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Abstract: Network representation learning (NRL) is crucial in generating effective node features for
downstream tasks, such as node classification (NC) and link prediction (LP). However, existing NRL
methods neither properly identify neighbor nodes that should be pushed together and away in the
embedding space, nor model coarse-grained community knowledge hidden behind the network
topology. In this paper, we propose a novel NRL framework, Structural Hierarchy Enhancement
(SHE), to deal with such two issues. The main idea is to construct a structural hierarchy from
the network based on community detection, and to utilize such a hierarchy to perform level-wise
NRL. In addition, lower-level node embeddings are passed to higher-level ones so that community
knowledge can be aware of in NRL. Experiments conducted on benchmark network datasets show
that SHE can significantly boost the performance of NRL in both tasks of NC and LP, compared to
other hierarchical NRL methods.

Keywords: network representation learning; node embeddings; community detection; structural
hierarchy; node classification; link prediction

1. Introduction

Network representation learning (NRL) is a crucial task in social and information network
analysis. The idea of NRL is to learn a mapping function that converts each node into a
low-dimensional embedding space while preserving the structural proximity between nodes in
the given network. The derived node embedding vectors can be utilized for downstream tasks,
including node classification, link prediction, and community detection. Typical NRL methods include
DeepWalk [1], LINE [2], and node2vec [3], which consider structural neighborhood to depict every
node. Metapath2vec [4] extends the skip-gram based NRL to heterogeneous information networks
that contain multiple types of nodes and links. DANE [5] incorporates the similarity between node
attributes into NRL. GCN [6] further learns node embeddings for semi-supervised node classification
through a layer-wise propagation with graph convolution.

Regarding the typical NRL approaches [1–3] that preserve structural proximity in node
embeddings, we think there are two major insufficiencies. First, every node is only aware of its
few-hop neighbors by random walk sampling, which push them to be close in the embedding space.
Nevertheless, as illustrated in the general node embedding space in Figure 1, non-neighbor nodes
(v5) being pushed away by negative sampling could still have some connections with the target
node (v1), e.g., belonging to the same network community (C1). In addition, neighbor nodes (v8)
sampled by random walks being pushed together could have weak connections to the target node (v1),
e.g., belonging to different communities (C1 and C3). In other words, community-level information
cannot be incorporated into the learning of node embeddings. We think network communities can
inform nodes to better recognize which nodes should better push together and away, as shown in the
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community-aware embedding space in Figure 1. Second, the given graph depicts only the fine-grained
interactions between nodes. As shown in Figure 1, the given graph is a collaboration network, and thus
the links depict co-authorships. The coarse-grained semantics, including how authors involve in
different research areas and belong to different institutes, together with their interactions, is not aware
by typical NRL approaches. We think encoding coarse-grained semantics can improve the effectiveness
of node embeddings.
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Figure 1. Given a collaboration network in the left, we illustrate and compare community-aware
embedding space with general node embedding space, and expect that the community-aware version
can better encode the structure of nodes in the embedding space.

In this paper, we propose a novel framework, Structural Hierarchy Enhancement (SHE),
to enhance the effectiveness of network representation learning. The main idea is two-fold. First,
we construct a structural hierarchy that depicts both fine-grained and coarse-grained semantics of
nodes and their interactions. We consider that node semantics is depicted by communities (i.e., clusters
of nodes), and thus utilize community detection techniques to produce the structural hierarchy.
By learning the embeddings of nodes in different levels of the hierarchy, our model will be capable
of encoding multiple different views of each node. Hence, the semantics of nodes can be enriched,
and nodes can be better distinguished from one another in the embedding space. Second, we utilize
such a hierarchy to enhance NRL. Our SHE can be seamlessly applied to enhance any of existing typical
NRL models mentioned above. Besides, any existing and state-of-the-art hierarchical community
detection algorithm can be applied to generate the hierarchy. In other words, our SHE model provides
great flexibility to be compatible with different combinations of NRL methods and community
detection techniques.

