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Abstract: A simple one-dimensional differential equation in the centerline coordinate of an arbitrarily
curved quantum waveguide with a varying cross section is derived using a combination of differential
geometry and perturbation theory. The model can tackle curved quantum waveguides with a
cross-sectional shape and dimensions that vary along the axis. The present analysis generalizes
previous models that are restricted to either straight waveguides with a varying cross-section or curved
waveguides, where the shape and dimensions of the cross section are fixed. We carry out full 2D wave
simulations on a number of complex waveguide geometries and demonstrate excellent agreement with
the eigenstates and energies obtained using our present 1D model. It is shown that the computational
benefit in using the present 1D model to calculate both 2D and 3D wave solutions is significant and
allows for the fast optimization of complex quantum waveguide design. The derived 1D model renders
direct access as to how quantum waveguide eigenstates depend on varying cross-sectional dimensions,
the waveguide curvature, and rotation of the cross-sectional frame. In particular, a gauge transformation
reveals that the individual effects of curvature, thickness variation, and frame rotation correspond to
separate terms in a geometric potential only. Generalization of the present formalism to electromagnetics
and acoustics, accounting appropriately for the relevant boundary conditions, is anticipated.

Keywords: quantum eigenstates; varying cross section; effective analytical and numerical methods

1. Introduction

With the vast possibilities to manufacture complex topological structures in quantum technology, it
becomes increasingly important to address how physical properties change due to shape, size etc. Nanowire
technology provides a rich platform to discover novel physical properties related to curvature effects such
as flexible electronics [1], battery [2] and nanoelectromechanical sensors and generators [3–7]. A selection
of recent nanoarchitecture work [8] includes the influence of a varying thickness of 2D WS2 nanolayers [9],
the role of topology of the thermopower of six-terminal Andreev interferometers [10], the voltage induced by
moving vortices as a function of transport and magnetic fields for rolled-up nanostructured nanotubes [11],
topological transitions in superconducting structures [12,13], etc. Recently, the present authors [14] derived
the first four-band spinless k · p model in curved coordinates using Kane’s model. In Ref. [15], a detailed
discussion of the combined influence of curvature, torsion, and cross-sectional rotation of a nanostructure
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for electron eigenstates and symmetry properties in nanowires was presented based on a one-dimensional
effective mass equation. Evidently, the use of curved coordinates is effective to recast computationally
intensive 3D wave problems of complex nanoarchitectures into lower-dimensional problems; examples
include the well-known cases of a torus, a helix, and a Möbius structure [16–24].

The use of analytical or numerical methods to determine 3D waveguide eigenstates and
eigenfrequencies in acoustics and electromagnetics has a long history and is of high importance
for applications. Webster’s horn model in acoustics provides a simple, accurate one-dimensional
approximation for the estimation of the sound field in waveguides of varying thickness that otherwise
requires a full 3D analysis [25,26]. Stevenson [27,28] derived a set of coupled ordinary differential equations
for the varying thickness waveguide. In the latter case, even a small number of coupled equations was
shown to provide an accurate description of the groundstate, the first excited states and their frequencies.
Both methods [25,27,28], however, assumed a straight centerline (cylinder structures) and therefore cannot
be applied to a more general class of nanowire geometries characterized by, simultaneously, a curved axis
and a varying cross section.

In this work, we present a new method using differential geometry and perturbation theory to
determine eigenstates to the Schrödinger equation of a quantum-mechanical particle confined to a curved,
varying-thickness waveguide with small cross-sectional dimensions relative to the waveguide length.
The cross-sectional geometry can be arbitrary and may rotate along the waveguide axis. We examine
the influence of all geometry parameters and compare with accurate full-wave numerical solutions.
For the waveguide structures analyzed, excellent accuracy is demonstrated for the first several eigenstates.
The developed model provides insight into the influence of waveguide curvature, cross-sectional thickness
variation and frame rotation for eigenstate energies and symmetry properties. In particular, the present
method sheds new light on resonance phenomena as a result of coupling between geometry parameters
that is not attainable from a standard complex full-wave problem. Besides the insight that can be gained
from the 1D equations, there is also significant computational advantages, as discussed in Appendix A.

2. The General Equations

The goal is to express the Laplace operator in tubular coordinates in a thin neighbourhood of a curve.
The normal cross sections of the structure we consider (the neighbourhood) are assumed to have the same
shape, but the size and orientation in the normal plane are allowed to be arbitrary, see Figure 1, where
the shapes of the normal intersections are disks.

r

εh

t

p q

Figure 1. The physical domain. We consider a neighbourhood of a curve r (in black). The tangent vectors t
(in red) are orthogonal to the normal planes (in pink). They intersect in this case the neighbourhood in
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disks of varying radius εh centered at the curve. The vectors p and q, in green and blue respectively, give
an orthonormal basis for the normal plane.

Nevertheless, it is advantageous to first consider the case where the orientation of the cross sections
relative to a minimal rotating frame is constant.

