
applied  
sciences

Article

Convolutional Neural Network (CNN)-Based Frame
Synchronization Method

Eui-Rim Jeong 1 , Eui-Soo Lee 1, Jingon Joung 2 and Hyukjun Oh 3,∗

1 Department of Info. and Commun. Engineering, Hanbat National University, Daejeon 34158, Korea;
erjeong@hanbat.ac.kr (E.-R.J.); 30191055@edu.hanbat.ac.kr (E.-S.L.)

2 School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea;
jgjoung@cau.ac.kr

3 Department of Electronics and Communications Engineering, Kwangwoon University 26 Kwangwoon-ro,
Nowon-gu, Seoul 01891, Korea

* Correspondence: hj_oh@kw.ac.kr

Received: 5 September 2020; Accepted: 14 October 2020; Published: 17 October 2020
����������
�������

Abstract: A new frame synchronization technique based on convolutional neural network (CNN)
is proposed for synchronized networks. To estimate the exact packet arrival time, the receiver
typically uses the correlator between the received signal and the preamble or pilot in front of the
transmitted packet. The conventional frame synchronization technique searches the correlation
peak within the time window. In contrast, the proposed method utilizes a CNN to find the packet
arrival time. Specifically, in the proposed method, the 1D correlator output is converted into a 2D
matrix by reshaping, and the resulting signal is inputted to the proposed 4-layer CNN classifier. Then,
the CNN predicts the packet arrival time. To verify the frame synchronization performance, computer
simulation is performed for two channel models: additive white Gaussian noise and fading channels.
Simulation results show that the proposed CNN-based synchronization method outperforms the
conventional correlation-based technique by 2 dB.

Keywords: CNN; 2D transformation; frame synchronization; deep learning; synchronized
communication networks

1. Introduction

Finding the packet arrival time or frame synchronization at a receiver is an essential procedure
that must be performed first for the data reception [1,2]. In synchronized communication networks,
such as time division multiple access (TDMA) and synchronized carrier sense multiple access (CSMA)
systems, a packet is transmitted at a predesignated time. Thus, the approximate arrival time of the
transmission frame is known at the receiver because the transmission time is shared between the
transmitter (Tx) and the receiver (Rx). Those systems are widely used in internet-of-things (IoT)
communications [3]. However, due to the clock offset between the Tx and the Rx and the propagation
delay caused by the distance between them, the arrival time of the packet varies and is unknown at the
Rx. Depending on the amount of clock offset and the communication distance, the packet arrival time
can be defined within a certain time interval, i.e., a time window. Finding the packet arrival time at the
received signal is called frame synchronization. Frame synchronization for burst communication is a
well-established research field [4–10].

To facilitate frame synchronization, the transmitter usually transmits a unique word in front
of the packet (or preamble). The receiver finds the packet arrival time by detecting the received
preamble. Many frame synchronization techniques by using preamble have been suggested for binary
phase-shift keying (BPSK) systems [4,5], M-ary PSK systems [6], continuous phase modulation (CPM)
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systems [7,8], and orthogonal frequency division multiple access (OFDM) systems [9,10]. Optimum
frame synchronization is known as the maximum likelihood (ML) technique [4,8]. ML technique
requires an exhaustive search among all possible packet arrival times. The huge computation is
difficult to handle. Therefore, practical frame synchronization techniques have been researched so
far [4–10]. Those practical frame synchronization techniques, regardless of modulation schemes,
are based on the correlation peak search. In other words, the conventional frame synchronization
methods find the packet arrival time through the correlation between the received signal and the
preamble. In detail, when the output of the correlator exceeds a certain threshold, the instance is
determined to be the packet arrival time. The best threshold, in general, is a function of signal-to-noise
ratio (SNR). Thus, to find the optimal threshold, the SNR of the received signal should be estimated
before the frame synchronization. As the frame synchronization performance is highly sensitive to
the SNR estimation accuracy [11], as one of the most intuitive methods, the peak detection of the
correlator output within the time window is widely used [4]. Frame synchronization based on peak
search at correlator output has a long history, but it is still the most widely used technique in recent
communication systems [6,8,10].