Related Work. The most relevant studies are HARP [7] and Marc [8], which are hierarchical
NRL methods. HARP collapses nodes according to edge and star connections so that the hierarchy
can be constructed for NRL. Marc iteratively consider 3-cliques as super nodes to construct the
hierarchy. However, community knowledge in networks is not considered in both HARP and Marc.
Besides, different-level’s node embeddings are learned independently in HARP and Marc. That said,
higher-level NRL cannot utilize node embeddings derived from lower-level NRL. We will compare
the proposed SHE with HARP and Marc in the experiments. As for NRLs using various hierarchical
information, NetHiex [9] assumes each node is associated with a category, and categories form a
hierarchical taxonomy, which is used for NRL. HRE [10] uses the relational hierarchy that comes from
edge attributes for heterogeneous NRL. MINES [11] models multi-dimensional relations between
different node types, along with their hierarchical connections, into the embeddings of users and
items for recommender systems. Poincare [12] specializes NRL for graphs whose nodes naturally
form a hierarchical structure. DiffPool [13] classifies graphs by learning their embeddings based
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on differentiable pooling applied to hierarchical groups of nodes. While these studies presume a
variety of additional hierarchical information, i.e., category taxonomy, edge attributes, edge relations,
hierarchical graph, and node groups, is accessible, our work does not rely on any of them.

2. Problem Statement

We first describe the notations for our problem. Let G = (V, E) denote a network, in which V
is the node set (n = |V| is the number of nodes), and E is the edge set. We construct a structural
hierarchyH from a network G: H = {H0, H1, . . . , Hτ−1}, where τ is the number of levels in hierarchy
H, and Hτ is the level-τ graph. Level-0 graph is the original network, i.e., H0 = G. Level-(h + 1) graph
Hh+1 is constructed from level-h graph Hh. We present the list of all notations used in this paper in
Table 1.

Table 1. Table of notations.

Notation Description

G = (V, E) the original graph with node set V and edge set E

k the embedding dimension

n the number of nodes in G

H the structural hierarchy

Hh the level-h graph inH

τ the number of levels inH

Ch
i the i-th community node in Hh

eh
ij the edge that connects node Ch

i with node Ch
j in Hh

Dh the set of edges that connect community nodes in Hh

ρ the hyperparameter controlling the height ofH

nh the number of nodes in Hh

Xh the embeddings of nodes in Hh

vh
j the j-th node in Hh

xh
v the embedding vector of node v in Hh

x′hv the new-initialized embedding vector of node v in Hh

Structural Hierarchical-Enhanced NRL (SHE-NRL). Given a graph G = (V, E), in which each
node’s embedding vector xv ∈ R1×n (v ∈ V) is initialized by a unit vector, along with its structural
hierarchy H, SHE-NRL is to learn a mapping function f : V → Rk from nodes to low-dimensional
embedding vectors so that nodes sharing similar connections in the graph, i.e., having a larger overlap
on their neighbor sets, are projected as closely as possible in the embedding space. Here k is the
embedding dimension, and f is a matrix of size n× k, where k� |V|.

3. The Proposed SHE-NRL Model

The proposed SHE-NRL consists of four phases: (1) construction of structural hierarchy,
(2) intra-level NRL, (3) level-wise pooling mechanism, and (4) generating final node embeddings.
We first elaborate these four phases based on Figure 2. First, we construct the structural hierarchy
by performing network community detection algorithm from lower- to higher-level graphs. Second,
an existing or state-of-the-art NRL method is performed at the level-h graph (the original graph is
level-0 graph) to generate level-h node embeddings. Third, a level-wise pooling mechanism is utilized
to aggregate level-h node embeddings to not only initialize the level-(h + 1) node embeddings for its
NRL in a bottom-up manner, but also to initialize the level-(h− 1) node embeddings for level-(h− 1)



Appl. Sci. 2020, 10, 7214 4 of 11

NRL in a top-down manner. The second and third phases are performed iteratively until the highest
level of the hierarchy is reached. Lastly, the final node embeddings can be produced by concatenating
node embeddings at different levels based on their community memberships.
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Figure 2. Overview of the proposed SHE framework.

Phase 1: Construction of Structural Hierarchy. The structural hierarchyH is constructed from a
network G. By applying a certain community detection algorithm to level-h graph Hh, we can obtain a
set of communities (i.e., node sets) Ch = {Ch

1 , Ch
2 , ..., Ch

nh
}, where nh is the number of communities in

Hh, and Ch
i is the i-th community. These communities are treated as nodes at level-(h + 1) graph Hh+1,

given by:
Hh+1 = (Ch,Dh), (1)

where Dh is the set of edges that connect communities. For every pair of communities Ch
i and Ch

j ,

we create an edge eh+1
ij to connect them in Hh+1 if there exists at least one edge between nodes

in Ch
i and nodes in Ch

j in Hh. To adaptively determine the number of communities nh for every

graph Hh, we utilize Louvain [14] algorithm for community detection. We do not pre-define the
number of levels τ in the hierarchy, but continue to produce Hh+1 from Hh until nh < ρ, where ρ is
a hyperparameter controlling the height of the hierarchy. We set ρ = 5 by default. In other words,
we will not generate level-(h + 1) graph Hh+1 if the number of nodes nh in Hh is lower than ρ. In other
words, the hyperparameter ρ is the minimum number of communities at the last (highest) level of the
hierarchy, rather than the hierarchy height. Another hyperparameter τ, described in Phase 2, is the
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hierarchy height. The τ is automatically determined by repeatedly generating new communities from
the previous level’s graph until nh < ρ, where nh is the number of communities in level-h’s graph Hh.