2.1. Constant Orientation

We assume that we have a curve r parametrised by arc length with tangent t = r′. We first choose a
minimal rotating frame, i.e., an orthonormal frame t, p, q (see Figure 1) along the curve satisfying,

d
ds

 t
p
q

 =

 0 κ1 κ2

−κ1 0 0
−κ2 0 0


 t

p
q

 . (1)

Then, the curvature of the curve is κ =
√

κ2
1 + κ2

2 and the torsion is τ =
κ1κ′2−κ′1κ2

κ2
1+κ2

2
. We now consider

the following parametrisation of a neighbourhood of r, see Figure 1:

x(s, v, w) = r(s) + εh(s) (vp(s) + wq(s)) , s ∈ [0, L] , (v, w) ∈ Ω0 ⊆ R2 , (2)

where (v, w) belongs to a fixed domain Ω0 in the vw-plane and L is the length of the curve. If we fix s then
we obtain a scaled (by εh(s)) and rotated copy of Ω0, in Figure 1 it is the unit disk. The scale is allowed to
vary from point to point, this is encoded in the function h and the overall scaling is given by the positive
number ε. We will expand the Laplace operator in powers of ε and as we consider ε as a small number we
will disregard terms in ε of degree one or higher.

The partial derivatives are

∂x
∂s

= r′ + ε
(
h′(vp + wq) + h(vp′ + wq′)

)
= (1− εh(κ1v + κ2w))t + ε h′(vp + wq) , (3)

∂x
∂v

= εhp , (4)

∂x
∂w

= εhq . (5)

We let
F = 1− εh (κ1v + κ2w) , (6)

and find the metric tensor by taking the inner products between the partial derivatives,

Gk` =

F2 + (εh′)2(v2 + w2) ε2hh′v ε2hh′w
ε2hh′v ε2h2 0
ε2hh′w 0 ε2h2

 . (7)

The determinant is
G = ε4h4F2 , (8)
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and the inverse is

Gkl =


1

F2
h′v
hF2

h′w
hF2

h′v
hF2

1
ε2h2 +

(
h′v
hF

)2 (h′)2vw
h2F2

h′w
hF2

(h′)2vw
h2F2

1
ε2h2 +

(
h′w
hF

)2

 . (9)

We let
R = v

∂

∂v
+ w

∂

∂w
= r

∂

∂r
, (10)

where r =
√

v2 + w2. We furthermore have that

R2 = v2 ∂2

∂v2 + 2vw
∂2

∂v∂w
+ w2 ∂2

∂w2 + v
∂

∂v
+ w

∂

∂w
,(

∂

∂s
− h′

h
R
)2

=
∂2

∂s2 − 2
h′

h
R ∂

∂s
+

(
h′

h

)2

(R2 +R)− h′′

h
R .

Denoting the coordinates (s, v, w) by (u1, u2, u3) we can now write the Laplace operator as

4 = Gk` ∂

∂uk
∂

∂u`
+

(
Gk`

2G
∂G
∂uk +

∂Gk`

∂uk

)
∂

∂u`

=
1

ε2h2

(
∂2

∂v2 +
∂2

∂w2

)
+

1
F2

(
∂

∂s
− h′

h
R
)2

− 1
εhF

(
κ1

∂

∂v
+ κ2

∂

∂w

)
+

εh(κ′1v + κ′2w)

F3

(
∂

∂s
− h′

h
R
)

. (11)

As usual [15], we let χ =
√

Fψ and have that

∫
Ω

ψ1ψ2 dx dy dz =
∫

Ω0

∫ L

0
ψ1ψ2F ds dv dw =

∫ 1

Ω0

∫ L

0
χ1χ2 ds dv dw , (12)

such that the Helmholtz equation reads

−4ψ = λψ ⇐⇒ −4 χ√
F
= λ

χ√
F
⇐⇒ −

√
F4 χ√

F
= λχ. (13)

Later, we shall exemplify the present analysis to the Schrödinger equation for a quantum-mechanical
particle. For now, we focus on the Helmholtz equation. To zeroth order in ε, we have

√
F4 χ√

F
≈ 1

ε2h2

(
∂2χ

∂v2 +
∂2χ

∂w2

)
+

(
∂

∂s
− h′

h
R
)2

χ +
κ2

4
χ . (14)

Unless h′ = 0, i.e., the thickness is constant, we cannot separate the variables. Instead we will use
perturbation theory. We have(

∂

∂s
− h′

h
R
)2

=
∂2

∂s2 −2
h′

h
R ∂

∂s
+

(
h′

h

)2

R2 −
(

h′′

h
−
(

h′

h

)2
)
R︸ ︷︷ ︸

treated as a perturbation

.
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The last three terms are considered as perturbations and first order perturbation theory yields(
∂

∂s
− h′

h
R
)2

≈ ∂2

∂s2 − 2
h′

h
〈R〉 ∂

∂s
+

(
h′

h

)2

〈R2〉 −
(

h′′

h
−
(

h′

h

)2
)
〈R〉

=

(
∂

∂s
− h′

h
〈R〉

)2

+

(
h′

h

)2 (
〈R2〉 − 〈R〉2

)
,

where 〈R〉 and 〈R2〉 are the expectation values ofR andR2, respectively.

