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Featured Application: The outcome of this paper is a deep-learning-based application for the 
distance measurement between the subject vehicle and the target vehicle or pedestrian, which 
uses the forward-looking image captured by a vehicle-mounted vision sensor to achieve effective 
performances of depth map estimation and distance measurement. The technique can be used in 
advanced driving assistance systems to further enhance driving safety. 

Abstract: As the forward-looking depth information plays a considerable role in advanced driving 
assistance systems, in this paper, we first propose a method of depth map estimation based on semi-
supervised learning, which uses the left and right views of binocular vision and sparse depth values 
as inputs to train a deep learning network with an encoding–decoding structure. Compared with 
unsupervised networks without sparse depth labels, the proposed semi-supervised network 
improves the estimation accuracy of depth maps. Secondly, this paper combines the estimated 
depth map with the results of instance segmentation to measure the distance between the subject 
vehicle and the target vehicle or pedestrian. Specifically, for measuring the distance between the 
subject vehicle and a pedestrian, this paper proposes a depth histogram-based method that 
calculates the average depth values of all pixels whose depth values are in the peak range of the 
depth histogram of this pedestrian. To measure the distance between the subject vehicle and the 
target vehicle, this paper proposes a method that first fits a 3-D plane based on the locations of target 
points in the camera body coordinate using RANSAC (RANdom SAmple Consensus), it then 
projects all the pixels of the target to this plane, and finally uses the minimum depth value of these 
projected points to calculate the distance to the target vehicle. The results of the quantitative and 
qualitative comparisons on the KITTI dataset show that the proposed method can effectively 
estimate depth maps. The experimental results in real road scenarios and the KITTI dataset confirm 
the accuracy of the proposed distance measurement methods. 

Keywords: advanced driving assistance system; semi-supervised network; depth map estimation; 
distance measurement 

 

1. Introduction 

In order to improve road safety, both the scientific community and manufacturers must pay 
more attention to the development of automobile safety technology. As one of the key technologies, 
Advanced Driving Assistance Systems (ADASs) are developing rapidly [1]. Measuring the vehicle–
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vehicle and vehicle–pedestrian distance is one of the main tasks of ADASs [2,3]. Generally speaking, 
existing measurement methods can be placed into two categories [4]: active sensor-based methods 
and passive vision-based methods. Active sensor-methods, such as LiDAR and ultrasonic sensors, 
use echo signals to measure the distance to targets. The main advantage of active sensors is that they 
can be used in different visibility conditions. However, the high cost of the LiDAR system greatly 
restricts their scope of application [5]. As a result of the lack of shape, texture, and color information, 
it is difficult to use the data from ultrasonic sensors to collect further useful information from the 
driving environment. In recent years, because passive vision sensors are relatively cheap and able to 
capture forward-looking images from the vehicle, containing the rich information required for safe 
driving, they have become the basic equipment used in existing ADASs [6,7]. The vision-based 
driving assistance system (V-DAS), a type of ADAS, has been applied in several specific functions of 
ADAS, such as evasive pedestrian protection, lane-keeping support, and traffic sign warning. 

The existing passive vision-based methods used in V-DAS can be further divided into two 
subcategories [8]: stereo vision-based approaches and monocular vision-based approaches. The 
former uses multiple view geometry and stereo image pairs to rebuild a 3D space and generate the 
depth information of the target. However, errors and computational complexities from the calibration 
and matching of stereo image pairs reduce the measurement accuracy and efficiency to a certain 
extent in actual road scenarios [9]. Recently, monocular vision-based ADAS has become a research 
hotspot in the field of intelligent vehicles [10]. Monocular vision methods have certain advantages, 
such as being cheap, having a simple hardware structure, and a wide field of application. However, 
because of the lack of a distance scale, traditional monocular vision-based measurement methods 
cannot complete the absolute distance estimation using only a single image. With the rapid 
development of deep learning technologies, and using the powerful data mining capabilities of deep 
learning, it is entirely possible to complete the distance estimation of different targets online based 
on monocular vision by constructing a deep learning network. Consequently, the main outcome of 
this paper is to present a system that only uses a single image to complete vehicle–vehicle and 
pedestrian–vehicle absolute distance measurements online using ADAS. In addition to monocular 
vision, the proposed system does not need extra sensors as inputs for online applications. 

Specifically, in this study, we first constructed and trained a semi-supervised deep learning 
network which uses the forward-looking visible light image pairs captured by the vehicle-mounted 
CCD camera and sparse depth labels obtained by LiDAR for offline training. It was then able to 
estimate the absolute depth value of each pixel of a single image in the camera body coordinate 
system online. Compared with unsupervised depth estimation methods, the depth estimation results 
of this semi-supervised network are more accurate. On the basis of the depth map of the input image, 
focusing on the two main participants in road traffic activities, i.e., pedestrians and vehicles, this 
paper further proposes a pedestrian–vehicle and a vehicle–vehicle distance measurement method. In 
summary, the main contributions of this paper are as follows: 

