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Abstract: This study demonstrates the orientation and the "shape factor" have pronounced effects on
the development of the localized pressure fields inside of the helmet. We used anatomically accurate
headform to evaluate four modern combat helmets under blast loading conditions in the shock tube.
The Advanced Combat Helmet (ACH) is used to capture the effect of the orientation on pressure
under the helmet. The three modern combat helmets: Enhanced Combat Helmet (ECH), Ops-Core,
and Airframe, were tested in frontal orientation to determine the effect of helmet geometry. Using the
unhelmeted headform data as a reference, we characterized pressure distribution inside each helmet
and identified pressure focal points. The nature of these localized “hot spots” is different than the
elevated pressure in the parietal region of the headform under the helmet widely recognized as the
under-wash effect also observed in our tests. It is the first experimental study which indicates that the
helmet presence increased the pressure experienced by the eyes and the forehead (glabella). Pressure
fingerprinting using an array of sensors combined with the application of principle component
analysis (PCA) helped elucidate the subtle differences between helmets.
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1. Introduction

Military service members (SMs) are required to wear combat helmets in training at all times
regardless of the type of exercise and weapon system used in order to reduce or eliminate head injuries
due to the blunt force trauma. The need for improved ballistic protection led to the development of
technologically advanced helmets that outperform their steel-based analogs used in WWI to the Vietnam
War era [1]. The invention of high-performance fiber-reinforced polymer-matrix composites resulted
in weight reduction, while vastly improving the ballistic protection of modern combat helmets [1,2].
The Kevlar-based Advanced Combat Helmet (ACH) has been used since the mid-2000s by combat
troops, and more recently, the Enhanced Combat Helmet (ECH) was introduced in 2013. It is made of
Dyneema® HB80, an ultra-high-molecular-weight polyethylene (UHMWPE) reinforced with carbon
fibers, a thermoplastic that improved ballistic performance and lower density compared to Kevlar [3].
While these helmets were designed for ballistic protection, the recent focus on blast overpressure
(BOP) exposure from high-explosives and heavy weapon systems has resulted in questions concerning
overpressure inside the helmet [4].
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To date, research on blast wave propagation inside of the combat helmets is based almost
exclusively on data from numerical simulations [5–18]. Advances in medical diagnostic techniques
such as magnetic resonance imaging (MRI) and computed tomography (CT) has facilitated the
development of high-fidelity, anatomically accurate head models [19–22]. Progress in these fields
stimulated the development of high-fidelity computational methods that helped identify mechanisms
governing blast loading of the brain without a helmet. The finite element method (FEM) based
numerical simulations demonstrated that in the early stages of the blast wave interaction with the
head, the intracranial pressure (ICP) is increased (compressive wave) at the coup (impact) side,
which is accompanied by the development of the underpressure (tensile wave) on the counter-coup
side [8,18,19,23,24]. This mechanism is universal and independent of the direction of the blast wave
propagation, which was confirmed not only for the front impact but also for the blast waves directed at
the head from the side, back, top, or the bottom [13,15,23].

Studies that evaluated the propagation of the blast wave inside of helmets identified the under-wash
effect, where the elevated pressure develops under the helmet [5,6,11,16,25] at the back of the head
(for frontal impact). A similar mechanism was also confirmed for the back and side incident direction
when the ACH was used in simulations [14,16,25]. These reports indicate that the magnitude of
the under-wash-induced overpressure on the head exceeds the primary shockwave. However,
the correlation between the surface pressure build-up and the corresponding ICP increase is not well
researched [5,25].

The blast wave propagation inside combat helmets is a complex problem, with the pressure
focusing under the helmet dependent on several factors: (1) the shape of the helmet, (2) orientation
relative to the source of the blast wave, and (3) the suspension system (i.e., number of pads, their
distribution under the helmet and material properties). The mounting evidence suggests an association
between occupational low-level blast exposure and acute adverse neurological effects [26], and related
serum biomarkers changes [27,28]. The role of the helmet in the development of these effects is unclear
at this time. Thus, it is essential that work evaluating the performance of the modern helmet is
conducted at relevant blast overpressures (BOPs). Using anatomically accurate headform, we assessed
the effect of the four modern combat helmets on the pressure accumulation under the helmet. The scope
of work is twofold: (1) evaluate the helmet and blast orientation on pressure under the ACH; and (2)
using the 0◦ direction to compare under helmet overpressure in the ECH, Ops-Core, and Airframe
helmets using unhelmeted headform data as a reference.