〈Rn〉 =
∫

Ω0

ψ0(v, w)Rnψ0(v, w)dv dw ,

where ψ0 is a transversal eigenstate. This procedure is easy in the case of non-degenerate transverse
eigenstates such as for the transverse groundstate. However, in case of degenerate transverse eigenstates,
standard degenerate perturbation theory must be used. We arrive at

√
F4 χ√

F
≈ 1

ε2h2

(
∂2χ

∂v2 +
∂2χ

∂w2

)
+

(
∂

∂s
− h′

h
〈R〉

)2

χ +

((
h′

h

)2 (
〈R2〉 − 〈R〉2

)
+

κ2

4

)
χ .

After multiplication with ε2h2, Helmholtz equation −4ψ = λψ reads

−
(

∂2χ

∂v2 +
∂2χ

∂w2

)
− ε2h2

((
∂

∂s
− h′

h
〈R〉

)2

χ +

((
h′

h

)2 (
〈R2〉 − 〈R〉2

)
+

κ2

4
+ λ

)
χ

)
= 0 .

We can now separate the variables, χ = χ0(v, w)φ(s), and if χ0 is a solution to the 2D Helmholtz
equation, i.e.,

−
(

∂2χ0

∂v2 +
∂2χ0

∂w2

)
= λ0χ0 ,

then we finally have the 1D eigenvalue problem

−
(

d
ds
− h′

h
〈R〉

)2

φ−
((

h′

h

)2 (
〈R2〉 − 〈R〉2

)
+

κ2

4
− λ0

ε2h2

)
φ = λφ . (15)

2.2. Variable Orientation

We now allow the orientation of the cross section to vary relative to the minimal rotating frame. More
precisely, consider a general frame t, n1, n2 where

d
ds

 t
n1

n2

 =

 0 κ1 κ2

−κ1 0 ω

−κ2 −ω 0


 t

n1

n2

 . (16)

We then have

n1 = cos ϑ p + sin ϑ q , n2 = − sin ϑ p + cos ϑ q , (17)
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where ω = ϑ′. By following steps similar to the analysis in Refs. [15,19], the resulting 1D equation,
accounting for a varying thickness and curvature effects, becomes,

−
(

d
ds
− h′

h
〈R〉 − iω〈L〉

)2

φ

−
((

h′

h

)2 (
〈R2〉 − 〈R〉2

)
−ω2

(
〈L2〉 − 〈L〉2

)
+

κ2

4
− λ0

ε2h2

)
φ = λφ , (18)

where L is the θ-component of the orbital angular moment operator, i.e.,

L = −i
(

v
∂

∂w
− w

∂

∂v

)
= −i

∂

∂θ
, (19)

and θ is the polar angle.
Let us perform a gauge transformation, φ→ ϕ,

φ(s) = eg(s)ϕ(s) , where g(s) = 〈R〉 log h(s) + i〈L〉ϑ(s) . (20)

Then
d
ds
− h′

h
〈R〉 − iω〈L〉 = d

ds
− g′ ,

and(
d
ds
− h′

h
〈R〉 − iω〈L〉

)
φ =

(
d
ds
− g′

)
eg(s)ϕ(s)

= g′(s)eg(s)ϕ(s) + eg(s)ϕ′(s)− g′(s)eg(s)ϕ(s) = eg(s)ϕ′(s) .

Hence, Equation (18) is equivalent to

− d2 ϕ

ds2 −
((

h′

h

)2 (
〈R2〉 − 〈R〉2

)
−ω2

(
〈L2〉 − 〈L〉2

)
+

κ2

4
− λ0

ε2h2

)
ϕ = λϕ . (21)

A similar transformation was used in Ref. [15] in the case without a thickness variation.
We see that all geometric effects: curvature, thickness variation, and frame rotation appear in the form

of a geometric potential only. It is hard to say something general about the significance, except that
the last term λ0/(εh)2 dominates when ε → 0 and unless h is constant the eigenstates will concentrate
at the maxima of h. In Appendix B, we examine examples where either the first or the last term is
most important.

