforming parts. Every classification model has a domain D, which forms the pool for data
extraction and a task which, in the case of this study, is classification. Pan and Yang [42] define domain
D as consisting of two components: a feature space X and a marginal probability P(X). Task T also
consists of two-component Y labels and a predictive function f(.); since neural networks have a large
number of trainable parameters they can choose from different functions that best predict the task,
which in the case of our study is image classification. Therefore D =

{
X, P(X)

}
and T =

{
Y, f(.)

}
,

and considering these definitions we can define source domain and target domain. The source domain
is images captured from cutting inserts used in machining (DS), and the task is to identify wear type
classification (TS). Similarly, the target domain is images of inserts used in production (DT), and the
task is the quality classification (TT).

The images for the base model are drawn for the inserts used in production. Similarly, images used
for the target model are also drawn from inserts used in production. Therefore, the methodology is built
around the assumption that the images for the source and target model have a similar domain, which is
reasonable considering that the images used to train base model wear morphology classification are
also used in production in a machine shop. Given the similarity of domains, XS = XS, PS(X) = PT(X),
and DS = DT, that is, the feature space and the marginal probability of data distribution for both models
are the same.

The tasks of the source and target models are different as the labels are different, therefore TS , TT

as YS , YT, as given by Equations (4) and (5). But the predictive function could be similar or different
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since the neural networks are black-box models. There is no way to know if the same or a different
function was used for source and target tasks.

YS =


0 if the insert is damaged
1 if the insert has deformation
2 if the insert has normal wear

(4)

YT =

{
0 if the component is conforming (GO)

1 if the component is non− conforming (NO GO)
(5)

The target task is tied up to the traditional concepts of GO/NO GO gauges discussed at the start of
Section 3. GO/NO GO gauges are one of the most popular gauges to evaluate the material conditions
in holes and shafts. The tool condition monitoring system developed extends and generalizes this
definition of GO/NO GO gauges to other quality requirements. In the target task, the model is retrained
to identify a GO part producing tool and NO GO part producing tool. This concept makes the proposed
methodology qualitative and gives the model the flexibility to adapt its knowledge across different
TCPs. The offline state requires an expert to generate the GO/NO GO labels for the training and
adaptation of the task to the TCP.

3.3. CNN Image Classifier Adapted for TCP

The online state of the system works seamlessly without the need for human intervention to
identify the tools that produce a NO GO part. The system takes a picture before the machining
starts and, based on the training during the offline state, classifies the tool as a useable or unusable
tool. There are many tools on the machine, and the quality demand from each tool is different.
Therefore, the offline part of the system where the tool condition is associated with GO/NO GO quality
of operation has to be performed on each tool during the production setup. This allows the system to
run without quality inspection in the online state.

4. Experimental Setup

The images of the CNMG 120408/12, TNMG 160408/12, and VNMG 160408 turning inserts used in
the turning application are captured using the DFK 33GP006 GigE color camera with TCL 3520 5MP lens.
Initially, the top, side, and front views are considered for the classification. A processor with Intel i7
and 16 GB RAM was used to develop the classification model, and the models were implemented using
R computer language with the Keras package using a TensorFlow backend. Examples of these pictures
can be seen in Table 1. Table 1 shows that the top and side views do not clearly show the type of
wear, but the wear is easily distinguishable in the front view images; therefore, only front view images
were considered for the classification model. The setup for capturing the images of different views
can be seen in Figure 4. The images are captured in standard room lighting without any dedicated
light source. As we can see from Figure 2, the background of the insert has no impact on the feature
extraction process.
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Table 1. Wear patterns and different views.

Wear Pattern Top View Side View Front View

Damaged
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Figure 4. Image capturing station.

The process started with collecting the front-view images of the inserts for three different categories:
79 images of damaged inserts, 121 images of deformed inserts, and 128 images of abrasive wear inserts
were captured. All the pictures were then resized to 200 (width) × 200 (height).

The model must be made robust against variation and transformation. One of the ways to do
this is to use data augmentation, where the data are subjected to various transformations such as
rotation, flipping, and shearing the images; this helps in improving the generalization error as the
model is trained to be invariant to these transformations [40]. The training dataset was subjected to
data augmentation, with an allowed rotation range of 10 degrees, width shift range of 20 percent,
height shift range of 10 percent, and zooming range of 20 percent. The parameters for augmentation
were chosen carefully so as not to alter the wear description of the images, but to accommodate for
poor quality images that can be seen when the system is deployed in machine shops. An example of
this data augmentation can be seen in Figure 5. It should be noted that the validation images were not
subjected to data augmentation.
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Figure 5. Examples of rotation, shearing, height shift, and zooming data augmentation applied to
training images.