In this paper, to improve the synchronization performance of the synchronized networks,
we propose a new frame synchronization method based on a convolution neural network (CNN)
classifier. The CNN, one of the most famous deep learning methods, first appeared in the introduction
of the LeNet-5 that recognizes handwritten numbers, and recently, it is widely used in the field of
image processing [12–16] and wireless signal processing [17,18]. Herein, we propose a new frame
synchronization method by transforming the frame synchronization problem into a CNN problem.
To the best of our knowledge, there is no existing work that applies CNN-based techniques to the
frame synchronization problem. Specifically, the one-dimensional (1D) correlator output for frame
synchronization is transformed to a two-dimensional (2D) signal, and the 2D signals are used as the
training samples with the ground truth labels, which are obtained in the training signal generation.
As CNN is specialized in image processing, converting the original 1D signal into 2D signal is a widely
used technique to apply CNN in other applications. The training samples are generated under additive
white Gaussian noise (AWGN) channels with random arrival times and SNRs. Those 2D signals are
inputted to the CNN, and the CNN classifier is trained to predict the packet arrival time. We design
the CNN classifier with three convolutional layers and one fully connected layer. The proposed
technique does not require any prior information except the correlator output. We examine the false
detection probability (FDP) of the proposed CNN-based and the convolutional correlation-based
methods through computer simulation. Without retraining the CNN, the FDP performances are
evaluated under AWGN and fading channels. According to the results, it is verified that the proposed
CNN-based technique outperforms the conventional method by 2 dB in both AWGN and fading
channels. The main contribution of this study is summarized as follows.

• CNN-based techniques to the frame synchronization problem.
• 1D correlator output is transformed to a 2D signals for better training of the designed CNN.
• The designed CNN is evaluated under various channel environments, namely, AWGN and

fading channels.
• The proposed CNN-based method improves approximately 2 dB SNR for the frame synchronization.

2. System Model

In this study, we consider a synchronized communication network, in which a Tx transmits
signals to an Rx at predesignated time ts. The Tx packet consists of the preamble and data in the
front and end of the packet, respectively, as shown in Figure 1. In this scenario, the Tx transmits a
packet at ts, yet the packet arrival time has some deviation due to clock offset and propagation delay
between the Tx and the Rx. As the time deviation is bounded within a certain time window with size
W by designing the system depending on the amount of clock offset and the distance, we can assume
that the packet arrival time falls within the time window [0, . . . , W − 1]. The preamble consists of the
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BPSK modulated signals and its length is denoted by L. Here, we note that any modulation scheme is
applicable to the proposed technique, which will be introduced shortly.

Figure 1. Overall block diagram of the conventional correlation-based frame synchronization.

Figure 1 shows the overall block diagram of frame synchronization. It is assumed that the received
signal is Q-times oversampled compared to the transmitted symbol rate. The received analog signal
and its sampled digital signal, respectively, can be represented as

r(t) =
∞

∑
k=−∞

s(k)p(t− kT − t0) + w(t), (1)

r[n] = r(t)|t=nT/Q, (2)

where T is the symbol duration, s(k) is the Tx symbol (first L symbols are the preamble), p(t) is
the impulse response of the pulse shaping filter, w(t) is white Gaussian noise, and t0 is the packet
arrival time that should be found at the Rx. In conventional frame synchronizers, t0 is found via the
correlation between the preamble s(k) and the received signal r[n]. As the sampling frequency of the
received signals is Q-times higher than that of s(k), the correlation in the correlator in Figure 1 can be
obtained as

z[n] =

∣∣∣∣∣L−1

∑
l=0

r[n− lQ]s∗[L− l − 1]

∣∣∣∣∣
2

, (3)

and thus, the structure of the correlator is as shown in Figure 2.
As the sampling frequency is Q/T, the packet arrival time t0 corresponds to n0 = dt0

Q
T e in the

correlator output, where d·e denotes a ceiling operation. Therefore, n0 is the starting point of the
packet and it should be found at the Rx.