2.3. Non Arc Length Parametrisation

So far we have assumed that the curve is parametrized by arc length, but even though it is always
possible theoretically, it is more often than not impractical. Thus, we will here give the 1D approximative
equation for a general parametrisation. Observe that

d
ds

=
du
ds

d
du

=
1
‖r′‖

d
du

, and hence
dh
ds

=
h′

‖r′‖ ,
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where prime (′) now denotes differentation with respect to a general parameter u. Then, Equation (18) becomes

−
(

1
‖r′‖

d
du
− h′

‖r′‖h 〈R〉 − iω〈L〉
)2

φ

−
((

h′

‖r′‖h

)2 (
〈R2〉 − 〈R〉2

)
−ω2

(
〈L2〉 − 〈L〉2

)
+

κ2

4
− λ0

ε2h2

)
φ = λφ . (22)

and Equation (21) becomes

−
(

1
‖r′‖

d
du

)2
ϕ−

((
h′

‖r′‖h

)2 (
〈R2〉 − 〈R〉2

)
−ω2

(
〈L2〉 − 〈L〉2

)
+

κ2

4
− λ0

ε2h2

)
ϕ = λϕ . (23)

It must be pointed out that the above analysis and reduction of a 3D problem to an effective 1D
model does not impose restrictions on the form of the boundary conditions at the waveguide ends. Hence,
the boundary conditions in the u coordinate can be arbitrary.

2.4. 2D Problems

The analysis above obviously carries over to 2D problems. The only difference is that we now have a
unique frame and the terms involving ω and L disappears. The domain Ω0 is now an interval on the v-line.
In Appendix A, we will validate the method by comparing 1D calculations with full 2D calculations.

It can also be relevant for 3D problems where one variable can be separated away exactly, cf. Section 3.

2.5. Schrödinger Equation

The Schrödinger equation reads

− h̄2

2m
∇2ψ = Eψ, (24)

where m and E are the particle’s mass and energy, respectively, and ψ is the wavefunction. If −∇2ψ = λψ

and L0 is the unit length then we have

E =
2m

h̄2L2
0

λ . (25)

3. Transmission Studies through a Straight Waveguide with a Varying Thickness

In this section, we use the developed 1D model to compute transmission and reflection coefficients
of a particle confined to a varying thickness quantum waveguide with a straight axis defined as the x
axis. The waveguide cross-sectional dimension in one direction (z) is assumed to be much larger than
the dimensions along the x, y directions. In this case, the 3D problem reduces to a 2D problem in the x− y
plane. In the region confined by the waveguide, the Schrödinger equation reads

− h̄2

2m
∇2ψ = Eψ , (26)

and the wavefunction satisfies ψ = 0 on the surface of the waveguide corresponding to infinite barriers.
We will attempt to compute the transmission and reflection coefficients for the case where the particle

approaches the central region from the far left, and the waveguide thickness is assumed to vary in a
continuous (and piecewise two times differentiable) manner. The waveguide thickness is considered
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constant to the left and the right of the central region (for simplicity, the same thickness h0 and a zero
curvature are assumed in the left and right regions). In this case the wavefunction part φ and its derivative
dφ
ds must be continuous everywhere, and we may write

φ(s) = exp (iαs) + B exp (−iαs) , to the left of the central region,

φ(s) = C exp (iαs) , to the right of the central region,
(27)

where

α =

√
2mE

h̄2 −
π2

4ε2h2
0
> 0 . (28)

The latter inequality guarantees that wave solutions are propagating in the left and right regions.
We can now obtain the transmission T and reflection R coefficients as

T = C , R = B . (29)

Evidently, since the wave problem is lossless, we must require

|T|2 + |R|2 = |C|2 + |B|2 = 1 . (30)

In order to determine the coefficients B and C, Equation (15) must be solved in the central region by
matching to the wave solutions in the left and right regions. This has been done numerically.

We shall consider the central region to have a trigonometrically varying thickness, i.e.,

h(s) = h0 + b sin
(

nπ

Lm
s
)

,

dh
ds

= b
nπ

Lm
cos

(
nπ

Lm
s
)

,

d2h
ds2 = −b

(
nπ

Lm

)2
sin
(

nπ

Lm
u
)

,

(31)

where Lm defines the size of the central region and n is an integer.
In Figure 2 (upper plot), we show the waveguide thickness and its first- and second-order derivatives

as a function of the centerline coordinate u for the case where h0 = 1 nm, b = 2 Å, Lm = 10 nm, and n = 1,
ε = 1.

In Figure 2 (lower plot), the transmission and reflection curves as a function of the energy of
the quantum-mechanical particle are shown.
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Figure 2. The case h0 = 1 nm, b = 2 Å, Lm = 10 nm, and n = 1, ε = 1.

In Figure 3 (upper plot), we show the waveguide thickness and its first- and second-order derivatives
as a function of the centerline coordinate u for the case where h0 = 1 nm, b = −2 Å, Lm = 10 nm, and n = 1,
ε = 1.
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Figure 3. The case h0 = 1 nm, b = −2 Å, Lm = 10 nm, and n = 1, ε = 1.

In Figure 3 (lower plot), the transmission and reflection curves as a function of the energy of the
quantum-mechanical particle are shown. The mass of the particle is the free-electron mass.

Note that a threshold energy is required for the particle to be transmitted to the right. This comes
about as the thickness in the central region is lower than the thickness to the far left and right. Hence,
the particle will essentially only propagate to the right if its energy is higher than the energy associated
with the smallest thickness hmin = h0 − b in the central region. Otherwise, if its energy is lower than
h̄2

2m
π2

4ε2h2
min

, transmission can only take place by virtue of tunneling, i.e., with a small probability.

