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Featured Application: Cavitation peening, Cleaning, Drilling.

Abstract: When a high-speed water jet is injected into water through a nozzle, cavitation is generated in
the nozzle and/or shear layer around the jet. A jet with cavitation is called a “cavitating jet”. When the
cavitating jet is injected into a surface, cavitation is collapsed, producing impacts. Although cavitation
impacts are harmful to hydraulic machinery, impacts produced by cavitating jets are utilized for
cleaning, drilling and cavitation peening, which is a mechanical surface treatment to improve the
fatigue strength of metallic materials in the same way as shot peening. When a cavitating jet is
optimized, the peening intensity of the cavitating jet is larger than that of water jet peening, in which
water column impacts are used. In order to optimize the cavitating jet, an understanding of the
instabilities of the cavitating jet is required. In the present review, the unsteady behavior of vortex
cavitation is visualized, and key parameters such as injection pressure, cavitation number and sound
velocity in cavitating flow field are discussed, then the estimation methods of the aggressive intensity
of the jet are summarized.
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1. Introduction

Cavitation is a harmful phenomenon for hydraulic machineries such as pumps, as severe impacts
are produced at bubble collapse [1,2]. However, cavitation impacts are utilized for mechanical surface
treatment in the same way as shot peening, and this is named “cavitation peening” [3,4]. The great
advantage of cavitation peening is that shots are not used in the peening process, as cavitation impacts
are used in cavitation peening [5]. Thus, the cavitation-peened surface is less rough compared with the
shot-peened surface, and the fatigue strength of cavitation peening is better than that of shot-peening [6].
In conventional cavitation peening, cavitation is generated by injecting high-speed water jet into
water [3,4], and a submerged water jet with cavitation is called a “cavitating jet”. The cavitation peening
is utilized for the impacts of cavitation collapses, and it is different from water jet peening, in which
water column impacts are used. To use the cavitating jet for peening, it is worth understanding the
mechanism of the cavitating jet.

In a cavitating jet, cavitation is produced inside and/or outside a nozzle when sufficient pressure
difference is applied across the nozzle. As Monkbadi reviewed, vortex structures in turbulent jets [7],
ring vortices (0-mode), a single helical vortex (1st mode) and double-helical vortices (2nd mode) were
observed in a cavitating jet [8–10]. In the case of a developed cavitating jet, which has been used for
practical applications such as cutting, material testing, drilling and peening [11–17], cavitation clouds
are shed periodically [16,18–27]. As it was reported that the lifetime of the cloud is a key factor in
the aggressive intensity of the cavitating jet [28], the investigation of cavitation cloud shedding is
very important. On the other hand, from the viewpoint of cavitation inception, a turbulent jet with
cavitation was investigated [29–32]. In the present review, in order for the cavitating jet to be used

Appl. Sci. 2020, 10, 7280; doi:10.3390/app10207280 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4512-6718
http://www.mdpi.com/2076-3417/10/20/7280?type=check_update&version=1
http://dx.doi.org/10.3390/app10207280
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 7280 2 of 27

for practical applications, the main subject is the developed cavitating jet, as shown in Figure 1a.
In Figure 1, white bubbles are cavitation bubbles, as a used flash lamp was placed at the same side of a
camera. As shown in Figure 1a, the cavitation clouds are clearly observed in the cavitating jet in water.
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Figure 1. Typical aspects of cavitating jet: (a) cavitating jet in water; (b) cavitating jet in air.

Normally, a cavitating jet is produced by injecting a high-speed water jet into a water-filled
chamber, as mentioned above. To apply a cavitating jet for components and/or plants which cannot
be put in the chamber, Soyama developed a cavitating jet in air by injecting a high-speed water jet
into a low-speed water jet, which was injected into air without the water-filled chamber using a
concentric nozzle [33–36]. A typical cavitating jet in air by injecting a high-speed water jet into a
low-speed water jet is shown in Figure 1b. Cavitation clouds are also observed in the water column of
low-speed water jets of cavitating jets in air, as shown in Figure 1b. Even though the cavitating jet
was in air, cloud shedding was observed [35,37,38]. In addition, in the case of the cavitating jet in
air at optimum conditions, the wavy pattern of the low-speed water jet was observed, as shown in
Figure 1b [34,35,37,38]. The frequency of the wavy pattern is equal to the shedding frequency of the
cloud [35]. Even for the cavitating jet in air, unsteady behavior is very important.

In cavitating jets both in water and in air, whereas the cloud shedding frequency is several
hundred Hz [18,35,39,40], only a few severe impacts occur per second [34,41–43] when cavitation
impacts are measured by special-made PVDF transducers [41,42]. Thus, in order to enhance the
aggressive intensity of the cavitating jet in water and air for practical applications of cavitating jets,
the unsteady behavior of the cavitating jet should be investigated. In the present review, the normal
cavitating jet, i.e., the cavitating jet in water, was mainly discussed, and the cavitating jet in water was
simply described as the cavitating jet.

To simulate the cavitating jet numerically, it is important to understand the flow pattern of
the cavitating jet. As is well known, numerical simulation of cavitating flow is not yet easy,
due to the high Reynolds number and phase change phenomenon. Numerical investigation of
three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics [44],
simulation of cloud cavitation on propeller [45], and the hydrofoil [46] were carried out. In the area of
numerical simulation of the cavitating jet, considering bubble dynamics, the numerical simulation
of vortex cavitation in a three-dimensional submerged transitional jet near inception condition was
carried out [47], and bubble growth in the shear layer of the cavitating jet was calculated [48];
residual stresses introduced by cavitating jet considering bubble growth and collapse were also
simulated [49]. The cavitating flow in a venturi nozzle was also tried by a large eddy simulation of
turbulence–cavitation interactions [50]. From the viewpoint of cloud-shedding of the cavitating jet,
numerical analysis of cavitation cloud-shedding in a free submerged water jet was carried out [51,52].