Figure 2. Structure of the correlator and frame synchronization based on the maximum correlation in
Figure 1.

Figure 3 shows an example of the correlator output, where the window size is 10,000, i.e.,
W = 10, 000. The maximum of the correlator output occurs at n = 7, 913, i.e., n0 = 7, 913. If n0
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exists within the time window, searching the maximum value of the correlator output z[n] within the
window will be one of the best policies and it is described as follows,

n̂0 = arg max
{n}

z[n], ∀n ∈ [0, W − 1]. (4)

In this synchronized network case, it is advantageous that frame synchronization can be
performed without SNR estimation. Throughout this paper, this correlation-based method is called a
conventional method.

Figure 3. Example of the correlator output, z[n], when W = 10, 000 and SNR = 0.9 dB.

3. Proposed CNN-Based Frame Synchronizer

In this section, we propose a new synchronization method using a CNN classifier as shown in
Figure 4. The CNN classifier generates the estimated arrival time, i.e., n̂0, from the input signals that
is the correlator output signals, z[n] in (3). The detailed procedure of the proposed CNN classifier
is depicted in Figure 5, and the specific parameters for it are summarized in Table 1. For a simple
description of the proposed method, we set the window size by 10, 000, i.e., W = 10, 000. Note that
the proposed method can be applied to an arbitrary size of time window by slightly modifying the
CNN structure.

Figure 4. Overall block diagram of the proposed convolutional neural network (CNN)-based frame
synchronization.
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Figure 5. Diagram of the proposed CNN-based synchronization block in Figure 5, when W = 10, 000.
(a) Correlation output normalization. (b) 2D-training signal generation. (c) Convolutional layer 1.
(d) Convolutional layer 2. (e) Convolutional layer 3. (f) Fully-connected layer. (g) Label vector.
(h) Estimate of packet arrival time.
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Table 1. Proposed CNN and its parameters.

Layers Function & Parameters Values

Input layer Input size 100× 100× 1

Convolutional layer 1

Number of filters 64

Filter size and stride (3× 3), (1,1)

Activation function ReLU

Pooling Max pooling
(size: 2× 2, stride: 2,2)

Number of parameters
Weight: 3× 3× 1× 64

Bias: 1× 1× 64
Total: 640

Convolutional layer 2

Number of filters 128

Filter size and stride (3× 3), (1,1)

Activation function ReLU

Pooling Max pooling
(size: 2× 2, stride: 2,2)

Number of parameters
Weight: 3× 3× 64× 128

Bias: 1× 1× 128
Total: 73,856

Convolutional layer 3

Number of filters 256

Filter size and stride (3× 3), (1,1)

Activation function ReLU

Pooling Max pooling
(size: 2× 2, stride: 2,2)

Number of parameters
Weight: 3× 3× 128× 256

Bias: 1× 1× 256
Total: 295,168

Fully connected layer 1

Output size 512

Activation function ReLU

Number of parameters
Weight: 512× 13× 13× 256

Bias: 512× 1
Total: 22,151,680

Fully connected layer 2

Output size 10,000

Activation function ReLU

Number of parameters
Weight: 10, 000× 512

Bias: 10, 000× 1
Total: 5,130,000

Number of total parameters 27,651,344

The first step is a training sample normalization step as shown in Figure 5a, in which the correlator
output signal, z[n], is normalized such that its maximum value is one as follows,

y[n] =
z[n]
zmax

=
z[n]

maxn′∈[0,W−1] z[n′]
, ∀n ∈ [0, W − 1]. (5)

Next, the 1× 10, 000 1D signals are converted to 100× 100 2D training signals by performing
matricization operation with a row-major order and its dimension is

√
W. Precisely, as shown in

Figure 5b, the first 100 samples become the first row, the next 100 samples become the second row, and
so forth. The converted 2D-training signals can be represented by a black and white (monochrome)
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image as depicted in Figure 5b, in which the bright and dark colors indicate large and small values of
y[n], respectively. Thus, we can interpret that the lightest part of the image implies a packet arrival
instance of the conventional correlation-based synchronization method. Here, we have to note that
the estimated arrival time n̂0 from the designed CNN could be different from n̂0 obtained from the
maximum correlation-based method. This will be shown in the next section.