In Figure 4 (upper plot), we show the waveguide thickness and its first- and second-order derivatives
as a function of the centerline coordinate u for the case where h0 = 1 nm, b = 2 Å, Lm = 10 nm, and n = 2,
ε = 1.

In Figure 4 (lower plot), the transmission and reflection curves as a function of the energy of the
quantum-mechanical particle are shown.

In this case, where h(s) follows a full period of a sine curve, the thickness is smaller than the thickness
h0 to the far left and right, for one half of the central region. Hence, again, a threshold is needed for
the quantum-mechanical particle to be transmitted to the far right.
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Figure 4. The case h0 = 1 nm, b = 2 Å, Lm = 10 nm, and n = 2, ε = 1.

We point to that the 1D model can be used in a completely analogous way to calculate transmission
properties of an arbitrarily curved quantum waveguide.

4. 3D Eigenstate Problems

We will first consider 3D curves with constant curvature, e.g., a straight line, a helix, and a circle.
Moreover, we will consider quantum waveguides with two thickness variations: a linear (with varying
slope) and a trigonometric (with varying amplitude, frequency, and phase).

Note that, for all curves with constant curvature, the 1D equation Equation (18) can be treated on
equal footings, since in this case, the only effect of curvature is a shift in the energy E by − mκ2

2h̄2L2
0
.

We will, in all cases, consider a circular cross section. We choose the unit disk as our 2D parameter
space and the first step is to calculate the first eigenvalue λ0 and the expectation values 〈R〉, 〈R2〉, 〈L〉,
and 〈L2〉. Using polar coordinates (r, θ) in the unit disk the ground state does not depend on the angle
θ, so we have immediately that 〈L〉 = 〈L2〉 = 0. As a function of the radius r we have a Bessel function
J0(j0,1r), where j0,1 ≈ 2.4 is the first zero of J0 and λ0 = j20,1 ≈ 5.78. We have

J′0 = −J1 , J′1 = J0 −
J1

r
, J′′0 = −J′1 = −J0 +

J1

r
,

and hence

RJ0(j0,1r) = rj0,1 J′0(j0,1r) = −rj0,1 J1(j0,1r) ,

R2 J0(j0,1r) = rj0,1 J′0(j0,1r) + r2 j20,1 J′′0 (j0,1r) = −r2 j20,1 J0(j0,1r) .

So

〈R〉 = −
∫ j0,1

0
J1(t) J0(t) t2 dt

/ ∫ j0,1

0
J0(t)2 t dt ≈ −1.00 , (32)

〈R2〉 = −
∫ j0,1

0
J0(t)2 t3 dt

/ ∫ j0,1

0
J0(t)2 t dt ≈ −1.26 . (33)
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4.1. Line with Circular Cross Section

We will consider trigonometric variations

h(s) = 1 +
α

2
sin(βs− ψ0) , (34)

of the thickness along the line segment (of length L0 = 10 nm and average thickness 1 nm).
More specifically, we have ε = 0.5 nm, α = 0.5, and consider the cases ψ0 = 0, π/2 and β ∈ [π/32, 5π].
The result can be seen in Figure 5.

Figure 5. Energies for a tube around a straight line of length L0 = 10 nm, average width 1 nm (ε = 0.5 nm),
and with trigonometric variation of the width, h(s) = 1 + α

2 sin(βs− ψ0) and α = 0.5.

As mentioned before, any curve with constant curvature has essentially the same spectrum. The only
difference from the straight line is a shift of the whole spectrum by − mκ2

2h̄2L2
0
.

4.2. Elliptic Helix with Circular Cross Section

By an elliptic helix, we mean a geodesic on an elliptic cylinder. That is, it can be parametrised as

r(t) =
L0

L

(
a cos t, b sin t, c

∫ t

0

√
a2 sin2 τ + b2 cos2 τ dτ

)
, t ∈ [0, T] , (35)

where L0 is the required length and L =
∫ T

0

√
1 + c2

√
a2 sin2 t + b2 cos2 t dt. Notice that the third

coordinate is arc length on the ellipse. We consider the case a, b > 0 and find that the speed and curvature
is given by

‖r′‖ = L0

L

√
1 + c2

√
a2 sin2 t + b2 cos2 t , (36)

κ =
L
L 0

ab
1 + c2

(
a2 sin2 t + b2 cos2 t

)− 3
2 . (37)

If a > b, then the maximal curvature is L
L0

a
b2(1+c2)

. We let T ∈ [π/32, 5π] and have length L0 = 100 nm
and average thickness 1 nm. The energies of the first five states are shown in Figure 6.
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Figure 6. Energies for the elliptic helix with length 10 nm and constant width 1 nm.

We clearly have an effect, but not nearly as strong as when we vary the thickness.