(1) This paper combines depth map estimation with Mask-RCNN instance segmentation to 
propose a vision-based absolute distance estimation method for ADAS. For depth map estimation, 
we constructed a semi-supervised deep learning network that uses sparse depth labels and left and 
right views in the offline training process to compute right and left disparity maps, thus improving 
the performance of offline depth estimation. In the process of online depth map estimation, this deep 
learning network can convert an RGB (Red, Green, Blue) image into an RGB-D (depth) image, 
providing depth information corresponding to each pixel of the input image; 

(2) To measure the distance between the subject vehicle and the target pedestrian, we propose a 
depth histogram-based method that calculates the average depth values of all pixels whose depth 
values are in the peak range of the depth histogram of the pedestrian; 

(3) To measure the distance between the subject vehicle and the target vehicle, we propose a 
method that first fits a 3-D plane based on the locations of target points in the camera body coordinate 
using RANSAC, then projects all the pixels of this target to this plane, and finally uses the minimum 
depth value of these projected points to calculate the distance to the target vehicle. 
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Although the proposed system needs to use stereo image pairs and sparse depth information to 
train a semi-supervised network, it is considered to be a monocular vision-based approach because 
it only needs to input a single image when used online in V-DAS. The experimental results on the 
public dataset KITTI and in real road scenarios illustrate that the proposed system can use a single 
vehicle forward-looking image to obtain its corresponding pixel-level depth information and 
accurately predict the distances to different targets to meet the needs of ADAS. 

The remainder of this paper is organized as follows: in Section 2, the related works are briefly 
discussed. Section 3 presents the details of the proposed depth map estimation method. Section 4 
presents the two distance measurement methods based on a forward-looking image and the 
corresponding depth map. Section 5 gives the flow chart of the proposed distance measurement 
system, which combines a pretrained semi-supervised network for depth map estimation and the 
Mask R-CNN network for instance segmentation. Section 6 describes and analyzes the experimental 
results. The conclusions and future work are presented and discussed in the final section. 

2. Related Work 

Generally speaking, stereo-vision methods are not suitable for distance estimation in ADAS. 
There are two reasons for this: firstly, these methods are very susceptible to errors in feature 
extraction and matching. Secondly, they can only achieve relatively sparse and local depth values. 
Therefore, it is difficult to compute the distances of multiple different targets at the same time through 
these depth values. Therefore, in this section, we mainly discuss the distance measurement methods 
based on monocular vision and the progress of the related key technologies. 

Currently, monocular-vision methods for distance estimation used in ADAS can be divided into 
two categories. The first category is based on the geometric relationship and camera imaging model. 
In these types of methods, several parameters from the camera (e.g., the azimuth and elevation angles 
of the camera) and the measured object (e.g., width of the target vehicle) need to be provided in 
advance. Liu et al. used the geometric positional relationship of a vehicle in the camera coordinate 
system to construct the correspondence between the key points in the world coordinate system and 
the image coordinate system, and then established a ranging model to estimate the target vehicle 
distance [11]. Kim et al. used the camera imaging model and the width of the target vehicle to estimate 
the distance to a moving vehicle that is far ahead [12]. The main disadvantage of such methods is that 
the accuracy of distance estimation depends heavily on the measurement accuracy of the parameters 
of the camera or the measured object. The second category involves constructing a regression model 
using machine learning. Wongsaree et al. trained a regression model using the correspondence 
between different positions in an image and their corresponding distances to complete distance 
estimation [13]. Gökçe et al. used the target vehicle information to train a distance regression model 
for distance estimation [14]. The main disadvantage of these methods is that they have to collect a 
large number of training data with real distances. 

In the proposed method, the first and core task is to complete the depth map estimation. 
Traditional methods of vision-based depth map estimation are mostly realized using geometric 
constraints and handcrafted features (e.g., SIFT), such as Structure from Motion (SFM) [15]. The main 
disadvantage of these traditional methods is that they are very susceptible to errors in feature 
extraction and matching, and can only achieve relatively sparse and local depth maps. It is difficult 
to compute the distances of multiple different targets at the same time through these depth maps. In 
recent years, deep learning-based methods represented by convolutional neural networks (CNN) 
have been developed in various fields of computer vision [16], and several CNN-based approaches 
for depth map estimation have been studied [17,18]. Depending on whether they use real depth data 
as the labels during the training process, these methods can be divided into three categories: 
supervised, semi-supervised, and unsupervised methods. Moreover, depth values obtained by 
vision-based methods can be divided into the absolute depth, which denotes the true depth value of 
each pixel in the camera coordinate system, and the relative depth, which indicates the relative 
distance relationship of different pixels in the image. 
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As one of the representatives of the supervised methods, the Coarse-Fine method [19], proposed 
by Eigen et al., contains two CNNs of different scales: the coarse-scale CNN, used to estimate the 
globe depth of the input image; the fine-scale CNN, for optimizing the local details. On the basis of 
this method, Eigen et al. further proposed a multiscale network architecture [20], which can complete 
three tasks, including depth estimation, plan normal measurement, and semantic segmentation. Li et 
al. proposed a combination method in which a CNN is used to regress the depth of superpixels, and 
a conditional random field is used for post-processing [21]. The supervised methods require the real 
depth value of each pixel in the input image as the training labels, which are difficult to obtain. 
Therefore, as a result of the lack of sufficient training samples to train the supervised network, it is 
difficult for these methods to become popularly adopted in different application fields, such as V-
DAS. 