Appl. Sci. 2020, 10, 7280 3 of 27

The interaction of cavitation bubbles and materials was also investigated numerically [53–56]. In the
case of the aggressive cavitating jet, the clouds shed periodically and form ring vortex cavitation on the
impinging surface, and then collapse, producing severe impacts. Thus, the experimental investigation
of the flow pattern would be assisted by numerical simulations for more precise investigations of the
cavitation impacts produced by the cavitating jet.

In the present review, in order to use the cavitating jet for practical applications, papers that
investigated the flow pattern of the cavitating jet experimentally were reviewed. To enhance the
aggressive intensity of the cavitating jet for these applications, the key factors of the cavitating jet were
also summarized, and the estimation method of the aggressive intensity of the jet was discussed. In the
present paper, the aggressive intensity of the cavitating jet means erosion rate measured by weight loss
of the target metals and/or the peening intensity measured by the arc height of the metallic plate.

2. Cavitation

Cavitation is a phase-change phenomenon in which the liquid phase is changed to a gas phase
due to a decrease in liquid pressure to vapor pressure by increasing flow velocity [2], and it is called
“hydrodynamic cavitation”. Cavitation is also generated by ultrasonic vibration, which is named
“ultrasonic cavitation”. Bubbles are also formed by irradiating a pulse laser into water, in which the
bubble behaves as a cavitation bubble [57]; this is called “laser cavitation”. A schematic diagram
of cavitation is illustrated in Figure 2a. When a cavitation nucleus such as a tiny air bubble is
subjected to a low-pressure region, it becomes a cavitation, and it develops and shrinks, then collapses,
producing microjet and shock wave during rebound. The microjet and the shock wave produce a
severe impact, which can deform metals. After rebound and shrinking, bubbles remain in the water,
which is called a residual bubble [58]. In the research area of cavitation, including bubble dynamics,
spherical bubbles have mainly been investigated by numerical simulations [59] and experimental
studies [57,60,61], and the effects of bubble shape and bubble interactions have also been studied [62].
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Figure 2. Schematic diagram of development and collapse of cavitation: (a) spherical bubble;
(b) vortex cavitation.

In experimental studies of severe cavitation erosion, it was found that vortex cavitation, as shown
in Figure 3 [63], produced severe impacts on fluid machineries such as pumps and valves [1,64,65].
A schematic diagram of vortex cavitation is shown in Figure 2b. Cavitation nuclei accumulate in a
vortex, and they become vortex cavitation in a high-speed region, i.e., a low-pressure region. The vortex
cavitation develops and shrinks, then collapses. Regarding a model test of vortex cavitation using a
rotating device [66], a microjet was observed in the vortex cavitation. Thus, in order to use cavitation
impacts for practical applications, the generation of vortex cavitation is very important.
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Figure 3. Typical aspect of vortex cavitation, which produces severe impact [63].

3. Cavitating Jet

3.1. Structure of Cavitating Jet

To show the flow pattern of the cavitating jet, Figure 4 illustrates aspects of the impinging
cavitating jet taken with (a) a flash lamp of 1.1 µs and (b) a shutter speed of 1/25 sec, i.e., 40 ms.
Thus, Figure 4a reveals an instantaneous aspect of the jet, and Figure 4b shows a kind of time-averaged
aspect of the impinging cavitating jet. In the nozzle used for the cavitation jet, the cavitator and the
guide pipe were installed to enhance the aggressive intensity of the cavitating jet [39], and standoff

distance was defined as the distance from the upstream corner of the nozzle to the specimen surface.
As shown in Figure 4a, a cloud cavitation was observed between the nozzle and the impinging surface,
and a ring vortex cavitation was observed on the surface. When the cavitating jet was observed by a
normal light, as shown in Figure 4b, the cavitating jet seems to be a continuous jet from a nozzle to an
impinging surface. However, cloud cavitation sheds from the nozzle to the surface, and the cloud
cavitation becomes a ring vortex cavitation.
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Figure 4. Aspects of cavitating jet (cylindrical nozzle, nozzle diameter d = 2 mm, upstream pressure
p1 = 30 MPa, downstream pressure p2 = 0.1 MPa, standoff distance s = 222 mm): (a) observation with
flash lamp whose exposure time is 1.1 µs; (b) observation with normal light and shutter speed of 40 ms.