4.3. Closed Ellipse with Circular Cross Section

We now consider a closed ellipse parametrised as

r(t) =
L0

L
(a cos t, b sin t, 0) , t ∈ [0, 2π] , (38)

where L is a scaling such that the length is L0, i.e.,

L =
∫ 2π

0

√
a2 sin2 t + b2 cos2 t dt .

With length L0 = 10 nm, constant width 1 nm, letting a = 1, and considering b ∈ [0.25, 1] we obtain
the energies of the first five states shown in Figure 7.

Figure 7. Eigenvalues for the closed ellipse with length 10 nm and constant with 1 nm.
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4.4. Tennis Ball Curve with a Square Cross Section

The curve

r(t) = (a cos t + b cos(3t), a sin t− b sin(3t), 2
√

ab sin 2t) , t ∈ [0, 2π] ,

is a closed curve on the sphere with radius a + b resembling the seam of a tennis ball. When a and b are
positive, the length of the curve is L = 4(a + 3b)E

(
2i
√

ab
a+3b

)
where E is the complete elliptic integral of

the second kind. Since the curve is a spherical curve, it is easy to find a minimal rotating frame. We can
choose the surface normal as one of the basis vectors, i.e., a minimal rotating frame is obtained by

t =
r′

‖r′‖ , p =
r
‖r‖ =

r
a + b

, q = t× p .

The minimal rotating frame obviously closes up, but by choosing a constant ω = nπ
2L , where L is

the length of the curve, we can twist the tube n quarters. We let b = a
20 and choose a, such that the length

of the curve is 25 nm.
We now consider a square cross section, i.e., Ω0 = [−1, 1]× [−1, 1]. The result from letting n = 0, 1, 2

is shown in Figure 8.
The ground state is χ0 = cos

(
π
2 v
)

cos
(

π
2 w
)
, the eigenvalue is λ0 = π2

2 , and we obviously have

Rχ0 = −v
π

2
sin
(π

2
v
)

cos
(π

2
w
)
− w

π

2
cos

(π

2
v
)

sin
(π

2
w
)

,

R2χ0 = −v
π

2
sin
(π

2
v
)

cos
(π

2
w
)
− w

π

2
cos

(π

2
v
)

sin
(π

2
w
)

− v2 π2

4
cos

(π

2
v
)

cos
(π

2
w
)
+ vw

π2

2
sin
(π

2
v
)

sin
(π

2
w
)

− w2 π2

4
cos

(π

2
v
)

cos
(π

2
w
)

,

Lχ0 = −iv
π

2
cos

(π

2
v
)

sin
(π

2
w
)
+ iw

π

2
sin
(π

2
v
)

cos
(π

2
w
)

,

L2χ0 = −v
π

2
sin
(π

2
v
)

cos
(π

2
w
)
− w

π

2
cos

(π

2
v
)

sin
(π

2
w
)

+ v2 π2

4
cos

(π

2
v
)

cos
(π

2
w
)
+ vw

π2

2
sin
(π

2
v
)

sin
(π

2
w
)

+ w2 π2

4
cos

(π

2
v
)

cos
(π

2
w
)

.

As ‖χ0‖2 =
∫ 1
−1

∫ 1
−1 cos2 (π

2 v
)

cos2 (π
2 w
)

dv dw = 1,

〈R〉 =
∫ 1

−1

∫ 1

−1
(Rχ0)χ0 dv dw = −1 ,

〈R2〉 =
∫ 1

−1

∫ 1

−1
(R2χ0)χ0 dv dw =

1
2
− π2

6
≈ −1.145 ,

〈L〉 =
∫ 1

−1

∫ 1

−1
(Lχ0)χ0 dv dw = 0 ,

〈L2〉 =
∫ 1

−1

∫ 1

−1
(L2χ0)χ0 dv dw =

1408
81π2 −

16
9
≈ −0.0165 .

Consider a trigonometric variation, Equation (34), of the thickness. As a closed structure is considered,
we need to have βL = 2πm. In Table 1,
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Table 1. The first five eigenvalues for the tennis ball curve with b = a/20, length 25 nm, average width
1 nm (ε = 0.5 nm), no turn, and trigonometric variation of width h = 1 + α

2 sin(βs− ψ0), α = 0.5, ψ0 = 0.

βL E1 [eV] E2 [eV] E3 [eV] E4 [eV] E5 [eV]

0 2.10 2.21 2.21 2.52 2.53
π 1.54 1.90 2.27 2.64 3.00

2π 1.80 1.80 2.54 2.56 3.17
3π 2.10 2.11 2.12 3.13 3.13
4π 2.41 2.46 2.46 2.53 3.48

The first five eigenvalues in the case of no turn, α = 0.5, ψ0 = 0, L = 25 nm, and ε = 0.5 nm are listed.
The cases of a quarter turn and a half turn yield the same eigenvalues to four digits precision. This is due

to the fact that the term ω2(〈L2〉 − 〈L〉2) is much smaller than the term
(

h′
‖r′‖h

)2 (
〈R2〉 − 〈R〉2

)
.