Unsupervised methods are generally divided into two subcategories. One is referred to as the 
self-supervised method, which uses the temporal information from a monocular video as supervision 
information. Compared with supervised methods, the training samples for a self-supervised network 
can be easily obtained. However, self-supervised methods also have some shortcomings. Firstly, self-
supervised methods have to complete pose estimation using other approaches that increase the 
complexity of these methods, as a result the depth estimation results are largely dependent on the 
accuracy of pose estimation. Secondly, because of the lack of scale information, these self-supervised 
methods can only obtain relative depth results, and cannot obtain the absolute depth values. This 
relative depth information does not meet the requirements of ADAS. The other subcategory, 
unsupervised methods, is based on the spatial constraint relationship from the stereo vision acting as 
the supervision information. This means that stereo vision is used during offline training and 
monocular vision is used to estimate depth maps online. Generally, since the relative pose of two 
cameras is known, the estimation results of this subcategory are better than the results of a self-
supervised network. Moreover, different from self-supervised networks, because the relative location 
of two cameras is known, unsupervised methods can obtain the absolute depth value, which is very 
important for ADAS. Garg et al. first used the spatial constraint of two views to propose a depth 
estimation method for unsupervised monocular vision based on convolutional neural networks [22]. 
Garg’s method utilizes a network structure similar to a full convolutional neural network (FCN), 
including encoding and decoding. In the unsupervised network, the depth map is first obtained by 
inputting the left view into the CNN, and then the corresponding disparity map is calculated 
according to the relationship between the disparity and the depth in the stereo vision. Furthermore, 
both this disparity map and the right view are used to reconstruct the left view; the error between 
the original left view and reconstructed left view is used as the loss function of the encoding–
decoding network. On the basis of this network structure, Godard et al. proposed a loss function that 
contains appearance matching loss, disparity smoothness loss, and left-right disparity consistency 
loss [23]. However, the estimation accuracy of unsupervised methods would be further improved if 
new information, including real depths, was added to the loss functions during training. 

Generally speaking, compared to dense depth information corresponding to each pixel of a 
forward-looking image, sparse depth information corresponding to parts of pixels is easier to obtain. 
Therefore, semi-supervised methods using sparse and local depth information have been recently 
studied. Kuzniestsov et al. combined a sparse ground truth depth map with a calibrated stereo image 
pair to train a semi-supervised network [24], which demonstrated state-of-the-art performance using 
the KITTI dataset. Moreover, Ji et al. proposed a novel semi-supervised adversarial learning 
framework that only utilizes a small number of image-depth pairs in conjunction with a large number 
of easily available monocular images to achieve depth estimation [25]. In summary, compared with 
unsupervised methods, semi-supervised methods can achieve better estimation results due to the 
introduction of local and sparse depth labels. 

In this study, we used instance segmentation to build a bridge between the depth map 
estimation and the distance measurement of a specific object. Instance segmentation is based on object 
detection and semantic segmentation, providing different labels for separate instances of objects 
belonging to the same class. As a relatively flexible model for instance segmentation, Mask R-CNN 
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inherits the basic framework of Faster R-CNN and adds an object mask prediction branch [26]. As 
Mask R-CNN is easy to transfer to other tasks, is superior to most methods of instance segmentation, 
and only increases the computational load slightly as compared to Faster R-CNN, this paper employs 
Mask R-CNN to segment the target from the background for target distance estimation. One of the 
earliest applications of instance segmentation for distance estimation was performed by Huang et al. 
They proposed a method that combines instance segmentation and a projection geometry model for 
distance estimation [27]. In the latest work of Huang et al., they obtained the vehicle attitude angle 
using an angle regression model and a segmentation algorithm, and then estimated the distance to 
the vehicle ahead by constructing an “area-distance” geometric model [4]. 

In this paper, we combine the results of depth map estimation, which provide the depth 
information of each pixel, with the results of instance segmentation, which provide the classification 
information of each pixel, to estimate the absolute distances to different participants on the road, e.g., 
cars, vans, trucks, and pedestrians. 

3. Depth Map Estimation 

3.1. Relationship between Disparity and Depth 

The depth estimation principle based on the left and right views is shown in Figure 1, where one 
image pair contains two images lI  and rI captured simultaneously by the left and right cameras; f 
and b are the focal length and baseline distance, respectively, Pl and Pr are the projection points of 
the object point P on the imaging planes of the left and right cameras, respectively, and (xl, yl, f) and 
(xr, yr, f) are the locations of Pl and Pr in the coordinate systems of the left and right camera body, 
respectively. To simplify the following description, we set yl = 0 and yr = 0. As shown in Figure 1, 
according to the property of similar triangles, 

l l
p p

l

x z
x f

= , 
r r
p p

r

x z
x f

=  (1) 

Where ( , )l l
p px z  and ( , )r r

p px z  are the locations of P in the coordinate systems of the left and right 

camera bodies, respectively. As =l r
p px x b− and r l

p pz z= , as shown in Figure 1, Equation (1) can be 
rewritten as follows: 

l l
p p

l

x z
x f

= , 
l l
p p

r

x b z
x f
−

= , (2) 

further, 

l
p

fbz
d

=  (3) 

where d = xl − xr is the left–right disparity and represents the difference in the location of point P in 
the left and right images. From Equation (3), we find that l

pz , denoting the depth of point P in the 
coordinate system of the left camera body, can be obtained if the baseline distance b, the camera focal 
length f, and the disparity d are all known. Therefore, depth estimation can be transformed into a 
problem of solving disparity map computation. Consequently, the main task of a deep learning 
network is to compute the disparity map from the input image pair. 
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Figure 1. The depth estimation principle based on the left and right views. 