To show vortex cavitation in the cavitating jet more precisely, Figure 5a reveals the aspect of
the free cavitating jet through a conical nozzle, and Figure 5b shows the aspect of the impinging
cavitating jet with a flash lamp [9]. As shown in Figure 5b, the PVDF transducers [41,42] were installed
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in the impinging surface, which the white arrow shows, and the signal from the PVDF transducer
was synchronized to the flash lamp; thus, Figure 5b reveals the aspect of the jet which produces the
impact on the impinging surface. As shown in Figure 5a, helical vortex cavitation is observed near
the nozzle outlet, and cloud cavitation is observed downstream from the nozzle. Thus, the cloud
cavitation results from merging the vortex cavitation. In the case of the impinging cavitating jet, a part
of the ring cavitation collapses on the surface producing the impact, which was detected by the PVDF
transducer. The ring vortex cavitation produces a severe impact on the impinging surface. In view of
the practical applications of cavitation impacts generated by the cavitating jet, the collapse of the ring
vortex cavitation is an important phenomenon.
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Figure 5. Vortex cavitation in cavitating jet: (a) helical vortex cavitation in free cavitating jet (conical nozzle,
nozzle diameter d = 2.1 mm, upstream pressure p1 = 6 MPa, downstream pressure p2 = 0.18 MPa);
(b) ring vortex cavitation on impinging surface (cylindrical nozzle, nozzle diameter d = 2 mm,
upstream pressure p1 = 12 MPa, downstream pressure p2 = 0.36 MPa, standoff distance s = 40 mm) [9].

To reveal periodical shedding of cloud cavitation from the nozzle, as mentioned in the introduction,
Figure 6 shows the aspect of the impinging cavitating jet taken by a high-speed video camera. The nozzle
shown in Figure 6 was the same nozzle as in Figure 4, and it had the cavitator and the guide pipe.
At t = 0 ms, the cavitation cloud sheds from the nozzle to the downstream, and the cloud reaches
the impinging surface at t = 1.5 ms. A part of cloud cavitation becomes a ring vortex cavitation at
t = 1.75 ms, and it spreads out on the surface and then collapses. Although the water jet is injected
continuously into water, the vortex cavitations near nozzle shed downstream coalescing each other and
they become a large cloud cavitation, thus the bubble density between clouds is reduced. At t = 4.25 ms,
the new cavitation cloud, whose shape is similar to that at t = 0 ms, sheds from the nozzle. Thus, it is a
periodical phenomenon, as previously reported [16,18–27].

According to a previous report [28], as shown in Figure 7, some cloud, i.e., the 1st cloud in
Figure 7a, stays near the nozzle, and the 2nd jet core passes through the 1st cloud, as shown in
Figure 7b,c; then, the 2nd jet core produces the 2nd cloud downstream of the 1st cloud. The 3rd
jet core passes through the 1st and 2nd clouds and produces the 3rd cloud downstream of the 2nd
cloud, as shown in Figure 7d. The 5th jet core produces the 5th cloud downstream of the 1st cloud
as shown in Figure 7e. Detailed images of the free cavitating jet observed by the high-speed video
camera and the schematic cross-sectional diagrams of the progress of a cavitating jet are shown in
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reference [28]. In Figure 6, the cavitation cloud marked by the yellow arrow stays at nearly the same
position. The cloud cavitation staying where it is means that it has a long lifetime. The jet core with a
longer lifetime cavitation cloud impinges the surface with high impingement pressure, as a drag of
the jet core with the larger cloud is lesser than that of a smaller cloud because of the density of water
and bubbles. Thus, the aggressive intensity of the cavitating jet with a longer lifetime cavitation cloud
is larger.

Namely, the lifetime of the cloud is a key factor of the cavitating jet, and the longer the cloud
lifetime, the more aggressive the intensity of the cavitating jet [28].

Figure 8 shows a typical aspect of a pure aluminum specimen that was exposed to the fixed
cavitating jet, revealing the treatment area of the fixed cavitating jet. Plastic deformation pits are
observed in a ring region, whose outer diameter is 60 mm and inner diameter is 30 mm. When the
nozzle is scanned or the specimen is moved, the treatment area is uniform [67]. In Figure 8, as the
nozzle throat diameter was 2 mm, the cavitating jet can treat an area 30 times wider than that of the
nozzle throat. While the white region, which was impinged by the jet core, was observed at the jet
center, the main treatment area is the ring region. Namely, the jet center is not treated by cavitation
impacts. The understanding of the treatment area by the cavitating jet shows that a ring region is very
important when using the cavitating jet for the practical applications.
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Figure 6. Aspects of impinging cavitating jet observed by high-speed video camera (cylindrical nozzle,
nozzle diameter d = 2 mm, upstream pressure p1 = 30 MPa, downstream pressure p2 = 0.1 MPa,
standoff distance s = 222 mm).
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Figure 7. Schematic diagram of the development of cavitation cloud in cavitating jet: (a) 1st cloud
produced by the 1st jet core; (b) 2nd jet core passing through the 1st cloud; (c) 2nd cloud produced by
the 2nd jet core and 3rd jet core passing through the 1st cloud; (d) 3rd cloud produced by the 3rd jet
core and 4th jet core passing through the 1st and 2nd clouds; (e) 4th cloud produced by the 4th jet core,
and 5th cloud produced by 5th jet core passing through the 1st clouds.
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Figure 8. Typical treatment area by a fixed cavitating jet (pure aluminum, nozzle diameter d = 2 mm,
upstream pressure p1 = 30 MPa, downstream pressure p2 = 0.1 MPa, standoff distance s = 262 mm,
exposure time t = 1 min) [4].