The augmented data were then fed to the neural networks. The images were first subjected to
the image transformations of the convolution and max pooling layers, where the ROI was identified,
and useful features were extracted from the images autonomously. The data in the final layers formed
the last max pooling layer and formed the input to the densely connected layers. The images were
converted to pixel data, and each pixel formed the input to the first FCL; the data were mapped to the
labels of the pictures, and the output of the FCL was the prediction of wear type. The base model can
now identify the nuanced differences in the cutting insert by identifying if the insert has deformation,
normal wear, or damage. The knowledge developed in the base model can now be used to identify the
change in quality by retaining the model.

For the target model, the images of inserts are classified into GO/NO GO categories; for this part of
the study, only CNMG 120408 turning inserts are used; one of the examples for GO/NO GO can be seen
in Table 2. Table 2 also gives an example for different TCPs accessible in machine shops. The objective
of the case study with respect to the target model is to prove that the model identifies the nuanced
differences in changes in wear morphology and predicts the consequence of using a tool. That is, if the
tool produces a GO quality part or NO GO quality part while using lesser images and training time
and iterations so that the TCP deployment is fast-tracked.

For this part of the study, inserts that are relatively new and have typical wear patterns are
manually classified as GO category inserts, and the inserts that have higher wear levels, as shown in
the NO GO part of Table 2, are classified as NO GO category inserts. These images are used to train the
target model, and the training images are subjected to similar data augmentation to that shown in
Figure 5. The architecture of the target model is shown in Table 3. The parameters learned by the base
model are frozen, and only 382 parameters of layers 12 and 13 are optimized for the target model.
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Table 2. GO, NO GO, and examples of different tool change policies used in machine shops around
the world.

NO GO GO GO GO GO Quality
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 Layer Type Input Shape Output Shape Filter Size Trainable 
Parameters 
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For this part of the study, inserts that are relatively new and have typical wear patterns are 
manually classified as GO category inserts, and the inserts that have higher wear levels, as shown in 
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For this part of the study, inserts that are relatively new and have typical wear patterns are 
manually classified as GO category inserts, and the inserts that have higher wear levels, as shown in 
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For this part of the study, inserts that are relatively new and have typical wear patterns are 
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Table 3. Target model architecture.

Layer Type Input Shape Output Shape Filter Size Trainable Parameters

0 Input layer 200,200,3 200,200,3 0
1 Convolution layer 200,200,3 198,198,32 3,3,32 0
2 Max pooling layer 198,198,32 99,99,32 2,2,32 0
3 Convolution layer 99,99,32 97,97,32 3,3,32 0
4 Max pooling layer 97,97,32 48,48,32 2,2,32 0
5 Convolution layer 48,48,32 46,46,64 3,3,64 0
6 Max pooling layer 46,46,64 23,23,64 2,2,64 0
7 Convolution layer 23,23,64 21,21,64 3,3,64 0
8 Max pooling layer 21,21,64 10,10,64 2,2,64 0
9 flatten (Flatten) 10,10,64 6400,1 0 0
10 Dense layer 6400,1 50,1 0 0
11 Dense layer 50,1 35,1 0 0
12 Dense layer 35,1 10,1 0 360
13 Dense layer 10,1 2,1 0 22

5. Results and Discussion

The training of the base model was carried out using 223 images, and 105 images were split from
the original dataset for validation; the validation data set consists of approximately 33 percent from
each of the damaged, deformation, and abrasive wear categories. Figure 6a gives the accuracy for base
model training runs. The validation accuracy stabilized around the 200th epoch, and the validation
accuracy is 83.75 percent. Figure 6b presents the loss of over 250 epochs, and the loss is the indication
of the magnitude of deviation between prediction and the actual value.
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For the second part, the objective is to demonstrate the capability of the system to adapt to the
new task of TCP deployment using fewer images and shorter training time. For this, the data are
partitioned into three sections: training, validation, and test dataset; various training runs are carried
out using a different number of images. The summary of the number of images used for each run is
shown in Table 4. All the images in the three sections are different and are not repeated. The images in
the test data set can be seen in Figure 7; the GO category images have no wear or have typical wear
pattern; these tools produce conforming parts, and the NO GO category have visible wear on the edges;
these tools produce non-conforming parts.