3.2. Semi-supervised Learning Network for Depth Map Estimation 

Figure 2 shows the training processing of a semi-supervised learning network for depth map 
estimation. During the training process, the inputs are the left and right views, and the corresponding 
sparse depth labels that have been matched with the left and right views, respectively. The outputs 
of the deep network are two disparity maps corresponding to the left and right views, respectively. 
The loss functions used for training this network contain appearance matching loss, disparity 
smoothness loss, left–right disparity consistency loss, and supervised loss. 
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As shown in Figure 2, the semi-supervised depth estimation network in this paper is based on 
the encoding–decoding network structure. It uses ResNet-50 as the feature extraction model in the 
encoding stage [28], and the ResNet-50 network in the opposite direction in the decoding stage. 

3.2.1. Loss Functions 

Appearance Matching Loss 

In the training process, the left view lI and right view rI  captured by the left and right cameras, 
respectively, are simultaneously input into the network. When the left view lI  is input into this 
depth estimation network, the disparity map rd  that corresponds to the conversion from the left 
view to the right view can be predicted pixel by pixel. Similarly, the disparity map ld  is obtained 
when the input image is the right view rI . Further, we can reconstruct the right view rI  based on 
the original left view lI  and the right disparity map rd , and the left view lI  based on the right 
view rI  and the left disparity map ld . Finally, the reconstructed left view lI  and right view rI  
are respectively combined with the original left view lI  and right view rI  to form a loss function, 
known as the appearance matching loss for network training. This appearance matching loss is 
expressed as follows [29]: 

( )
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1 1
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1 1
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Where l r lI I I， ， and r m n×∈I  , α = 0.85, ( )SSIMX x y, can be calculated using Ref. [30]. 

Disparity Smoothness Loss 

Disparity smoothness loss consists of two parts: (1) the gradient values of the disparity map in 
two directions ( 1, ) ( 1, )l li j i j+ − −d d and ( , 1) ( , 1)l li j i j+ − −d d are used to create local smoothness; 

(2) considering that depth discontinuities often occur at image edges, we weight the gradient values 
of the disparity map with an edge-aware term using the image gradients in two directions. 
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Left–Right Disparity Consistency Loss 

In order to achieve the consistency of left and right disparity maps, the left–right disparity 
consistency loss is introduced to make the left-view disparity map equal to the projected right-view 
disparity map. This loss is shown as follows: 
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Supervised Loss 
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The main difference between unsupervised and semi-supervised depth estimation is that the 
semi-supervised method adds a supervised loss to the above three losses. The prerequisite for using 
supervised loss is to know the true depth values and the predicted depth values. In the training 
process, the true depth values corresponding to parts of pixels are first obtained and matched. The 
predicted depth values of the pixels with true depth values can be converted from the predicted 
disparity map using Equation (3). The supervised loss can be defined as the deviation of the predicted 
depth values Z  from the available ground truth Z, and expressed as follows: 

( , )

( , )

1 ( , ) ( , )

1 ( , ) ( , )

l l l
sv

i j

r r r
sv

i j

C i j i j
N

C i j i j
N

δ

δ

∈Ω

∈Ω

= −

= −





Z Z

Z Z




 (7) 

where Ω is the set of all pixels with true depth values, and N is the number of the pixels with true 
depth values. δ•  is the berHu norm and defined as follows: 

2 2
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,
2

d d
d d dδ

δ

δ δ
δ

 ≤
=  + >


 (8) 

and 

( , )
0.2 max ( ( , ) ( , ) )

Zi j
i j i jδ

∈Ω
= −Z Z  (9) 

Loss Function for Depth Estimation 

The total loss function for depth estimation consists of four parts: appearance matching loss, 
disparity smoothness loss, left–right disparity consistency loss, and supervised loss. As a 
combination of four loss functions, the expression is as follows: 

( ) ( ) ( ) ( )+l r l r l r l r
z ap ap ds ds lr lr sv svC C C C C C C C C= + + + + + +  (10) 

This paper presents a semi-supervised method that adds a supervised loss item to the 
unsupervised method to complete the depth estimation. Compared with unsupervised methods that 
only use the left and right views, this semi-supervised method can improve the estimation accuracy 
by introducing sparse and local depths corresponding to parts of pixels. Since the resolution and scan 
range are limited, 3-D LiDAR can only scan some points corresponding to parts of the image pixels 
and obtain sparse depth information of the front view scene of the vehicle. 

During the training process, in order to make full use of the sparse and local depth information, 
we increase the use of the supervised loss function in the unsupervised framework. Specifically, for 
pixels with true depth values, we employ this depth information as the ground truth and add a 
supervised loss function. Additionally, for pixels without depth labels, the unsupervised method 
based on the principle of binocular reconstruction is used. This combination of unsupervised and 
supervised methods is referred to as semi-supervised depth estimation. 