2. Materials and Methods

2.1. BOP Measurements and Headform Instrumentation

The details on the blast exposure experiments were published elsewhere [29–31] and briefly
described here to familiarize the informed reader with the experimental setup. The shock tube at the
New Jersey Institute of Technology (NJIT) is a square cross-section (0.71 m × 0.71 m) advanced blast
simulator with an adjustable breech. The incident BOP is typically monitored along the length of the
shock tube using seven high-frequency pressure sensors model 134A24 (PCB Piezotronics, Inc., Depew,
NY, USA). In all experiments, the T5 sensor (located in the test section directly above the headform;
see Figure 1 in reference [30] for details) was used to measure and quantify the incident overpressure
waveforms characteristics. We used circular Mylar membranes with a standard thickness of 0.254 (1×)
mm and 0.726 (3×) mm stacked together to generate shock waves with two discrete peak overpressures
of 70 kPa (approximately 10 psi) in the test section.

The instrumentation of the customized facial and ocular countermeasures safety (FOCUS)
headform [32] was also described in detail in the recently published report [30]. Briefly, we used ten
high-frequency piezoelectric sensors, model 102B06, manufactured by PCB Piezotronics (Depew, NY,
USA), and mounted flush with the surface of the headform via threaded ports. These sensors are
divided into two groups, medial, and circumferential: (1) five medial sensors (marked as H1 to H5,
Figure 1B) are located along midline anterior–posterior in 45◦ intervals; and (2) five circumferential
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sensors are mounted in the following order: two on the right parietal side (H6 and H7, in 60◦ intervals),
two in both eye sockets (H8 and H9), and one on the left parietal side of the headform (H10, 90◦ interval,
Figure 1B). An in-house developed LabView 2016 software was used to capture BOP waveforms.
All data were recorded at 1.0 MHz sampling frequency, and the typical acquisition time was 50 ms.
The data acquisition system is based on PXI-6133 S Series multifunction DAQ modules and PXIe-1082
PCI Express chassis (National Instruments, Austin, TX, USA). The signals of pressure sensors were fed
through 8-channel signal conditioners PCB 483C05 (PCB Piezotronics Inc., Depew, NY, USA) and did
not require additional filtration.
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Figure 1. The schematic representation of the headform used in the ballistic helmet performance under
blast loading experiments: (A) the headform with the outline of the Advanced Combat Helmet (ACH);
(B) the top-view of the headform with the outline of the ACH illustrating the pressure sensor locations
(denoted as H1 to H10) and the direction of the incident shock wave. Three types of helmets used in
blast performance tests: (C) Ops-Core, (D) Airframe, and (E) Enhanced Combat Helmet (ECH).

2.2. Evaluation of Combat Helmets under Blast Overpressure

The headform was mounted on the Hybrid III neck (Humanetics, Plymouth, MI, USA) [33], in a
rigid configuration. The headform-neck assembly was attached to the adapter plate and bolted to the
bottom of the shock tube in the test section. The experiments evaluating the performance of various
helmets were divided into two groups. The first set of experiments was designed to quantify the effect
of orientation on the surface pressure distribution of the headform. The medium size ACH fitted
with standard-issue Zorbium® Action Pads (ZAP™) 6+1 padding system (Team Wendy, Cleveland,
OH, USA) was used for this purpose (Figure 1A). The ACH was mounted onto the headform and
secured using a chin strap. The whole assembly was exposed to a single shock wave at two intensity
levels, 5 psi and 10 psi nominal shock wave intensity. Four different helmet-headform orientations
(0◦, 90◦, 180◦, and 270◦; see Figure 1B for the details) were used, and exposures at each combination of
orientation-shock wave intensity were repeated six times.