The 2D-training signals are then provided to the designed CNN classifier. The structure of the
proposed CNN regressor is shown in Figure 5c–g. The input is 100× 100 2D-training signal and
it passes through three convolutional layers (panels (c–e)) and one fully connected layer (panel (f)).
The final output in panel (g) is 1× 10, 000 one-hot vector and “1” indicates the packet arrival instance.
The convolutional filter size is 3 × 3, and the number of filters (or channels) at each of the three
convolutional layers is 64, 128, and 256, respectively. Using the sufficient number of training signals
and their labels, the CNN parameters are updated to minimize the difference the CNN regressor
output and the label. In a label vector, only one element has a value of one and the others have zeros,
where the position of element 1 indicates the packet arrival time, i.e., n̂0 in (h), which is the output of
the CNN block.

4. Simulation Results

The performance of the proposed frame synchronizer is examined through computer simulation.
Two preamble lengths (L = 500 and L = 1000) are considered. The preambles are pseudo-random
sequences. Usually, the longer preamble results in better frame synchronization performance. For the
training the proposed CNN, a total of 100, 000 sets of the received signal are generated. The SNR
of each training set is randomly selected between −30 dB and 30 dB, and the packet arrival time
is also randomly selected in the time window from 0 to 9999, i.e., W = 10, 000. The learning rate
is 0.001 and an optimization algorithm is an adaptive moment estimation (ADAM). The proposed
CNN is learned for 80 epochs, i.e., 500, 000 training signals are reused 80 times. After successful
training, the proposed CNN can find the any packet arrival time in the range of 0 to 9999; therefore,
the additional training does not required for different transmission delays. For frame synchronization
performance evaluation, test signals are generated under AWGN channel environments with SNR =

−30 dB, − 28 dB, . . . , 28 dB, 30 dB, and at each SNR, 100, 000 test signals are generated with random
packet arrival times. As the performance evaluation signals are generated independently with the
training signals, the two sets of data do not overlap.

The CNN training and performance evaluation are performed by using MATLAB 2020a. To use
useful functions on deep learning, a Deep Learning Toolbox is also required. To accelerate training
speed, a graphic process unit (GPU) GTX1080Ti with compute unified device architecture (CUDA) 10.0
is used. To training the CNN, a trainNetwork function is used. The input of trainNetwork is training
input signals, designed neural network, and optimization parameters. The output of trainNetwork is
the trained parameters of CNN. For performance evaluation of the trained CNN, a predict function is
used. The input of the predict function is the trained CNN parameters and the input signals for the
performance test. Table 2 summarizes the simulation software environments.

Table 2. Simulation software environments.

Tools and Software Environments

Operation system Windows 10
Simulation tool MATLAB 2020a

MATLAB toolbos Deep Learning Toolbox
GPU GTX1080Ti with CUDA 10.0

Function for training trainNetwork
Function for test predict
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The learning curves of the proposed CNN were shown across the number of epochs for the loss
and training accuracy in Figure 6a,b, respectively. To train the CNN, the cross entropy is used for the
loss function, defined as

V = −
9999

∑
t̂0=0

p
(
t̂0
)

log q
(
t̂0
)

, (6)

where t̂0 is packet arrival time, q(t̂0) is the softmax output in Figure 5, and p(t̂0) is the ideal
probability, i.e.,

p
(
t̂0
)
=

{
1, t̂0 = t0,

0, t̂0 6= t0.
(7)

The loss in Figure 6a represents V in (6), and the accuracy in Figure 6b is the ratio of the correctly
estimated cases among total 500, 000 training signals. From the results, it was evidently shown that the
proposed CNN accurately converges at approximately 50 epochs.

(a) (b)

Figure 6. Learning curves for (a) loss and (b) training accuracy.