3.2.2. Depth Map Estimation 

When the offline training is completed, we can obtain a pretrained depth estimation network. In 
the online test process, only one single test image is inputted into this pretrained depth estimation 
network, and the disparity map corresponding to this input image is calculated. Finally, according to 
Equation (3), the depth value of each pixel of the input image in the coordinate system of the left camera 
body can be estimated by combining the focal length and baseline distance of the binocular camera used 
for training. The depth values of all pixels form a depth map corresponding to the input image. 
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4. Distance Measurement between the Target and the Subject Vehicle 

4.1. Pixel-Level Depth Map of the Target 

Using the trained semi-supervised depth estimation network, we can obtain the pixel-level 
depth map. In order to measure the distance between the target and the subject vehicle, it is necessary 
to detect the pixels belonging to the target from the input forward-looking image. It is well known 
that instance segmentation can achieve pixel-level target classification. As a general instance 
segmentation architecture, Mask R-CNN is based on the Faster R-CNN detector and identifies the 
pixel-level regions of the target by adding a branch for the segmentation task. According to the results 
of instance segmentation, we can obtain the depth value of each pixel of the target. Figure 3 shows 
two forward-looking images captured by ADAS. The left image contains a car, the pixels of this car 
from instance segmentation, and the corresponding depth maps in 2D and 3D spaces, respectively. 
The right image in Figure 3 contains a pedestrian, the pixels of this pedestrian from instance 
segmentation, and the corresponding depth maps in 2D and 3D spaces, respectively. 

 
Figure 3. Pixel-level depth maps of the target. (a) Forward-looking image including a car and its depth 
map. (b) Forward-looking image including a pedestrian and its depth map. 

4.2. Target Distance Measurement 

Figure 4 shows the pixel depth values of the car and pedestrians in Figure 3 in the camera body 
coordinate system. Generally speaking, to ensure a certain safety margin of ADSA, the minimum 
depth value in all pixels of this target can be regarded as the distance between the target and subject 
vehicle. However, in order to reduce the influence of the noise and error of depth map estimation, 
we present different methods to measure this distance according to different objects. As we all know, 
the three-dimensional structure of a vehicle can simply be considered as composed of multiple planes. 
On the contrary, the shape of the human body is a curved surface. The above spatial structures and 
shapes of the vehicle and the pedestrian can be observed from Figure 4a,b. Therefore, in the proposed 
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methods, we divide the road targets into two types: vehicle (e.g., car, van, truck) and pedestrian, 
based on their 3D shapes, and we use two approaches to measure the distance, respectively. 

 
Figure 4. Locations of the object points in the camera body coordinate system. (a) The object point 
locations of the car. (b) The object point locations of the pedestrian. (c) The fitted plane using the object 
points of the car. (d) The depth histogram of the object points of the pedestrian. 

4.2.1. Distance Measurement of the Target Vehicle 

If the target is a vehicle, we first fit a plane in the camera body coordinate system using object 
points corresponding to the pixels of the vehicle and the RANSAC algorithm [31]. Suppose that 
( ), ,i i i

l l lx y z  is the coordinate of the point corresponding to each pixel of the target vehicle in the 

camera body coordinate system, S is the number of these object points, and i = 1, …, S. By using 
RANSAC, a fitted plane in the camera body coordinate system can be determined and expressed as 
z ax by c= + + . Secondly, by projecting the image points ( ), ,i i i

l l lx y z
 

onto this plane, specifically, 

ˆi i i
l l lz ax by c= + + , we can obtain a set ˆ ˆ{ | 1,2,..., }i

lZ z i S= = . Finally, the distance between the target 
vehicle and the subject vehicle is equal to the minimum value of this set Ẑ . 

4.2.2. Distance Measurement of the Target Pedestrian 

Different from a target vehicle, the object points of the pedestrian in the camera body coordinate 
system cannot be fitted as a plane. Consequently, this method first uses the histogram to count the 
number of object points with different depth values. Specifically, suppose that ( ), ,i i i

l l lx y z  is the 

coordinate of the object points of the target pedestrian, S is the number of object points, min_z and 
max_z are the minimum and maximum depth values of the object points, respectively, the statistical 
range of depth values in the histogram is from min_z    to max_z   , and the interval is 1, where 

•   and •    indicate rounding down and rounding up to an integer, respectively. Secondly, the 
peak of the histogram and the corresponding depth range are obtained. Finally, the distance between 
the target pedestrian and the subject vehicle is the average of the depth values in this range. 
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5. Proposed Method Implementation 

On the basis of the pretrained semi-supervised network for depth map estimation and the Mask 
R-CNN network for instance segmentation, the flow chart of the proposed distance measurement 
method is as follow (shown in Figure 5). 

 
Figure 5. Flow chart of the proposed distance measurement method. 