The second set of experiments was designed to evaluate the performance of three modern helmets
under blast loading. The following helmets were used: (1) Ops-Core FAST ST high-cut helmet (Gentex,
Zeeland, MI, USA; Figure 1C), (2); Airframe™ high-cut (Crye Precision, Brooklyn, NY, USA; Figure 1D);
and (3) ECH (Ceradyne, Inc., Costa Mesa, CA, USA; Figure 1E). The helmets were attached to the
headform using the respective chin straps included in the kit, and the same applies to the padding.
The headform with the helmet was exposed six times to a shock wave with two nominal intensities:
35 kPa and 70 kPa (approx. 5 psi and 10 psi, respectively) at a zero degrees orientation. All helmets
used in the tests were brand new with a set of new, unused pads.
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2.3. Data Reduction and Statistical Analysis

All waveforms were imported, processed, and quantified in the Origin 2018 software (OriginLab
Corp., Northampton, MA, USA). Data from experiments performed at different experimental conditions
(shock wave intensity, headform orientation, or helmet type) were pooled together in 3 subsets according
to blast intensity. Multiple comparison two-tailed t-test with a post-hoc Bonferroni correction was
performed, and p < 0.003 was considered statistically significant. All data are presented as mean and
standard deviation.

Principal component analysis (PCA) was performed in RStudio 1.2.5 using R version 3.6.3 [34].
The pressure waveform characteristics (peak overpressure, rise time, duration, and impulse) recorded
by the headform sensors were first reduced to non-dimensional amplification factors: their respective
values were divided by corresponding incident pressure characteristics. In the next step, the
amplification factors were natural log-transformed and subjected to PCA.

3. Results

3.1. The Effect of the Orientation on the Pressure under the Helmet

In the first part of this research effort, we evaluated the impact of the helmet orientation on the
surface pressure distribution under the ACH (Figure 1B). The representative pressure profiles for the
blast exposures performed at 70 kPa incident BOP (~10 psi) are presented in Figure 2. The highest
peak overpressures are noted for the frontal orientation of the headform in the eye sockets (490 kPa,
Figure 2A, inset) and on the forehead (H1 sensor, Figure 2A). On the back of the head, the underpressure
region develops, as evidenced by the signals from the H4 and H5 sensors. The surface pressure in these
regions is increased above the incident pressure, while the sensor on the top of the head (H3) and all
three circumferential sensors (H6, H7, and H10) report pressure levels similar to the incident pressure.
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Figure 2. The representative overpressure waveforms recorded at a nominal shock wave intensity
of 79 kPa (~10 psi, denoted as T5). The headform equipped with the ACH helmet was oriented at:
(A) 0◦, (B) 90◦, (C) 180◦, and (D) 270◦ with respect to the direction of the shock wave propagation (see
diagram in Figure 1B). The data recorded by the midsagittal (H1–H5) and circumferential (H6–H10,
insets) sensors embedded in the headform are presented.
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A very similar pattern is observed for the other three headform orientations. The highest pressures
are observed on the side facing the shock wave and on the opposite side. These trends are corroborated
when the four characteristics of the pressure waveforms were quantified (Figure 3). The pressure
amplification is seen in sensors directly exposed to the incident shock wave (H1, H8, and H9 at 0◦; H1,
H8, and H6 at 90◦; and H1, H9, and H10 at 270◦ orientation). The same is valid for the sensors under the
helmet where the underwash effect is observed (e.g., H4 and H5 at 0◦ orientation). It is also noteworthy
to mention that at 180◦, the lowest peak pressures are observed due to shielding of the back face of the
helmet preventing the flow of the pressure wave under the helmet. The rise time is a sensitive measure
of the shock front dynamics, and at a shorter rise time values, the corresponding loading rates are
the highest. The rise time is described often as an “almost instantaneous” increase from ambient to
peak pressure. Our results demonstrate that for the incident shock wave with 70 kPa nominal intensity,
the rise time is 6 µs. The rise time is reduced to 3 µs at the flat surface facing the blast (H1, Figure 3B).
The rise time values increase to 10.5 µs and 800 µs for sensors facing away or under the helmet. The
variation of the impulse and duration values are less pronounced since these two parameters describe
the entire waveform and not only the shock front. Nonetheless, in all four orientations, we noticed
amplification above the incident waveform impulse and duration (Figure 3C,D).
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Figure 3. The effect of the orientation on pressure distribution under the helmet. The results of the
quantification of the four characteristics of the pressure waveforms: (A) peak overpressure, (B) rise time,
(C) impulse, and (D) duration are presented. The data collected at 70 kPa incident blast overpressure
(BOP) (~10 psi, denoted as T5) are expressed as average ± standard deviation. The red horizontal lines
behind the data indicate average incident shock wave characteristics and are plotted as a reference to
visualize the trends in the data.