Figure 7 shows the FDPs of the proposed CNN-based and the conventional correlation-based
synchronization methods [6,8,10] in AWGN channels. From the results, we observe that the proposed
CNN-based technique outperforms the conventional correlation-based method regardless of the
preamble length, and a longer preamble provides better FDP. Concretely, the proposed method shows
2 dB gain over the conventional method, regardless of the preamble length, and the preambles with
length 1000 achieve 3 dB better than that with length 500.

Figure 8 shows the FDPs for flat fading channels with L = 500. During performance evaluation
in fading channels, the CNN is not retrained. The same CNN trained with signals under AWGN
environments is used and the performance evaluation signals are newly generated. To generate
received signals in fading channels, the following model is used,

r(t) = c
∞

∑
k=−∞

s(k)p(t− kT − t0) + w(t), (8)

where c is the fading coefficient which is Gaussian random variable with variance one. This channel
model is suitable for non-line-of-sight terrestrial communication systems. This simulation is performed
to confirm whether the proposed technique works well for the received signals different from the
training situation. According to the results, the proposed method still 2 dB better than the conventional
method. Those results indicate that the proposed CNN operates very flexibly in various channel
environments. By improving the frame synchronization performance by 2 dB, the transmitter can
reduce the transmit power to increase the battery lifetime, or extend a communication range farther.
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Figure 7. False detection probabilities (FDPs) of the proposed CNN-based and the conventional
correlation-based synchronization methods in [6,8,10] for L = 500 and L = 1000.
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Figure 8. False detection probabilities (FDPs) of the proposed CNN-based and the conventional
correlation-based synchronization methods in [6,8,10] for L = 500 in fading channels.

To investigate the rationale of why the proposed CNN-based technique outperforms the
conventional correlation-based method, we show one snapshot Figure 9 of the correlator output for the
case when the correlation-based technique finds the wrong packet arrival time, while the CNN-based
method finds it correctly. The ideal correlator output conforms to the normal distribution with a mean
value around the packet arrival time due to oversampling effects. The conventional correlation-based
frame synchronization method finds just the maximum position ignoring the shape of the distribution
of y[n]. However, we can conjecture that the proposed CNN-based frame synchronization method finds
the packet arrival time by considering not only the scale but also the shape of the correlation values.
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Figure 9. A case when proposed CNN method is correct but the conventional method is wrong.

5. Conclusions

In this study, we proposed a CNN-based frame synchronization method for the synchronized
networks. As a conventional correlation-based synchronization method, the proposed CNN-based
synchronization method can find the packet arrival time only from the correlator output. Instead of
finding the correlation peak, the proposed technique find the time offset directly by the five-layer CNN
classifier. The designed CNN consists of three convolutional layers and two fully connected layers.
The computer simulation verified that the proposed CNN-based method significantly outperforms the
conventional correlation-based method regardless of the preamble size. Those results indicate that the
proposed method enable power saving of the transmitter by reducing the transmitted power or longer
range transmission due to the enhancement at low SNRs. The proposed technique for the synchronized
networks can be applied to the carrier sense multiple access type networks if a valid packet arrival
can be identified before the proposed frame synchronizer. In future studies, it is worth (i) verifying
through a testbed that the proposed method performs under various channel conditions in practice,
and (ii) developing a novel CNN structure to further improve the synchronization performance and/or
reduce the training complexity.
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Abbreviations

The following abbreviations are used in this manuscript.

ADAM Adaptive Moment Estimation
AWGN Additive White Gaussian Noise
BPSK Binary Phase-Shift Keying
CNN Convolutional Neural Network
CSMA Carrier Sense Multiple Access
CUDA Compute Unified Device Architecture
FDP False Detection Probability
GPU Graphic Process Unit
IoT Internet-of-Things
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ReLU Rectified Linear Unit
Rx Receiver
SNR Signal-to-Noise Ratio
TDMA Time Division Multiple Access
Tx Transmitter
1D One-Dimensional
2D Two-Dimensional
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