Phase 2: Intra-level NRL. Given level-h graph Hh, we perform intra-level NRL. We allow any
of NRL methods that preserves structural proximity between nodes in our SHE-NRL framework.
That said, typical NRL methods, such as DeepWalk [1], LINE [2], and node2vec [3], can be used for
intra-level NRL. Let Xh be the generated embedding matrix for all nodes in Hh. The intra-level NRL is
iteratively performed in a one-round circular manner. The bottom-up way is first executed, followed by
the top-down way. Specifically, the intra-level NRL is performed one after another from H0, H1 to Hτ ,
i.e., the bottom-up way. Then we again iteratively perform the intra-level NRL from Hτ , Hτ−1 to H0,
i.e., the top-down way. The bottom-up way brings fine-grained level’s interactions between nodes into
the intra-level NRLs at higher levels in the hierarchy. The top-down way of message passing makes
the intra-level NRLs at lower levels be aware of coarse-grained community knowledge. All intra-level
NRLs at level-h graphs Hh (0 ≤ h ≤ τ − 1) are executed twice while the level-τ NRL is executed only
one time. In the next phase, we will discuss how Xh can be used to initialize the node embeddings
of graphs Hh+1 and Hh−1. We randomly initialize the embeddings of nodes for NRL in the original
graph H0 = G.

Phase 3: Level-wise Pooling Mechanism. In order to bring fine-grained information of node
interactions into higher-level NRLs, and make lower-level NRLs be aware of coarse-grained community
knowledge at higher levels of the hierarchy, we propose the level-wise pooling mechanism. The pooling
mechanism consists of bottom-up pooling and top-down pooling. The bottom-up pooling utilizes
the node embeddings Xh of Hh to initialize the node embeddings of Hh+1’s NRL. The max pooling is
adopted as the bottom-up pooling. The max pooling is performed to initialize the embedding of node
vh+1

j at Hh+1 from the corresponding i-th community Ch
i at Hh. We exploit the most significant learned

node embedding in community Ch
i at Hh to be the initial node embedding of node vh+1

j at Hh+1.
On the other hand, the average pooling is adopted as the top-down pooling. The average pooling is
performed to initialize the embeddings of all nodes in the i-th community Ch

i at Hh from the learned
node embedding of node vh+1

j at Hh+1. That said, given the new-learned node embedding of node

uh+1
j at Hh+1, denoted by xh+1

u , and the previously-generated embedding of corresponding lower-level

node vh ∈ Ch
i at Hh, denoted by xh

v, we have the new initial embedding of node vh, denoted by x′hv,
based on the equation:

x′hv = avg(xh
v, xh+1

u ). (2)

Utilizing the average pooling for the top-down way of NRLs is able to distribute coarse-grained
community knowledge back to the NRLs at lower-level graphs. Note that we utilize two different
letters v and u here is to better distinguish nodes at different levels, i.e., v refers to a node at level h
and u refers to a node at level h + 1.

Phase 2 and Phase 3 are iteratively adopted one after the other in first the bottom-up way, then the
top-down way. In other words, in the bottom-up way, when node embeddings are generated by
NRL in Hh (Phase 2), they are immediately brought to initialize the embeddings of nodes in Hh+1 via
max pooling (Phase 3). In the top-down way, when node embeddings are produced by NRL in Hh+1

(Phase 2), they are instantaneously employed to initialize the embeddings of nodes in Hh via average
pooling (Phase 3).

We utilize Figure 2 to better elaborate the interweaved process between Phase 2 and Phase 3 in an
alternative view. In this paragraph, that said, we will describe the bottom-up process, followed by the
top-down process. Given the structural hierarchy, consisting of three graphs at different levels, i.e., H0,
H1, and H2, in the bottom-up process, we first perform a typical NRL method on H0 and obtain node
embedding x0

v for every v ∈ H0. Then we apply max pooling on nodes, which belong to the same
level-1 community, to initialize the embedding of each level-1 community node in H1. We again apply
the same NRL method to H1 to obtain node embedding for every level-1 community node, and use
max pooling to initialize each level-2 community node in H2. Then NRL method is applied again on
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H2. Next, we are doing the top-down process. We utilize average pooling in Equation (2) to initialize
level-1 community node embedding from level-2 community node embedding. Then the NRL method
is applied to H1, followed by performing average pooling to initialize node embeddings in H0. The last
NRL is executed on H0 to generate the embeddings of nodes in the original graph.