The PCA analysis results are presented in Figure 4. All four characteristics (peak overpressure,
rise time, impulse, and duration) for all ten pressure sensors were normalized using their corresponding
incident waveform counterparts and natural logarithm normalized. As a result, 40-dimensional space
was created for all four headform orientations. The first and second principal components (PC1 and
PC2, respectively) describe the variability of 76.3% of the data. The individual data points for each
orientation represent separate shock wave exposures (n = 6). The data are clustered according to
the headform orientation, and clusters are separated by the PCA algorithm and outlined with 95%
confidence interval ellipses. These results demonstrate that the exposure conditions at 0◦ and 180◦
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orientations are the most distinct. The 0◦ and 180◦ are on the opposite sides of the PC1 values (i.e., −2.5
to 4.0 and 3.2 to 4.5, respectively).
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the headform equipped with an ACH helmet. The scores plot illustrates the clustering in the space of
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On the contrary, the clusters for the 90◦ and 270◦ orientations data are grouped with significant
overlap. It is an expected outcome, considering exposure at both of these orientations are equivalent
and observed differences stem from asymmetry in circumferential sensor distribution, i.e., two sensors
are located on the right side of the headform (H6 and H7), while only one (H10) was placed on the left
side (Figure 2B). Moreover, the aggregate peak overpressure and impulse values for the 90◦ and 270◦

are very similar (Table 1), unlike the other two orientations tested.

Table 1. The aggregate values (sum of averages) obtained from the quantification of the peak
overpressure, rise time, duration, and impulse in the: (1) helmet orientation (ACH), and (2) helmet
type (Ops-Core, Airframe, ECH) blast tests. The unprotected headform was used as a reference in the
helmet type tests.

Peak
Overpressure, kPa Rise Time, ms Duration, ms Impulse, kPa·ms

Helmet orientation
0◦ 1856 1.70 42.2 1344

90◦ 1045 2.79 42.8 1224
180◦ 842 3.30 45.1 1281
270◦ 1021 3.36 47.0 1219

Helmet type
Headform 1610 0.17 36.3 1175
Ops-Core 1938 1.23 34.3 1226
Airframe 1910 1.90 43.7 1331

ECH 2180 1.24 36.1 1297
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3.2. Ops-Core, Airframe and ECH Helmets Blast Testing

The blast mitigation of the helmets was performed using the headform facing the shock wave (0◦

orientation, Figure 1B) at 70 kPa nominal shock wave intensity. The representative pressure traces
recorded by sensors mounted flush on the headform surface are presented in Figure 5, and their
quantification results are shown in Figure 6. A bare headform was used as a reference, and we evaluated
how the geometry of three modern combat helmets affects the surface pressure distribution. The bare
headform has the simplest overpressure fingerprint among tested specimens. The highest pressures are
observed for the eye sensors (H8 and H9), similar to our previous tests [30,31]. The pressure traces for
most sensors resemble the incident overpressure waveform, except for the two sensors located at the
front of the head (H1, H2) and the occipital sensor (H5). Pressure waveforms for all three sensors are
more complex (e.g., it would appear the peak overpressure for the H1 sensor is higher for all helmets
(~240 kPa range, Figure 6A)) compared to bare headform (190 kPa). However, the peak overpressure
for the H2 sensor is reduced under the helmets, from 115 kPa (bare headform) to 70–75 kPa (helmets).
The presence of the under-wash effect is evident: the H4 sensor reports the highest peak overpressures
for all three helmets. The H3 and H5 sensor peak overpressures are also elevated, exceeding bare
headform by 20–40 kPa, except for ECH. The rise times are, in general, longer for all sensor locations
when helmets are used.
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Figure 5. The evaluation of the three helmets under shock wave loading conditions. The representative
overpressure waveforms recorded at a nominal shock wave intensity of 10 psi (70 kPa, denoted as T5).
The headform with no helmet (A) or equipped with the Ops-Core (B), Airframe (C), or ECH (D) helmets
were used in these experiments. The data recorded by the midsagittal (H1–H5) and circumferential
(H6–H10, insets) sensors embedded in the headform are presented.
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Figure 6. The quantification of peak overpressure (A), rise time (B), impulse (C), and duration (D)
recorded for a nominal BOP of 70 kPa. The headform with no helmet (Headform), or equipped with the
Ops-Core, Airframe, or ECH helmets were used to measure surface pressure distribution at a nominal
shock wave intensity of 70 kPa.