Figure 8. Three square tubes with length 25 nm and constant thickness 1 nm around a tennis ball curve
with b = a/20. In the middle plot, the case with one quarter turn is shown. To the right with one half turn.

5. Conclusions

A numerically effective 1D model describing eigenstates and energies of an arbitrarily complex
quantum waveguide geometry is presented. A combination of differential geometry and perturbation
theory is used to derive a 1D model describing the added effects of waveguide curvature, varying
cross-sectional dimensions and frame rotation along the waveguide. A detailed comparison of the present
1D model with full wave simulations is carried out and excellent agreement is demonstrated for a number
of complex waveguide geometries, many of which cannot be tackled using earlier 1D models. The only
significant assumption of the present 1D model is that the cross-sectional dimensions are significantly
smaller than the waveguide length, although experience has shown this restriction is not a severe one.
A main new result is that the individual effects of curvature, thickness variation, and frame orientation
enter as separate terms in a geometric potential only.
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Appendix A. Validation

In this section, we will validate the 1D equation by comparing it to accurate full 2D calculations.
The reason we consider 2D examples is that it would be very expensive (in terms of computer power and
time) to obtain the required accuracy for full 3D calculations.
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In 2D, we have κ1 = κ and κ2 = ω = 0. We let v ∈ [−1, 1]. Then, the transversal ground state is
cos

(
π
2 v
)
, λ0 = π2

4 , and if we letR = v ∂
∂v act on it, we obtain

v
∂

∂v
cos

(π

2
v
)
= −π

2
v sin

(π

2
v
)

,(
v

∂

∂v

)2
cos

(π

2
v
)
= −π

2
v sin

(π

2
v
)
− π2

4
v2 cos

(π

2
v
)

,

and hence

〈R〉 = −π

2

∫ 1

−1
v sin

(π

2
v
)

cos
(π

2
v
)

dv = −1
2

,

〈R2〉 = 〈R〉 − π2

4

∫ 1

−1
v2 cos2

(π

2
v
)

dv = −π2

12
.

The approximative 1D equation Equation (15) then reads

−
(

d
du

+
1
2

h′

h

)2

χ +
1
4

((
h′

h

)2 (
1 +

π2

3

)
− κ2 +

π2

ε2h2

)
χ = λχ .

Appendix A.1. Logarithmic Spiral

We now consider a logarithmic spiral. In polar coordinates (r, θ) it is given by r = cebθ . Letting b =

cot µ, we have
dr
dθ

= br ,
ds
dθ

=
r

sin µ
, s =

r− r0

cos µ
, κ =

sin µ

r
.

Furthermore, t = e(θ + µ) and n = e
(
θ + µ + π

2
)
, where e(θ) = (cos θ, sin θ). We have

s =
r− c
cos µ

⇐⇒ r = c + s cos µ ⇐⇒ θ =
1
b

log
c + s cos µ

c
.

If we let c = R sin µ, then

r = R sin µ + s cos µ ,

θ =
1
b

log
r

R sin µ
=

sin µ

cos µ
log

R + s cot µ

R
,

κ =
sin µ

r
=

1
R + s cot µ

.

We have, in particular, the arc length parametrisation

r(θ)e(θ) = (R sin µ + s cos µ)e
(

sin µ

cos µ
log

R + s cot µ

R

)
.

We consider the case R = 1 and µ = π/4 and an exponential varying thickness, h = αeαu

eα−1 .
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Figure A1. The six different cases in Table A1.

In Figure A3, we plot the difference between the 1D and 2D calculations as a function of ε for different
values of α.

When ε is very small, the difference is seen to increase instead of decrease. This is due to an increase
in the discretisation error from solving the exact 2D equation.

For the 1D-equation, we used B-splines of degree 3 and 64 knot intervals. That leads to a system
matrix of size 65× 65. For the 2D calculations we used standard finite element analysis on a mesh of size
256× 256 and with basis functions of degree 3. That leads to a system matrix of size more than 106 × 106

(in 3D we would have a size greater than 2× 109 × 2× 109. The reason we need higher resolution for
the 2D calculation is that we are interested in the differences λn − λ0 and using the 1D model we calculate
this quantity directly, while in the 2D case we calculate λn and as the difference is small we need a very
high precision. Even if we had used a mesh of size 65 in all directions we would have a system matrix of
size more than 8× 104 × 8× 104 in 2D and 4× 107 × 4× 107 in 3D.

Table A1. The first five eigenvalues for the case h = αeαu

eα−1 , ε = 0.05. Calculated using both 1D and
2D equations.