It is important to note that when the binocular vision equipment used in offline training is 
different from the image sensor used in the online test, in order to obtain the absolute depth value, it 
is necessary to adjust and calibrate the focal length of the online sensor based on the image resolution 
and focal length of the training equipment. The relationship between two focal lengths is as follows: 

train train
test

test

f wf
w

=  (11) 

where ftrain and ftest are the focal lengths of sensors for training and testing, respectively, and wtrain and 
wtest are the widths of the training and test images, respectively. As mentioned above, the output of 
the pretrained network for depth estimation is the disparity map d. In order to obtain the depth value 
of each pixel of the input image, we must use the following equation: 

( , )
( , )
testf bi j
i j

=D
d

 (12) 

where ( , )i jD  is the depth value of each pixel, ( , )i jd  is the disparity value of each pixel, and b is 
the baseline length of the binocular vision equipment used in offline training. 

6. Experiments and Results 

6.1. Implementation Details 

Firstly, we trained a semi-supervised network for depth estimation on a computation hardware 
platform with NVIDIA GeForce GTX 1080Ti (NVIDIA, Santa Clara, CA, USA), with the Ubuntu 14.04 
(Canonical, London, UK) operating system and the TensorFlow1.4.0 (Google, Mountain View, CA, 
USA) development tool. In the KITTI dataset, we selected 7322 groups as the training set, in which 
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each group contained right and left views and two corresponding sparse depth maps [32]. KITTI is a 
popular dataset which can be used for vision algorithm testing of ADAS; it contains a large number 
of stereo image pairs captured from a car driving in an urban scenario and also provides sparse depth 
data matched with the stereo vision. These depth data were not only the sparse depth labels in the 
training process, but also the ground truth for algorithm evaluation. During depth estimation 
network training, we used stochastic gradient descent with an initial learning rate of 0.0001 and 50 
epochs. From the 30th to 40th epoch, the learning rate was reduced to 1/2 of the initial value, and the 
learning rate of the last 10 epochs was reduced to 1/4 of the initial value. The batch size was equal to 
8. We used the Adam optimizer to optimize the model, and set β1 = 0.9 and β2 = 0.999. The Mask R-
CNN model used in this paper was downloaded from https://github.com/matterport/Mask_RCNN. 

In order to assess the performance of depth map estimation, which is the key of distance 
measurements, we used the following depth evaluation metrics [33]: 

(1) Absolute relative error (AbsRel) 

1
= 1 N

i i

i i

z z
AbsR

N z
el

=

−



 (13) 

(2) Root-mean-square error (RMSE) 

2

1

1 N

i i
i

RMSE z z
N =

= −   (14) 

(3) Threshold accuracy 

max ,i i

i i

z z
z z

δ
 

= 
 




 (15) 

where the threshold usually takes three values: 1.25, 1.252, and 1.253; for different thresholds, there 
are different threshold accuracies: δ < 1.25, δ < 1.252, and δ < 1.253; N is the number of pixels with 
ground truth in the test set; iz  and zi are the predicted depth value and true depth value, 
respectively. Regarding the above evaluation indexes, the smaller the first two parameters (AbsRel 
and RMSE), the higher the accuracy of the depth estimation result. Conversely, the larger the 
threshold accuracy, the better the depth estimation result. 

6.2. Performance Comparison of Depth Estimation 

6.2.1. Quantitative Comparison with the Other Four Methods 

In this subsection, we provide a comprehensive comparison of the proposed depth map 
estimation method with four other methods: Eigen’s method [20], which is a supervised depth 
estimation method; Zhou’s [34] and Godard’s [23] methods, which are unsupervised estimation 
methods; Kuznietsov’s [24] method, which is a semi-supervised method. We conducted the 
quantitative comparison experiments on the KITTI dataset. We used 200 images from the KITTI 2015 
dataset as the test samples. In Table 1, we illustrate the comparative results of the proposed method 
with the other four methods on the KITTI dataset. We found that in terms of absolute relative error, 
the semi-supervised method presented in this paper is a huge improvement as compared with the 
supervised method of Eigen et al. and the unsupervised method of Zhou et al. The results obtained 
by our method are also significantly better than the results of Godard’s method which uses left–right 
consistency. In addition, our method outperforms the Kuznietsov’s method which is also a semi-
supervised method. From the perspective of the root-mean-square error, the method in this paper is 
significantly improved compared to the other four methods. In terms of threshold accuracy, 
accuracies of more than 90% were achieved for the three thresholds of our method, all being higher 
than the other methods. 
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Table 1. Quantitative comparison on the KITTI dataset. 

Method Category Abs_Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253 
Eigen et al. Supervised 0.203 6.307 0.702 0.890 0.958 
Zhou et al. Unsupervised 0.183 6.709 0.734 0.902 0.959 

Godard et al. Unsupervised 0.128 5.547 0.815 0.922 0.968 
Kuznietsov et al. Semi-supervised 0.076 3.842 0.903 0.948 0.975 

Ours Semi-supervised 0.071 3.740 0.934 0.979 0.992 

6.2.2. Ablation Study of Depth Map Estimation 

Compared with unsupervised networks, semi-supervised networks can improve the 
performance of depth map estimation by introducing the sparse and local depth labels. In this 
subsection, we present our experiment to demonstrate the function of these sparse labels. Figure 6 
shows the comparative results of the unsupervised and semi-supervised methods. The first row 
contains three forward-looking images captured by on-board vision system and containing vehicles 
and pedestrians. Three maps of the 3-D point cloud are the sparse and local depth labels 
corresponding to the three images in the first row. From the depth labels in the second row, we can 
observe that the ground truth of the depth value is mainly concentrated in the middle area of each 
image, and there is no ground truth in the upper and lower edges. The third row contains the depth 
map estimation results obtained by the unsupervised method, which only uses left–right consistency. 
The last row contains the depth maps estimated by the proposed semi-supervised method. By 
comparing the areas in white rectangles in the third and fourth rows, and considering the areas in 
red rectangles in the first row, we can see that the results of the semi-supervised method can estimate 
depth values more accurately. For example, the depth prediction of strip objects such as pedestrians 
and traffic signs is more accurate. 