Additionally, the H6 sensor located at the temple (Figure 2B) is reporting elevated overpressure
exceeding the incident values for Airframe and ECH (Figure 6A). The feature which sets the Airframe
helmet apart from the set is secondary pressure pulse at 5–10 ms for the H4 and H5 sensors. These
signals are not present in the overpressure signatures of the other two helmets and its strong association
with the construction of the helmet, and the gap seems extremely likely.

The quantification of the impulse reveals that the H7 sensor reports a decrease of 40% for
the helmets, and this is the only piece of evidence suggesting the protective role of the evaluated
helmets. On the contrary, the impulse values for the H6 sensor are increased by 30–50% (Figure 6C).
The under-wash effect is also evident in this dataset by elevated H4 impulse values. The Airframe
helmet performs the worst in this classification, considering the impulse for the H2 sensor increases
by 60%. The H2 impulse for the Ops-Core and ECH remains approximately the same as for the
non-helmeted headform.

As a final step of the data analysis, we performed the PCA using the same data reduction algorithm
as used in orientation experiments (Figure 7). The two principal components account for 87.6% of the
data variability, which is a very high value. It is evident that the data for the headform are clustered
separately and on the opposite side of the PC1 axis compared to all three helmet data clusters. There
seems to be a degree of overlap between the ECH and Ops-Core helmets. Simultaneously, the Airframe
data cluster is also assigned as a separate entity in the evaluated dataset. The Airframe helmet has the
largest aggregate risetime, duration, and impulse values (Table 1).
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Figure 7. Principal Component Analysis of the surface pressures on the bare headform and equipped
with Ops-Core, Airframe, and ECH helmets. The data were recorded at 70 kPa (~10 psi) nominal shock
wave intensity, and the scores plot illustrates the clustering in the space of two principal components,
PC1 and PC2. The shaded areas surrounding the data points are 95% confidence ellipses.

4. Discussion

In this work, we have evaluated the performance of the four modern combat helmet designs: ACH,
ECH, Ops-Core, and Airframe. The ECH is the next generation combat helmet selected a few years
ago to replace the ACH. In contrast, the Ops-Core and Airframe are two more recent helmets designed
for the Special Operations Community [35]. A literature search summarized in Table 2 indicates a
considerable body of work exists on the role of helmets under blast loading using computational
approaches. Unlike the theoretical studies, there is a scarcity of published experimental work on
the blast mitigation of the helmets [6,13,18,36], and two published only very recently by Kamimori
group [37,38]. Most of these studies used ACH in their design, and there are only a few studies that
used other helmets (Table 2). The ECH was used in only one study, while no studies evaluated the
blast performance of the Ops-Core and Airframe helmets.

The Ops-Core and Airframe are high-cut helmets (Figure 1C,D, respectively), while the ACH and
ECH are low-cut helmets (Figure 1E). Compared to the ACH/ECH, both high-cut helmets have parts
covering the ears on both sides removed. It is a design feature implemented after it was discovered
that the water entering ear cups at high speed might pose a safety hazard [39]. The high-cut helmets
are designed to incorporate the earmuffs, either as communication devices and/or personal protective
equipment (PPE). It seems that the back part of the Ops-Core and Airframe helmets extends further
downwards, and they have smaller radii of curvature, and hence a different shape compared to the
ECH. A unique feature of the Airframe helmet is a two-shell construction held together by four screws,
and a gap between the two parts with the largest separation on the top of the helmet (Figure 1D).
The differences in the shape of the helmet (and suspension system) are likely to result in performance
variability against blast waves.
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Table 2. The summary of the computational FEM studies which evaluated blast mitigation performance
of various combat helmets using high-fidelity human head models. The helmet type, incident peak blast
overpressure (reported or calculated) with a corresponding mass of the charge mass (TNT equivalency
in kg), and standoff distance are presented.