Table 4. Training, validation, and test data split for different runs.

RUN Training Pictures Validation Pictures Test Pictures

1 13 10 20
2 18 12 20
3 23 16 20
4 27 18 20
5 37 26 20
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Figure 8 shows the accuracy and loss values for different runs. It can be seen from Figure 8b that
the loss value plateaued around the 5th epoch in most of the runs, signifying that the optimization
of the parameters requires fewer iterations, which enables the system to accommodate a variety of
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TCPs and with fewer training requirements. Figure 8c and d show the accuracy and loss of the trained
models on the test dataset. It can be seen that the accuracy of the models increases with the number
of images used for training the model. Run 4 had a smaller loss value when compared to run 5 but
had lower accuracy; this can be attributed to overfitting of data which led to misclassification of the
images in the NO GO category test data as GO category images. Run 5 had the best results in terms of
accuracy on test data, where 37 images were used in training the model. The accuracy of the test data
for run 5 was 85 percent; the confusion matrix for run 5 can be seen in Table 5. The model predicted all
NO GO label images correctly and predicted 3 images of GO labels incorrectly.
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Table 5. Confusion matrix for run 5.

Actual
Prediction

GO NO GO

GO 7 0
NO GO 3 10

The final part of the study is the deployment of the system using a graphical user interface (GUI).
Figure 9 gives a view of the GUI; the output of the GUI is feedback to the operator. The feedback is NO
GO for tools that the target model predicts will produce a non-conforming part, and GO for tools that
the model predicts will produce a conforming part. The machine operator is encouraged to replace
the tool when the GUI displays NO GO. The prediction is generated within 5 s, facilitating the mass
production without interruptions from quality inspections.
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The proposed system directs the TCM from a quantitative to a qualitative approach using a
TCP. This is the reason the study does not consider quantification of the wear using any measuring
system, and this makes the system more flexible to accommodate different quality requirements seen in
machine shops around the world. The system uses the feature extraction capabilities of CNN and the
ability of these models to learn new features using TL. Future development in the proposed system has
three fronts. First, the development of the camera system to be integrated into the machine: the image
acquisition in the study was independent of the machine, but the system has demonstrated that the
images acquired at a reasonable distance away from the cutting operation can be used and classified
by the system. The system uses standard room lighting; there are systems discussed in studies done by
Sun et al. [14], which are capable of generating the required light intensity and protecting the camera
from cutting oil. Second, improvement of the intelligence and accuracy of the system by integrating
more diverse wear images into the base model: since the base model is the central nervous system and
target models have similar data distribution, the accuracy of the GO/NO GO model can be improved
with fewer iteration requirements, and with a more robust base model. Finally, the proposed system is
designed for the turning process: considering that the wear mechanisms in milling are different, there is
a need to develop a similar system for milling applications. A similar neural network can be trained
with milling insert data to repurpose the framework for a milling application. The CNN architecture is
a standard approach when it comes to image recognition and identification-related neural network
architectures. The area of deep learning also continues to evolve; therefore, there is a need to keep an
eye out for new techniques that can improve the training time and accuracy of the system.

6. Conclusions

The proposed study redirects tool condition monitoring from tool wear quantification to the
objective of providing a more proactive qualitative approach to quality management that saves the
resources used in the production of non-conforming parts. A tool change policy is employed to detect
these changes in quality indicators and change the tools when they occur. Given the different quality
requirements, there are a variety of tool change policies. Therefore, tool condition monitoring that
is flexible enough to adapt to different tool change policies is developed. The developed systems
can adapt to a new tool change policy requiring as few as 37 images and 12 training iterations using
concepts of transfer learning and convolution neural networks. The study also developed a qualitative
approach to tool condition monitoring, since the issue that is more important than quantifying the wear
on a cutting tool is whether the tool produces a conforming or a non-conforming part. This is captured
in the system by extending the concept of GO/NO GO gauges to different quality requirements through
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tool conditions. The tools that are predicted to produce a conforming part are categorized as GO tools,
while non-conforming part producing tools are classified as NO GO tools. The developed system can
identify the GO/NO GO quality tool with 85 percent accuracy. Lastly, a graphical user interface is
also developed to give feedback to machine operators about the usability of the tools. The system is
designed to operate in between machining cycles, checking the usability of every tool before they are
used. The system only takes a few seconds to determine the usability of the tools. This concept helps
in making the proposed methodology an in-process tool condition monitoring system.
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