 
Figure 6. Qualitative comparison of unsupervised and semi-supervised depth map estimation. (a) 
The first row shows the forward-looking images used as the inputs of the depth map estimation 
network. (b) The second row shows the sparse and local depth values as the training labels. (c) The 
third row shows the results of the unsupervised method. (d) The fourth row shows the results of our 
method. 

6.2.3. Depth Map Estimation in Real Road Scenarios 

In order to further verify the generalization ability of the proposed method, we directly used the 
depth estimation model trained on the KITTI dataset to do tests in real road scenarios. The results are 
shown in Figure 7 and clearly show that even if there are no road driving scene images with similar 
perspectives added to the training sample set, due to its good generalization ability, the proposed 
depth estimation network can still effectively recover depth information from the test scene and meet 
the requirements of distance estimation in ADAS. 

(a) 

(b) 

(c) 

(d) 
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Figure 7. Results of depth map estimation in real road scenarios. (a) The first row shows forward-
looking images captured from the real road scenarios. (b) The second row shows the depth maps of 
the images in the first row using the proposed method of depth map estimation. 

6.3. Distance Measurement of the Target 

6.3.1. Distance Measurement of the Pedestrian 

In this subsection, we evaluate our distance measurement method for pedestrians. Our method 
computes the depth average of all pixels whose depth values are in the peak range of the depth 
histogram. To verify the effectiveness of our measurement method, we compared it with the method 
that calculates the average depth of all pixels belonging to the pedestrian region. In the experiment, 
under the premise of fixing the camera position, we arranged the human to stand at the positions L 
and 2L, away from the camera position, and conducted quantitative comparative experiments under 
four different L values, as shown in Figure 8. Figure 8a is a schematic diagram of our experimental 
device, Figure 8b,c shows four original images corresponding to different L values (2.82, 3.93, 5.87, 
and 7.86 m) and their depth maps using the proposed depth map estimation network. 

 
Figure 8. Distance measurement of the pedestrian. (a) Schematic diagram of the experimental device. 
(b) Four original images corresponding to different L values: L = 2.82 m in (b-1); L = 3.93 m in (b-2); L 
= 5.87 m in (b-3); L = 7.86 m in (b-4). (c) Depth maps corresponding to four input images of (b) using 
the proposed depth map estimation network. 

The distance measurement results of the pedestrian are given in Table 2. According to these 
results, we came to the following two conclusions: (1) the pedestrian distance measurement error of 
our method is significantly smaller than the error obtained using the average depth value; (2) the 
measurement results of our method effectively reflect the relative distance between two pedestrians, 
i.e., the distance between the second pedestrian and the camera is twice the distance between the first 
pedestrian and the camera. 
  

(a) 

(b)
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Table 2. Results of pedestrian distance measurement. 

L (Ground 
Truth) 

Average Depth Value Our Method 
The First 

Pedestrian 
The Second 
Pedestrian 

The First 
Pedestrian 

The Second 
Pedestrian 

2.82 2.96 5.82 2.67 5.56 
3.93 3.76 7.48 3.97 7.92 
5.87 5.44 12.07 5.82 11.34 
7.86 7.51 15.72 8.13 16.02 

Average error 
0.298 0.267 0.158 0.167 

0.283 0.162 

6.3.2. Distance Measurement of the Vehicle 

In the vehicle distance measurement experiment, we selected a car and an SUV (as shown in 
Figure 9), which are common in road scenarios, as the experimental objects, and used a laser 
rangefinder to measure the minimum horizontal distance to the target, starting from 2.5 m, taking a 
picture every 2.5 m, and using a camera with the focal length of 4.58 mm to 12.5 m. To test the 
performance of our vehicle distance measurement method, we compared it with the aforementioned 
average depth method and the method used in the pedestrian distance measurement. The 
comparative results are shown in Table 3. From these, we came to the following conclusions: (1) 
compared with the car distance measurement results, the measurement accuracy for the SUV was 
better; this is because the rear of an SUV is similar to a plane and so the plane fitting error is smaller; 
(2) no matter what method was used, as the real distance between the subject camera and target 
vehicle increased, the measurement accuracy decreased significantly. We believe there are two 
reasons for this. First, when the distance is greater, the mask of the target becomes smaller and thus 
the mask error becomes larger, i.e., the pixels that do not belong to the target area are extracted for 
the distance measurement. Secondly, according to the principle of binocular vision, since the baseline 
length is fixed, the longer the distance, the lower the measurement accuracy; (3) our vehicle distance 
measurement method demonstrated a better performance than the other two methods. Specifically, 
for the SUV distance measurement, the results of our method were better than the other methods for 
all five distances, and for the car distance measurement, our method was the best for three of the five 
distances. 