Regarding the reason for the ring region, Figure 9 illustrates the schematic diagram of the
impinging cavitating jet, considering the observations of the cavitating jet by the instantaneous
photograph and the high-speed video. As shown in Figure 4b, when the cavitating jet is observed by
an instantaneous photograph with normal light, the cavitating region seems to be a continuous jet,
as shown in Figure 9a. It was previously thought that swirl cavitation in the shear region around the
jet directly hits the impinging surface and that the swirl directly produces a ring treatment area [68–71].
However, this is incorrect, because the aspect of the cavitating jet, as shown in Figure 4b is a kind of
time-averaged cavitating region. Considering Figures 4a, 5 and 6, vortex cavitation is initiated in and
near the nozzle outlet, and cloud cavitations combine each other; then, the cloud cavitation forms the
ring vortex cavitation on the impinging surface. Thus, in order to simulate bubbles in the cavitating
jet, the pressure hysteresis of these processes should be considered. For example, if the cavitation in
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swirl directly hit the impinging surface, the pressure around cavitation would be the pressure in the
shear layer around the jet, and it gradually increases with the shedding of cavitation, as the jet speed
decreases from the distance from the nozzle. On the other hand, the pressure of the cloud cavitation,
which impinges the surface, increases at the impinging jet center suddenly and decreases in the ring
vortex cavitation, then increases again.
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To consider the mechanism of the ring erosion occurring on the impinging surface, Figure 10
shows a schematic diagram of the local cavitation number on the surface [72]. The impinging pressure
profile on the surface has a maximum at the jet center, pmax, and it changes with the injection pressure
and cavitation number. The b in Figure 10 is a kind of jet width defined by the flow velocity [72].
The cavitation number of the cavitating jet, σ, is defined by the injection pressure, i.e., the upstream
pressure of the nozzle p1, the downstream pressure of the nozzle p2 and the vapor pressure of water pv

as follows [2], and is simplified as Equation (1) and as p1 >> p2 >> pv.

σ =
p2 − pv

p1 − p2
≈

p2

p1
(1)

In Figure 10, the local cavitation number σL is defined by Equation (2) and is proportional to the
ratio of p − pv and 1

2 ρ vmax
2 [72].

σL ∝
p− pv

1
2 ρ vmax2

∝
p− pv

pmax − p2
f (r) (2)

Here, p and vmax are the pressure and the maximum flow velocity on the impinging surface.
The vmax has a maximum at a certain distance from the jet center, r, as it is zero at the jet center and
at a further point from the jet center as shown in the lower figure of Figure 10. As vmax is mainly
determined by the pressure difference, pmax – p2, σL is described by a function of f (r), as shown in the
right-hand term of Equation (2). When the ring vortex cavitation sheds on the surface, the cavitation
develops the ∂σL/∂r < 0 region, and it collapses at ∂σL/∂r ≈ 0. This is why the ring treatment area is
obtained by the impinging cavitating jet. The detail of the pressure distribution on the impinging
surface was shown in references [72,73].
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3.2. Periodical Shedding of Cavitation Cloud

As mentioned above, the cavitation cloud sheds periodically [16,18–27], and it forms the ring
vortex cavitation; then, the ring vortex cavitation collapses, producing impacts. Thus, the periodical
shedding of the cavitation cloud is an important phenomenon. Figure 11 reveals aspects of periodical
shedding of the cavitation cloud of a cavitating jet [21]. In Figure 11, the jet flows from the left-hand
side to the right-hand side. As shown in Figure 11a, the cavitation cloud breaks near the nozzle at 0.5,
0.9, 1.4 and 1.9 ms; thus, the shedding frequency fshedd is about 2 kHz for p1 = 20 MPa and σ = 0.014.
When p1 is increased to 30 MPa at a constant cavitation number, i.e., σ = 0.014, fshedd is increased to
2.4 KHz, as shown in Figure 11b. When σ is increased from 0.014 to 0.02 at constant p1= 20 MPa,
fshedd also increases from 2 to 3.2 KHz, as shown in Figure 11a,c. fshedd is affected by not only p1 but
also σ. As is well known, the cavitating length Lcav and the width wcav are affected by p1, σ and d. In a
previous report, fshedd was measured experimentally, changing with p1, σ and d, and the following
relations were found [21].

fshedd ∝ w−1 (3)

fshedd ∝ p1
0.45±0.03 (4)

fshedd ∝ d−0.98±0.14 (5)

fshedd ∝ σ0.83±0.10 (6)

When the Strouhal number, St, is defined by fsedd, w and jet velocity at the nozzle exit, U, which is
calculated from p1, the following experimental equation is obtained [21].

St =
fshedd·w

U
≈ 0.18± 0.02 (7)

This result suggests that the cavitation cloud shedding is a phenomenon governed by a constant
Strouhal number. On the other hand, the nozzle outlet geometry affects the aggressive intensity of the
cavitating jet [39,74]. Details are described in Section 4.6. The fsedd is also affected by the nozzle outlet
geometry. For example, when the guide pipe with the cavitator was installed, the aggressive intensity
of the jet was four times larger than that without the guide pipe and the cavitator [39], and St became
nearly a quarter of that of the jet without the guide pipe and the cavitator [75], as fsedd was decreased.
Namely, the constant value of St should be unique to the nozzle outlet geometry. The investigation of
St for various nozzles would be a future work, to enhance and/or control the aggressive intensity of the
cavitating jet.
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4. Key Parameters of Cavitating Jet

4.1. Type of Cavitating Jet

As mentioned above, a cavitating jet normally means a submerged high-speed water jet with
cavitation, i.e., a cavitating jet in water. Soyama developed the cavitating jet in air by injecting a
high-speed water jet into a low-speed water jet without a water-filled chamber [33,35], for cavitation
peening treatment outside of a tank and/or pipes [34,76]. When the residual stress of stainless steel was
measured, it was reported that the cavitating jet in water introduced compressive residual stress in a
deeper region, and the cavitating jet in air introduced large but shallow compressive residual stress on
the surface [4]. The cavitation peening using the cavitating jet in water corresponds to shot peening
using large shots, and that of the cavitating jet in air corresponds to shot peening using small shots
at high velocity. Thus, the characteristics of the treated surface strongly depend on the type of the
cavitating jet.