α λ1 λ2 λ3 λ4 λ5

0.0 1D 996.71 1026.32 1075.66 1144.75 1233.58
2D 996.72 1026.34 1075.71 1144.82 1233.69

0.2 1D 925.10 1015.99 1094.11 1169.73 1255.79
2D 925.12 1016.02 1094.15 1169.78 1255.88

0.4 1D 834.43 969.69 1088.59 1199.90 1307.49
2D 834.45 969.72 1088.64 1199.95 1307.56

0.6 1D 752.84 918.86 1068.12 1210.19 1348.52
2D 752.86 918.89 1068.16 1210.24 1348.57

0.8 1D 682.39 871.21 1044.48 1211.89 1376.83
2D 682.39 871.22 1044.49 1211.89 1376.82

1.0 1D 622.31 828.74 1021.79 1210.85 1399.10
2D 622.31 828.72 1021.74 1210.77 1398.99

Numerical analyses of the logarithmic spiral in cases with a linearly or a trigonometrically varying
thickness were also carried out. Compared to the exponentially varying thickness case, the error analysis
gives approximately the same good result for the trigonometric case, while even smaller errors are found
for the linearly varying thickness case. Similar conclusions are found for the cases with straight and
circular-arc waveguides.

We now consider the case R = 1, µ = 0.45π, with θ ∈ [0, 3π] for a linearly varying thickness
h = 1 + α (s− β), with α = ±0.8/L and β = L/2, where L = R tan µ (e3π cot µ − 1) is the length of the arc.
The two cases are depicted in Figure A4.
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Figure A2. The relative difference between 1D and 2D calculations as a function of α. Left: the first five
eigenvalues in the case ε = 0.05. Right: the first eigenvalue for different values of ε.

Figure A3. The relative difference between 1D and 2D calculations as a function of ε.

Figure A4. The two cases R = 1, µ = 0.45π, ε = 0.3, and α = ±0.8/L, in Table A2. The colours represent
the fifth eigenfunction calculated based on the 2D equation.

In Table A2, we have listed the first five eigenvalues.
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Table A2. Eigenvalues for the longer spirals.

αL λ1 λ2 λ3 λ4 λ5

−0.8 1D 15.99 17.64 19.09 20.44 21.75
2D 15.88 17.58 19.06 20.43 21.75

0.8 1D 16.00 17.65 19.09 20.45 21.75
2D 15.99 17.64 19.08 20.44 21.75

In order to compare the eigenfunctions obtained from the 2D and 1D calculations, respectively, we
calculate the probability density along the curve. The determinant of the metric tensor is G(s, v) =

ε2h(s)2F(s, v) hence for the 2D calculation the probability density along the curve is

f2,k(s) =
h(s)2

∫ 1
−1 |ψk(s, v)|2F(s, v)dv∫ L

0 h(s)2
∫ 1
−1 |ψk(s, v)|2F(s, v)dv ds

,

while for the 1D calulation it is

f1,k(s) =
h(s)2|χu,k(s)|2∫ L

0 h(s)2|χu,k(s)|2 ds
.

In Figure A5, we have plotted the probability density for the first and fifth state using the 1D and 2D
equations. We have only shown the cases of the first and the fifth eigenfunction, but the good agreement
between probability densities obtained from the 1D and 2D equations applies to the other cases as well.

Figure A5. The probability density for the first and the fifth state.

Appendix B. Significance of the Different Terms

We consider the case of a line with length L = 1 and no rotation, that is we have the 1D equation
Equation (15) with κ = 0. In order to examine the significance of the different terms we will consider
the eigenvalue problem

−
(

d
ds
− h′

h
〈R〉

)2

φ + V`φ = λφ , ` = 1, 2, 3, 4 ,

where the potential V` is given by

V1(s) =
λ0

ε2 , (A1)
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V2(s) = −
h′(s)
h(s)

(
〈R2〉 − 〈R〉2

)
+

λ0

ε2 , (A2)

V3(s) =
λ0

ε2h(s)2 , (A3)

V4(s) = −
(

h′(s)
h(s)

)2 (
〈R2〉 − 〈R〉2

)
+

λ0

ε2h(s)2 . (A4)

Observe that case (A4) gives the full 1D equation. It is clear that the different geometric potentials
lead to pronounced differences in the eigenvalues. We furthermore consider ε = 0.03 and

h(s) =
1 + e−β(s−1/2)

1 +
∫ 1

0 e−β(s−1/2) ds
, (A5)

with β = 20 and 1000. In Table A3 we have listed the first five eigenvalues

Table A3. Eigenvalues for β = 20 and β = 1000.

Case λ1 λ2 λ3 λ4 λ5

(A1) 74.13 103.74 153.08 222.17 311.00
(A2) 81.25 112.16 157.22 228.03 316.90
(A3) 57.48 110.62 167.66 236.54 324.39
(A4) 63.80 120.12 173.19 241.69 330.02

Case λ1 λ2 λ3 λ4 λ5

(A1) 74.13 103.74 153.08 222.17 311.00
(A2) 101.52 105.88 210.91 230.51 385.76
(A3) 72.45 110.92 153.34 228.77 311.94
(A4) 108.18 113.17 215.24 237.46 386.54

And in Figure A6 we have plotted the probability distributions for the first three states together with
the full geometric potential V4.

Figure A6. The probability distributions for the full equation (case A4) for β = 20 and β = 1000.
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