Helmet Type Peak
Overpressure, kPa

Charge NEW, kg
TNT

Standoff
Distance, m Reference

ACH 55, 230, 450 1 0.075, 0.095 0.75, 1.0, 2.0 [8]
ACH 260, 290 1 7.14 3.8, 4.0 [9]
ACH 450 2 - - [16]

PASGT 3 170, 326 6.85 3.0, 4.0 [17]
ACH 70, 140, 200 4 - - [6]
ACH 520 0.07 0.58 [23,25]
ACH 4071 0.20 1.0 [14]

PASGT 103 0.0284 0.81 [40]
ECH 180 3.2 3.0 [41]

CIPHER 5 120 2.1 3.0 [12]
ACH 270–660 0.85–5.4 1.0–2.8 [18]
ACH 70, 150 4 - - [42]

ACH, LWH 6 1600 20 1 2.5 [13]
ACH 10,000 3.16 0.12 [43]
ACH 520, 1886 0.07, 0.32 0.6 [7]
ACH 195 1 2.055 3.0 [11]

1 calculated using Kingery–Bulmash equations [44]; incident peak overpressure not specified in the reference; 2 the
pressure on the top of a head model used as an equivalent of incident peak overpressure; incident overpressure not
specified in the reference; 3 Personnel Armor System for Ground Troops, 4 incident overpressure waveform taken
from the shock tube experiments, 5 Conformal Integrated Protective Headgear System, 6 Lightweight Helmet.

4.1. Do Helmets Protect Against the Blast?

Early work on the effects of the blast waves using computational methods demonstrated that
the impulsive loading of the head could lead to tissue level deformation (strain and stress), and by
extension, lead to neurological effects [19,20,45–47]. As mentioned in the previous section, the effects of
helmets on the brain loading were extensively investigated using computational approaches (see Table 2
for details). These studies replicated conditions associated with the detonation of high-explosive
materials (e.g., TNT or C4) commonly used in improvised explosive devices (IEDs). Thus, the peak
overpressures applied to study the brain response are relatively high, and in the range identified as
responsible for mild traumatic brain injury (TBI) in service members during recent conflicts [48].

For an unhelmeted head, previous research demonstrated that on the surface of the coup side,
the pressure is amplified significantly, and this amplification is also observed on the counter-coup
side [5,11,19]. This phenomenon is caused by the blast wave separation as it flows around the head
and re-joins at the back, which results in the pressure increase. It was also noted that local geometry
is an important parameter in the surface pressure amplification and that anatomical regions with
concave geometry like eyes, ears, or nose [5,12,13], experience higher pressure levels as compared to
flat surfaces [13,24].

The existing work on the effects of the helmet supports the notion that helmets offer protection at
the front of the head (H1 and H2 locations), but not in the back due to the under-wash effect [5,13,16,25].
Our experimental results are in stark contrast with these findings; there is no evidence that the helmets
improve the protection in the forehead, where typically, the highest pressures were observed (Figures 3A
and 6A). It is possible that the discrepancies in the geometry between experimental and computational
models: (1) the gap size between the helmet and the head, and (2) material models used for pad
suspension systems could account for these differences. The magnitude of the incident blast wave
might also be an important factor: 200 kPa [5], 450 kPa [16], 520 kPa [25], and 1600 kPa [13] incident
peak overpressure values were used in these studies, whereas the incident pressure value was merely
70 kPa in our experimental design. Some of these limitations were demonstrated in the published
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work, that attempted validation of numerical models against the experimental data [9]. The decreased
volume under the helmet by the unyielding pad suspension system caused the pressure amplification
on the surface of the head not covered by pads [12]. Overall, our analysis indicates that all four tested
helmets cause surface pressure increases compared to an unprotected headform. The aggregate (sum)
peak overpressure for ten pressure sensors is 1610 kPa for the unprotected headform, while for helmets,
it is in the range of 1856–2180 kPa (frontal blast loading, Table 2). It appears that each helmet system has
a unique surface pressure signature, which was determined by the quantification of surface pressure
waveform characteristics followed by PCA (Figures 4 and 7). All helmets increase the pressure in
the eyes (H8 and H9) and front of the headform (H1). Further, we noted the pressure increase: (1)
on the temple for the ECH (H6 and H10); and (2) on the back (H4 and H5) for the low-cut helmets
(Ops-Core and Airframe). The latter had consistently elevated impulse values for all five midsagittal
sensors (H1–H5, Figure 6C). There exists some evidence that increase in surface pressure translates
into modulation of the ICP [6,25], but this problem was not studied in detail. More work is necessary
to provide a definite answer to the question whether pressure amplification on the surface of the head
would translate into increase of the ICP and resultant brain injury.