4.2. Standoff Distance

As shown in Figure 9b, as cavitation is generated inside and/or outside of the nozzle, it becomes cloud
cavitation and forms ring vortex cavitation on the impinging surface, then collapses, producing the impacts.
In view of the practical applications of the cavitating jet, the working mechanism strongly depends on the
standoff distance, which is the distance from the nozzle to the surface. Figure 12 illustrates the weight loss
as a function of standoff distance at constant injection pressure, p1 = 120 bar (12 MPa) [77]. In Figure 12,
the weight loss means a kind of aggressive intensity of the jet. Two peaks are observed at each condition
in Figure 12. For convenience, the peak near the nozzle side and the peak at the further nozzle side are
named the 1st peak and 2nd peak, respectively. The 1st peak results from the impacts produced by water
column collisions in the jet center. Even for the submerged water jet, the similar mechanism of water jet
cutting is still active, whereas the affective region is limited near the nozzle. The 2nd peak is generated
by the cavitation impact, as shown in Figures 6 and 9b. As cavitation is developed and then collapsed,
a certain distance from the nozzle is required. As shown in Figure 12, the optimum standoff distance sopt

of the 1st peak is scarcely affected by cavitation number, and that of the 2nd peak strongly depends on
cavitation number. At p2 = 2.4 bar (0.24 MPa), the weight losses at 1st peak and 2nd peak are 250 and
450 mg, respectively. They are 250 and 220 mg for p2 = 3.0 bar (0.3 MPa) and 300 and 110 mg for p2 = 3.6 bar
(0.36 MPa). When the maximum values of the 1st peak and 2nd peak are compared, the value of the 2nd
peak at p2 = 0.24 MPa is 1.5 times larger than that of the 1st peak at p2 = 0.36 MPa. Namely, at optimum
cavitating conditions, the aggressive intensity due to cavitation impact, i.e., the 2nd peak, is larger than that
of water column impact, i.e., 1st peak. Note that water jet peening and cavitation peening use the 1st peak
and 2nd peak, respectively.

To avoid confusing cavitation peening and water jet peening, Soyama proposed a classification
map for cavitation peening and water jet peening using standoff distance and cavitation number,
as shown in Figure 13. Over 150 points were collected from references [39,74,77–89], and it was found
that the line shown in Equation (8) distinguished between cavitation peening and water jet peening [90].

sopt

d
= 1.8 σ−0.6 (8)

One easy way to confirm the 2nd peak region, i.e., cavitating peening region, is as follows.
Considering the aggressive intensity of the cavitating jet, the target materials are chosen. For example,
in the case of the weak cavitating jet, a soft metal would be better. Then, the target is exposed to the jet.
When a ring pattern is obtained, such as in Figure 8, it is a cavitation peening condition. The removal
of paint can show the treatment area of cavitation peening [91]. A pressure-sensitive film also detects
the treatment area of a cavitating jet [12].
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Figure 12. Weight loss, i.e., the aggressive intensity of the jet, as a function of standoff distance changing
with cavitation number at constant injection pressure. The peak at the near side of the nozzle, i.e., the 1st
peak, was caused by water column impacts. The peak at the far side from the nozzle, i.e., the 2nd peak,
was produced by cavitation impacts. The standoff distance of 2nd peak was changed by the cavitation
number [77].
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Figure 13. Classification map for cavitation peening and water jet peening considering standoff distance
and cavitation number [90].

4.3. Injection Pressure

To show the effect of injection pressure on the processing capability of the cavitating jet, Figure 14
reveals the processing capability β at (a) the 1st peak, i.e., water jet peening, and (b) 2nd peak, i.e.,
cavitation peening, at the constant downstream pressure condition [92]. The processing capability β is
defined by the arc height h of band steel made of the same material as Almen strip, considering the
width of the steel ws and the peening width wp, as follows [92].

α =

∣∣∣∣∣1− wp

ws

∣∣∣∣∣ (9)
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1
ρ

=
8h
L2 (10)

β =
1
ρ

(1 + α) (11)

Here, L is the length to measure h. In Figure 14, the processing capability, i.e., a kind of aggressive intensity,
was obtained by the arc height of the peened plate, as the arc height using the Almen strip is commonly
used to measure the peening intensity [93]. In the case of water jet peening, βincreases with the injection
pressure p1, as the peening effect is produced by water column impacts, which increases with p1. On the
other hand, in the case of cavitation peening, βhas a maximum at p1 = 40 MPa at a constant downstream
condition. When the maximum values of the 1st peak and 2nd peak are compared: βat the 2nd peak is 1.7
times larger than that at the 1st peak. As the jet power of 60 MPa is 1.8 times larger than that of 40 MPa,
the peening efficiency of cavitation peening is about three times higher than that of water jet peening.
Note that too high an injection pressure reduces the peening intensity of cavitation peening, as shown in
Figure 14b. The reason the peening intensity of cavitation peening decreases at p1 > 40 MPa is discussed in
“5. Estimation of Aggressive Intensity of Cavitating Jet”.
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4.4. Cavitation Number