Phase 4: Generating Final Node Embeddings. Equipped with the derived node embedding matrix
Xh at every level-h graph, we can generate the final embeddings for all nodes in the original network
G (i.e., H0). To let final node embeddings contain both fine-grained and coarse-grained information,
the concatenation operation is adopted. We concatenate the embedding vector of node v in H0 with
all of its corresponding higher-level embedding vectors in Hh, where h = 1, 2, . . . , τ. Suppose the
dimension of each level’s node embedding is equal and denoted as b. The dimension of final node
embeddings will be (τ + 1)b.

Note that it is apparent that there can be alternative approaches, such as the operators of average,
Hadamard, and weighted-L2 [3], to fuse node embeddings at different levels of the hierarchy. We leave
the design of better embedding aggregation for future investigation.

Remark. Two of the important ideas in the proposed SHE-NRL model are the bottom-up and
top-down correlations on embedding vectors. If we first generate node embeddings for every level
from H0 to Hτ , then apply the top-down corrections, our model can encounter a critical issue—missing
the interactions and connections between levels. Bottom-up and top-down correlations are to bring
the fine-grained semantics encoded by lower-level node embeddings to higher-levels ones, and to
deliver the coarse-grained semantics to lower-level nodes, respectively. Such a design follows the
realistic intuition that, for an example in the university, a graduate student is depicted by her advisor,
her college, and her school in order. We need to make the advisor recognize that student, and make
the college see the advisor, and so on. By doing so, through the immediate correction of vectors in Hh

level based on the Hh+1 vectors, the node embeddings can better encode the semantics, and become
more robust.

4. Experiments

We conduct experiments to answer three questions. (a) Can SHE-NRL improve the effectiveness
of NRL for different NRL methods? (b) Is SHE-NRL able to outperform the state-of-the-art competing
method? (c) Does a structural hierarchy with more levels lead to better performance?

4.1. Experimental Setup

Data and Settings. We use three benchmark network datasets for the experiments, including Cora,
Citeseer, and PudMed (https://linqs.soe.ucsc.edu/data). Cora data contain 2708 nodes, 5429 edges,
and 7 labels, Citeseer has 3312 nodes, 4715 edges, and 6 labels , and PudMed contains 19, 717 nodes,
44, 338 edges, and 3 labels. We evaluate SHE-NRL on two well-known NRL models, DeepWalk
(DW) [1], node2vec (n2v) [3], and LINE [2]. Two competing methods are employed. They are the
state-of-the-art hierarchical NRL methods, HARP [7] and Marc [8]. Both construct hierarchical
structures for NRL. The embedding dimension of all methods is set k = 128. Note that since there are
τ levels in a method, the embedding dimension of a level graph’s NRL is k

τ .
Evaluation Tasks. We evaluate the effectiveness of node embeddings on two downstream tasks,

node classification (NC) and link prediction (LP). Given a certain fraction of nodes and all their labels,
the goal of NC is to classify the labels for the remaining nodes. Node embeddings are treated as features.
We utilize one-vs-rest logistic regression classifier with L2 regularization as the classifier. The default
ratio of training and test is 80:20%. In our main experiment, we will vary the ratio of training and
testing to see how different methods perform. On the other hand, LP is to predict the existence of
links, given the existing network structure. We need to have the feature vectors of links and non-links.
We follow node2vec [3] to employ Hadamard operator, i.e., element-wise product, to generate the
feature vectors from the embeddings of node pairs. To obtain links, we remove 50% of edges chosen

https://linqs.soe.ucsc.edu/data
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randomly from the network while ensuring that the residual network is connected. To have non-links,
we randomly sample an equal number of node pairs without edges connecting them.

Evaluation Metrics. For node classification, we consider Macro-F1 (MAF) and Micro-F1 (MIF) as
the evaluation metrics. For link prediction, we utilize Area Under Curve (AUC) scores. Higher values
indicate better performance in all metrics. Note that due to page limit, we report only MAF for node
classification while MIF exhibits very similar results.