On the contrary, the effects of the blast direction on the brain loading and helmet protection are
relatively well understood [10,13,18,25]. In these works, the results are presented as pressure histories
or peak pressures at a few selected locations on the head surface [11,13,25] where elevated pressures
were likely to occur (forehead, back of the head, eyes, and ears) or as peak intracranial pressure [18,25].
Previous studies did not attempt to evaluate the surface pressure distribution (head loading) in a
collective and integrated way incorporating a larger number of measurement sites (Figures 2 and 6) and
blast waveform parameters (Figures 4 and 7), in comparison to the current study. However, even with
these limitations, there is a general agreement between these previous studies and results reported
herein, i.e., the exposure at the 0◦ orientation results in the highest pressure. In contrast, when the blast
wave is directed at the back of the head, a significant pressure attenuation was observed. Interestingly,
Mott and co-workers noticed that at the 45◦ orientation, the pressures reached the highest levels [11].

Considering that the surface pressure changes considerably in response to such factors as helmet
shape (design) and blast wave directionality, it is difficult to formulate a simple yes–no answer about
helmets’ blast protection properties. However, each combination of helmet and blast wave orientation
has its own unique "pressure fingerprint", which can be used to identify variables behind the efficacy of
helmet design. The surface pressure fingerprinting, dimensionality reduction via PCA and aggregate
parameters of the surface pressure (Table 1) combined are necessary to answer the question about the
blast mitigation efficacy with a high degree of confidence.

There are several factors that can be considered as limitations of the current work. The padding
type was not standardized in our experiments, and the pads we used are a "standard issue suspension
system" available with a specific helmet type. The material properties of the pads and their shape and
spatial distribution might contribute to the variability of the results. The gap between the headform and
the helmet was not controlled and reliant upon the used suspension pad system. The gap size will likely
affect the pressure wave flow characteristics and pressure distribution on the headform. The presence
of the helmet-mounted performance-enhancing and communication equipment, especially PPE like
earmuffs, will likely affect the flow field and pressure distribution under the helmet.

4.2. Service Applicability Considerations

As previously mentioned, it must be remembered that the helmet’s primary function is to protect
the SMs from blunt-force trauma and fragmentation/projectile impacts. Additionally, BOP mitigation
has not previously been a consideration when designing and selecting a helmet for Service-wide
acceptance. However, there has been a considerable body of research in this area over the last two
decades that provides quantifiable data showing the negative outcomes related to an increase in
head trauma exacerbated by the current array of issued military helmets (ACH, ECH, Airframe,
and Ops-Core). This research, coupled with others cited herein, have shown that BOP attenuation



Appl. Sci. 2020, 10, 7193 12 of 15

effects caused by helmet geometry to be an imperative consideration when designing and approving a
Service helmet for military issuance.

5. Conclusions

We demonstrated that the orientation of the incident blast wave results in the heterogeneity of the
surface pressure field under the helmet. The frontal orientation consistently demonstrated the highest
aggregate peak overpressure, and it was more than two times higher than for the back orientation
(presumably due to the contribution of the eye mounted sensors). At the same time, we observed
much smaller impulse variability.

This study demonstrated that the shape of the helmet has a pronounced effect on developing
the localized overpressure focal points. The nature of these local “hot spots” is different than the
widely recognized elevated pressure on the back of the headform (H4 and H5) under the helmet shell
caused by the under-wash effect (identified in our tests also). It is the first experimental study which
indicates that the helmet presence increased the pressure experienced by the eyes (H8 and H9), and
the same is also true for the H1 location on the forehead. The “hot spots” were observed on the side
of the headform: (1) H6, H7, and H10, corresponding to the temporal bone location for the ECH;
and (2) H6 and H10 for the Airframe and Ops-Core helmets, respectively. Overall, none of the helmets
offer any protection compared to the bare headform, and the Airframe scored the worse thanks to
the contribution of extended duration and the highest impulse. Collective pressure measurements
at ten distinct locations on the headform indicate that helmets offer no protection against the blast
waves. The sum of the peak overpressure for helmeted specimens was, in all cases, higher than for
the unprotected headform. The only effect which could be considered as protective, assuming the
importance of the loading rates, is the increased rise time for the overpressure waveforms recorded
under the helmet.
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