As the cavitating jet is the cavitating flow, the cavitation number is one of the key parameters of
the cavitating jet. To reveal how important the cavitation number is in the cavitating jet characteristics,
the relationship between the cavitation number and the optimum standoff distance is shown in Figure 15 [72].
In Figure 15a, the cavitating length is also added, and the length and the distance are normalized by
effective nozzle diameter De, which is defined by the nozzle throat diameter and discharge coefficient [72].
The data of the references are put in together in Figure 15 [77,81,86,87,89,94], as well as the relationship
on each line, which is a straight line on a log–log scale. That is, the relationship can be described by
Equation (12) [72].

sopt

d
= c1σ

−c2 (12)

Here, c1 and c2 are constants, and they depend on the nozzle geometry.
In Figure 15b, the expected standoff distance considering the pressure distribution and the local

cavitation number on the impinging surface is also shown. The expected standoff distance is on the
line of the log–log scale, and it is very close to the experimental result. The local cavitation number
on the impinging surface is also an important parameter when considering the flow pattern of the
impinging cavitating jet.
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4.5. Sound Velocity in Cavitating Flow Field

In order to consider the key factors in cavitation impacts produced by the cavitating jet
experimentally, sound velocity in the cavitating flow field has been investigated [95]. As erosion rate
increases with acoustic impedance [96,97], the cavitation impact might increase with sound velocity in
the cavitating flow field. In view of luminescence [62,98–100] and erosion [101], the effect of sound
velocity of dissolved gas has been considered; however, there is no example of evaluating the sound
velocity of the cavitating flow field itself. As is well known, the sound velocity changes drastically with
the void ratio [102]. In the present review, the sound velocity in the cavitating flow field is considered.

To reveal the measuring method of the sound velocity of the cavitating flow field, Figure 16 shows
the aspect of the cavitating flow through a Venturi tube. In Figure 16, the water flows from the left-hand
side to the right-hand side. The cavitation occurs at the throat, and the vortex cavitation is observed at
the end of the cavitating region. Further downstream of the vortex cavitation, many tiny bubbles are
observed: they are residual bubbles [58] after cavitation collapses. As shown in Figure 16, the densities of
residual bubbles differ greatly between the left and right sides of the white arrow. When this phenomenon
is observed by a high-speed video camera as shown in Figure 17, the boundary of the density, which is
marked by the yellow arrow in Figure 17, moves downstream. In the experiment, the upstream pressure in
the absolute pressure of the throat was 0.6 MPa, and the ratio of the cross-sectional area between the throat
and the tube was 9; thus, the flow speed at the downstream of the throat was about 3.5 m/s. On the other
hand, the moving speed of the boundary marked by the yellow arrow was over 600 m/s. As shown in
Figure 17, at the starting point of the boundary, the vortex cavitation shrank. This aspect suggests that the
pressure wave is produced by vortex cavitation collapse, and the boundary movement reveals the pressure
wave, as the residual bubbles are collapsed by the pressure wave. The sound velocity in the cavitating
flow field can be estimated by measuring the moving speed of the pressure wave, i.e., the boundary of the
density of the residual bubbles [95].Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 27 
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Figure 17. Aspects of vortex cavitation in Venturi tube observed by a high-speed video camera.
The recording speed of the camera was 51,999 fps. A pressure wave, which is indicated by a yellow,
arrow was observed after the vortex cavitation collapsed.

To explore the effect of cavitation number on the sound velocity, Figure 18 shows the aspect of the
pressure wave changing with the cavitation number. The pressure wave is indicated by the yellow
arrow in Figure 18. In Figure 18, the velocity of the pressure wave, i.e., the sound velocity, is shown in
the right-hand side of the aspect. Figure 19 illustrates the relation between cavitation number and the
sound velocity. The sound velocity vs increases with cavitation number. At a relatively low void ratio,
the sound velocity increases with a decrease in void ratio; thus, the tendency of the relation in Figure 18
is reasonable. As mentioned above, the erosion rate increased with the acoustic impedance [96,97],
and the acoustic impedance is expressed as the product of the sound velocity, the density and the speed
of the microjet; thus, the sound velocity in the cavitating flow field is a parameter of the cavitating
jet. This result suggests that the increase in the sound velocity is one of reasons why the aggressive
intensity of the cavitating jet increases with cavitation number, as the sound velocity increases with
the cavitation number, as shown in Figure 19. On the other hand, the aggressive intensity of the
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cavitating jet decreases with an increase in cavitation number, as the cavitating region and/or bubble
size decreases with an increase in the cavitation number. These two conflicting tendencies are the
aggressive intensity of the cavitating jet has a peak for the cavitation number. More details are provided
in “5. Estimation of Aggressive Intensity of Cavitating Jet”. Note that the aggressive intensity of
the cavitating jet had a peak at σ = 0.01 − 0.014 [4,103,104], and that of the hydrodynamic cavitation
through Venturi tube had a peak at σ = 0.4 − 0.7 [99]. These peaks might depend on the flow pattern of
the cavitating flow and/or the density of the residual bubbles.
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4.6. Nozzle Geometry and Diameter