 
Figure 9. Test vehicles containing (a) a car and (b) an SUV. 

Table 3. Results of the vehicle distance measurement. (The best result in each row and each type of 
vehicle is shown in bold and italics). 

Distance (Ground Truth) 
Average Depth Value Method of Depth Average Ours 

Car SUV Car SUV Car SUV 
2.5 m 4.7 2.9 5.4 2.7 2.9 2.4 

(a) (b) 
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5 m 7.6 6.8 5.8 5.3 5.0 5.0 
7.5 m 11.1 8.2 7.6 7.1 7.3 7.4 
10 m 10.6 8.8 8.5 7.7 9.2 9.3 

12.5 m 14.3 9.9 10.4 9.5 10.8 9.9 

6.3.3. Distance Measurement on the KITTI Dataset 

In this section, we provide several distance measurement results using the proposed method, 
which combines semi-supervised depth estimation, Mask RCNN, and pedestrian and vehicle 
distance measurement capabilities. Figure 10 shows several forward-looking images from the KITTI 
dataset, the red rectangles represent the targets, i.e., pedestrians (P), trucks (T), vans (V), and cars (C). 
The true distances of these targets and the corresponding estimated results are shown in Figure 11. 
In Figure 11, there are 28 targets, containing 3 pedestrians, 1 truck, 3 vans, and 21 cars. The average 
distance error rate of the 28 targets was 5.56%, in which the average distance error rate of the 
pedestrians was 4.02%, and the vehicles’ average error rate was 5.74%. Compared with the 
measurement results using images captured by our camera, the accuracy of the distance 
measurements using the KITTI dataset was obviously higher. This is mainly because our model for 
depth map estimation used KITTI images as training samples. It is worth noting that the average 
processing time using the proposed distance measurement method for each image was 1.824 s, of 
which the online running time for the depth map estimation was 0.085 s, the time required for MASK-
RCNN as 1.682 s, and computational time of distance measurement was 0.057 s. Therefore, in order 
to improve the real-time performance of the proposed method, it is necessary to improve the 
computational efficiency of the instance segmentation algorithm. 

 
Figure 10. Several examples from the KITTI dataset for distance measurement. Images (a)–(j) are the 
forward-looking images from the KITTI dataset which show the bounding boxes and categories. 
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Figure 11. Ground truths (GT) of the distance and corresponding estimated values of all targets in 
Figure 10 using the proposed architecture (unit: m). 

We also tested the performance of depth map estimation when the target brightness changed 
due to the angle of light irradiation. In Figure 12a, as a result of the reflection of light, the brightness 
values of some areas on the rear windshield of the vehicle in the red rectangle are too large. 
Conversely, the rear of the vehicle in the red rectangle in Figure 12b is in shadow. Figure 12c,d shows 
the corresponding depth maps of Figure 12a,b, respectively. From these two depth maps, we can 
observe that the depth values of pixels in the overexposed areas and shadowy areas have not changed 
significantly. Therefore, in a daytime road environment, the direction and intensity of light had little 
effect on the results of depth map estimation and distance measurement using the proposed method. 

 
Figure 12. The results of depth map estimation in the overexposed area and shadowy area. (a) 
Overexposed area. (b) Shadowy area. (c) Depth map of (a). (d) Depth map of (b). 

7. Conclusions 

The distance information between the target vehicle or pedestrian and the subject vehicle plays 
a very important role in ADAS. Therefore, this paper firstly proposed a semi-supervised depth map 
estimation algorithm, and then combined it with the Mask-RCNN instance segmentation algorithm 
to propose different distance measurement methods for target pedestrians and target vehicles. The 
depth map estimation algorithm in this paper used the left and right views of binocular vision and 
sparse depth ground truth to pretrain an encoding–decoding network. In the process of depth 
estimation, we used the known camera focal length, baseline length of training samples, and the 
pretrained deep model to compute the absolute depth map of a single input image. On the basis of 
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the estimated depth map and the pixel-level classification results of Mask-RCNN for the pedestrian 
target, this paper proposed a distance measurement method that calculates the average of the depth 
values corresponding to all pixels whose depth values are in the peak range of the target region depth 
histogram. For the vehicle target, this paper proposed a distance measurement method which first 
fits a plane using RANSAC, then projects all the pixels from the target to this plane, and finally uses 
the minimum depth value of these projected points to calculate the distance to the target vehicle. 
Extensive tests using a public dataset were conducted to assess the results of depth map estimation 
and real experiments were performed to evaluate the results of the distance measurements. The 
experimental results using the public dataset proved the superior performance of the proposed depth 
map estimation method, and the experimental results in real road scenarios confirmed the 
effectiveness of the distance measurement methods. 

Since the accuracy of the proposed distance measurement results depends to some extent on the 
results of instance segmentation, we plan to combine the depth map and the shape of the target to 
improve the location precision of masks obtained by instance segmentation and further improve the 
accuracy of distance measurement. Additionally, in bad visibility conditions caused by illumination, 
gas particles, dust, fog, etc., the proposed method using images from the visible light sensor does not 
achieve satisfactory results. Therefore, our research group is studying a completely new method that 
uses infrared images for distance estimation for ADAS in cases of low visibility. 
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