4.2. Experimental Results

Main Results. The main results are shown in Figures 3–5. We can have several observations.
First, DeepWalk, node2vec, and LINE enhanced by the proposed SHE can get significant performance
improvement (i.e., red vs. blue curves) in both tasks of NC and LP across datasets. The improvement
margin is around 60% and 30% for NC and LP (these two improvement percentages are obtained
by averaging the differences of MAF and AUC scores between red and blue curves over all training
percentages on Citeseer and Cora datasets for node classification and link prediction, respectively),
respectively. Second, SHE can further outperform the state-of-the-art methods HARP and Marc while
both have already led to apparent improvement from the original DeepWalk and node2vec. We think
the reason is that SHE not only leverages community knowledge, but also brings both fine-grained
and coarse-grained information into the learning of different levels’ NRLs. Besides, the superiority of
SHE is more obvious in node classification than in link prediction. Third, when the training percentage
increases, SHE is able to consistently outperform the other hierarchical NRL enhancement methods.
Such results prove the effectiveness of SHE.
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Figure 3. Results on DeepWalk (DW) by varying the training percentage. The left and right columns
are on node classification and link prediction, respectively. The top and bottom rows are using Citeseer
and Cora datasets, respectively.
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Figure 4. Results on node2vec (n2v) by varying the training percentage. The left and right columns are
on node classification and link prediction, respectively. The top and bottom rows are using Citeseer
and Cora datasets, respectively.
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HARP 0.7891 0.7898 0.5917 HARP 0.7794 0.7996 0.756

Marc 0.8025 0.8146 0.6143 Marc 0.7964 0.8164 0.7601

SHE 0.8171 0.8202 0.6405 SHE 0.8090 0.8383 0.7834
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Figure 5. Performance comparison on Pubmed data. Left: node classification by MAF scores. Right:
link prediction by AUC scores. Compared methods include the combinations of node embedding
methods DeepWalk (DW), node2vec (n2v), and LINE with hierarchical NRL methods: original (original
NRL method), HARP, Marc, and our proposed SHE.

The reason that the proposed SHE can outperform state-of-the-art methods is two-fold.
On one hand, regarding constructing the hierarchy, HARP collapses nodes based on edge and star
connections and Marc consider 3-cliques as super nodes. However, neither connection collapsing
nor clique structure in both HARP and Marc can depict the semantic correlation between nodes,
i.e., the community knowledge in networks. In our SHE, the obtained communities are used to form
the hierarchy so that the fine-grained community information with respect to every node can be
encoded into the learning of its embedding. On the other hand, different-level’s node embeddings
are learned independently in HARP and Marc. That said, higher-level NRL cannot utilize node
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embeddings derived from lower-level NRL, and lower-level NRL cannot be enhanced by high-level
coarse-grained semantics. Therefore, less informed node embeddings lead to worse performance,
comparing to our SHE method that jointly learns and exploits node embeddings at different levels in
the hierarchy.

Level Analysis. We aim to understand how the number of hierarchy levels affects the performance
improvement of the proposed SHE. We vary the number of levels as 0, 0–1, and 0–2, which indicate
no hierarchy (NRL on the original network), only one additional level in the hierarchy, and adopting
a three-level hierarchy, respectively. The results of level analysis are exhibited in Figure 6. We can
find that the hierarchy with only one additional level is enough to bring significant performance
improvement. In addition, the performance of the hierarchy with two additional levels is nearly
the same as that with one additional level. We can draw an insight from such results. Using only
the community knowledge obtained from the original network is sufficient for SHE to boost the
effectiveness of NRL.
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Figure 6. Results by changing the number of utilized levels in SHE based on DW and n2v, respectively.

5. Conclusions and Future Work

This paper proposes a structural hierarchy-enhanced network representation learning (SHE-NRL)
framework to improve the effectiveness of the learned node embeddings. Our SHE can be incorporated
into existing NRL methods, such as DeepWalk, node2vec, and LINE, so that their performance in
downstream tasks can be boosted. Experiments conducted on real datasets for node classification and
link prediction prove the effectiveness of SHE-NRL. An extensive empirical study also exhibits that
even using one additional level hierarchy can significantly boost the effectiveness of NRL methods.

The promising results of SHE encourage us to create a three-fold extension. First, while graph
neural networks (GNN) [15] are widely proven being effective for graph-based applications, we are
developing a hierarchical message passing mechanism based on SHE so that both fine-grained
and coarse-grained nodes can receive each other’s information to improve the performance of
semi-supervised node classification. Second, we will define the relational hierarchy in a heterogeneous
network so that the learning of heterogeneous node embeddings, such as metapath2vec [4], can be
aware of multi-typed community knowledge. Last, the current SHE treats the construction of structural
hierarchy and the learning of node embeddings as two independent modules. An ongoing extension
is to jointly optimize the hierarchy and node embeddings in an end-to-end manner.
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