As mentioned above, the vortex cavitation in the cavitating jet is an important phenomenon,
and the nozzle geometry, especially nozzle outlet geometry, is one of the key factors of the aggressive
intensity of the cavitating jet, as the vortex is strongly affected by the nozzle outlet geometry. Figure 20
shows a schematic diagram of nozzle outlet geometry and the relative aggressive intensity of the
cavitating jet from data published in previous reports [28,39,75,79]. Whereas a similar figure was
introduced by Soyama [3], the data of nozzles K and L [28,75] were added in Figure 20. Nozzles A–E
in Figure 20 are conventional nozzles for a water jet, and nozzle F is the standard nozzle for a standard
test method for the erosion of solid materials by a cavitating jet [15]. Nozzle G is the nozzle obtained
by optimizing the outlet bore and length experimentally [74]. Nozzle I and J had a guide pipe and
a cavitator, as these enhance the aggressive intensity by about two times [39]. When both the guide
pipe and the cavitator were installed, the aggressive intensity became four times larger that of nozzle
J [39]. For nozzle K, when water flow holes were made near nozzle outlet, the aggressive intensity
improved by 34%. When a long guide pipe with holes and water flow holes near the nozzle outlet
were installed for nozzle L [28], the aggressive intensity of its cavitating jet L was 2.5 times larger than
that of nozzle J and nearly 60 times larger than that of conventional water jet nozzles, as shown in
Figure 20. The effect of nozzle geometry was also discussed in [14]. Resonating nozzles were also
proposed and investigated [105,106].Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 27 
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The other important factor regarding nozzles is nozzle size. As mentioned above, vortex cavitation
is an important phenomenon in the cavitating jet. In view of the Reynolds number, which is a key
parameter of vortical flow, the larger velocity and the larger size are effective for the cavitating jet.
However, too high a speed, i.e., too high an injection pressure, decreases the aggressive intensity of
the cavitating jet, as shown in Figure 14b, as the sound velocity is decreased at too low a cavitation
number, i.e., too-high speed condition. Thus, in the case of practical applications of the cavitating jet,
the cavitating jet using a large nozzle at a relatively low injection pressure is better than that of a small
nozzle at a high injection pressure [80]. The scaling law of nozzle size on the aggressive intensity of the
cavitating jet is discussed in reference [107].
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4.7. Water Qualities

As cavitation is a phase-change phenomenon from liquid phase to gas phase, as mentioned above,
the water temperature affects the aggressive intensity of the cavitating jet [108–110]. It was reported
that peening intensity using the cavitating jet at 288–308 K was nearly constant [4]. Whereas cavitation
nuclei are required for the cavitating jet, too many air bubbles reduce the aggressive intensity of the
cavitating jet due to the cushion effect [2] and the decrease in the sound velocity. When the water-filled
chamber for the cavitating jet is too small, the suction vortex caused by the jet reduces the aggressive
intensity of the cavitating jet. Thus, in the report, the effects of water depth and the chamber size on
the aggressive intensity were investigated experimentally [111]. In the report [111], the effect of gas
content on the peening intensity using the cavitating jet was also investigated using degassed water.

5. Estimation of Aggressive Intensity of Cavitating Jet

As mentioned above, in the constant downstream pressure condition, too high an injection
pressure, i.e., too low a cavitation number, reduces the aggressive intensity of the cavitating jet. In this
section, the mechanism is discussed, and a method to estimate the aggressive intensity of the cavitation
jet as a function of cavitation number is proposed.

In Figure 21, the experimental results of the aggressive intensity of the cavitating jet as a function
of cavitation is revealed by blue closed circles [112]. The aggressive intensity is normalized by the
maximum value, and it has a peak at σ = 0.016. As the energy of cavitation is proportional to the
volume of the cavitation and the pressure difference of the bubble [111], the aggressive intensity of the
cavitating jet Icav can be assumed as follows.

Icav ∝ (Lcav)
3
·(p2 − pv) (13)
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As Icav is affected by the acoustic impedance [95,111], the term of the sound velocity vs is included
in Equation (13). As Icav is also affected by flow velocity, which is defined by the pressure difference,
i.e.,
√

p1 − p2, the velocity term is also included in Equation (13).

Icav ∝ (Lcav)
3
·(p2 − pv)·(vs − vs th)· (

√
p1 − p2)

n (14)

Here, vs th is the threshold level of the sound velocity considering the threshold level of Icav [43]. The n
is put as an exponent in Equation (14) to consider the power law of the velocity on Icav [76,105,111–113].
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If it was assumed that Icav was proportional to the flow energy, which was defined by the product of
the pressure and the flow rate, the flow energy is proportional to p1 − p2 and

√
p1 − p2, as

√
p1 − p2

was proportional to the flow velocity. Namely, the flow energy is proportional to cube of
√

p1 − p2.
Thus, in the present review, n = 3 is chosen. From Equations (8) and (14), Equation (15) was obtained.

Icav = c3 σ
−1.8
·(p2 − pv)·(vs − vs th)· (

√
p1 − p2)

3 (15)

Here, c3 is constant. When Equation (15) is assumed, Icav can be estimated by obtaining c3, c4, c5

and vs th by a least-square method.
vs = c4 σ+ c5 (16)

The estimated Icav is shown in Figure 21 by empty squares. The correlation coefficient between
experimental data and estimated values is 0.924. As the number of the datasets was 11, the probability
of non-correlation is less than 0.005%. If the probability of a non-correlation is less than 1%, it can be
concluded that the relationship is highly significant. Thus, it can be concluded that the relationship
between the experimental data and the estimated values is highly significant. Icav can be estimated by
Equation (15).

6. Applications of Cavitating Jet

The cavitating jet has been applied for drilling and cutting rocks [16,105,106,113]. The cavitating
jet in air can also dig concrete structures for the maintenance of infrastructure [114]. In the case of
mechanical surface treatment, the use of a submerged water jet was attempted to mitigate stress
corrosion cracking (SCC) of nuclear power plants by using impinging impacts of a water column
in the jet center at the beginning [84]. Soyama et al. found that the cavitating jet could introduce
compressive residual stress into stainless steel by using cavitation impacts [13]; then, the cavitating
jet was successfully applied to mitigate SCC in nuclear power plants [115]. Based on experimental
results of the introduction of compressive residual stress into metallic materials, the improvement in
the fatigue strength of metallic components by cavitation peening was proposed using a pressurized
chamber to enhance the aggressive intensity of the cavitating jet [116–118], and it was demonstrated
for forging die [119], gears [120,121], continuous valuable transmission CVT elements [122] and
rollers [123]. After enhancing the aggressive intensity of the cavitating jet by optimizing the nozzle
geometry, the improvement in fatigue strength by cavitation peening with an open chamber was
demonstrated [17,124–127]. Cavitation peening using oil was also proposed [128]. Cavitation peening
also improves tribological properties such as fretting fatigue properties [129,130]. The improvement in
fatigue strength of metallic materials using a cavitating jet in air was also demonstrated [36,131,132].
In view of environmental-assisted cracking, the suppression of hydrogen-assisted fatigue crack growth
in austenitic stainless steel and delayed fracture resistance on chrome molybdenum steel by cavitation
peening were reported [133,134].

The cavitating jet can be applied in the semiconductor industry. It can be used not only for
cleaning [135], but also gettering [136]. When erosion rates using ultrasonic vibratory apparatus [137]
and cavitating jet apparatus [15] were compared, the erosion rate of the cavitating jet apparatus was
larger than that of ultrasonic vibratory apparatus. As conventional ultrasonic cleaning devices use
ultrasonic cavitation, cleaning using the cavitating jet is more powerful. The gettering technique is a
method to remove unwanted impurities from active device regions in a silicon wafer into the back side
of the wafer by introducing oxidation-induced stacking faults (OSF) [138–142]. In order to produce
OSF, the introduction of strain into the wafer is required, and shot blasting is used in a conventional
way [143,144]. However, the cleaning of shots is required. In the case of gettering using the cavitating
jet, the cavitating jet can introduce strain for OSF [145,146] and cleaning at the same time. This is a
great advantage for semiconductor processes.

One of the applications that was proposed in the bioengineering area is oral cleaning using
the cavitating jet [147–149]. Dental implants have been used as the solution for the loss of teeth;
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however, peri-implant mucosis and peri-implantitis are new dental diseases affecting implants [150,151].
The most effective treatment for these diseases is cleaning dental plaque, which is a kind of biofilm that
adheres to the surface of teeth and implants [152]. Conventional cleaning methods of the dental plaque
are oral brushing, ultrasonic scaling and rubber cup cleaning. Unfortunately, micro-textured roughness
is made on the implant surface to improve biocompatibility [153], so oral toothbrushes and the tips of
scaling instruments cannot reach the bottom of the rough surface. The cleaning of dental plaque on the
rough surface of dental implants using the cavitating jet has been successfully demonstrated [147–149].

As is well known, sonochemistry is a research area of chemistry using ultrasonic cavitation [154].
Hydrodynamic cavitation such as the cavitating jet and cavitating flow through orifices can be applied
for wastewater treatment [155–162] and to oxidize organic compounds [163]. The dispersion of
spilled oil by a cavitating jet at sea has also been proposed [164]. It was reported that the efficacy of
hydrodynamic cavitation was 20 times better than that of ultrasonic cavitation when the efficiency of
the hydrodynamic cavitation on the pretreatment of biomass was compared with that of ultrasonic
cavitation [165].

7. Conclusions

To use the cavitating jet for practical applications, the unsteady behavior of the cavitating jet, i.e.,
a submerged water jet with cavitation, was reviewed. The key factors on the aggressive intensity of the
cavitating jet were also summarized. In the present review, the aggressive intensity of the cavitating jet
was investigated by erosion rate and/or peening intensity. The main topics reviewed in the paper are
summarized as follows.

(1) The cavitation is initiated inside and/or outside of the nozzle as a ring or helical vortex cavitation.
These vortex cavitations become cloud cavitations combining with each other, and the cloud
cavitation sheds periodically;

(2) Cloud shedding is a phenomenon governed by a constant Strouhal number, which is defined by
the shedding frequency, the flow velocity and the width of the cavitating region;

(3) The cloud cavitation forms a ring vortex cavitation on the impinging surface and then collapses
producing impacts;

(4) At optimum conditions, the affected area on the flat target by the impinging cavitating jet is a ring.
The mechanism of the ring region can be explained by considering the local cavitation number on
the surface. Note that the ring does not directly result from the swirl around the cavitating jet;

(5) At constant downstream pressure conditions, the aggressive intensity of the cavitating jet increases
with the injection pressure, and it saturates at a certain pressure and then decreases. At too high
an injection pressure, the aggressive intensity decreases.;

(6) At constant injection pressure conditions, the aggressive intensity of the cavitating jet increases
with a decrease in cavitation number σ, and it saturates at σ = 0.01 − 0.02 and then decreases at
too low σ;

(7) One reason why the aggressive intensity of the cavitating jet decreases at too high an injection
pressure, i.e., too low a cavitation number, is the decrease in sound velocity in the cavitating
flow field.
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