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Abstract: Based on the flexibility of software-defined radio (SDR) techniques applied to an array of
antennas, this article presents a beamforming architecture designed to operate in millimeter-wave
bands (28 GHz), with possible applications in radar and 5G systems. The system structure, including its
main constituents such as the radio frequency (RF) frontend modules, the radiating elements as well
as the baseband processing on the host computer are widely described. Beamforming is achieved by
digitally controlling the signals that feed the antennas. The experimental measurements performed
in an anechoic chamber validate the proposed approach.
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1. Introduction

The world is gradually undergoing the age of communications, facing an enormous density of
traffic and connections, where everyone is online, people and objects, interacting with each other,
through a multitude of applications [1]. The modern generation of mobile communications (5G) is
launched, which brings new challenges and opportunities, and will allow the creation and integration
of new networks such as the internet of things (IoT) and vehicular networks, in an increasing global
coverage. These systems impose a set of new requirements such as high speed data transfer, low latency,
high network capacity and high connections density [2], which involve the operation in a frequency
range little used so far, in the zone of millimetre waves.

Radio detection and ranging (RADAR) technology, that was mainly used for military purposes,
recently has suffered increasing attention, and its application is nowadays widespread in sports,
biomedical, military or in transportation systems. Radars are used for surveillance, navigation,
localization, traffic control or for weapons guidance. Currently, with the evolution of vehicular
networks, smart cities and other intelligent systems, more advanced radar technologies are being
developed. In the near future, the extension of the radar concept is expected for two purposes,
reflectometry and communications. The scenario of Figure 1 is foreseeable, a panoply of interconnected
systems sharing information, and experiencing a huge communications density, with high risk
of interferences.
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Figure 1. Modern environment of multicommunication systems. 

Radar technology is required to filter the environment, focusing more accurately on the target 
or targets, as well as to mitigate interference signals from the surrounding environment. Multibeam 
capabilities, beamforming, high gain and tremendous versatility and reconfigurability are important 
aspects for modern radar systems. Additionally, most of these characteristics allow us to overcome 
propagation issues raised when these systems operate at higher frequencies. Thus, versatile and 
dynamic communication systems are needed, with the ability to continuously adjust to the 
applications in which they are inserted, maximizing the quality of communication. With additional 
signal processing capability, adaptive antennas use new digital architectures that, in real-time, 
dynamically adjust the radiation pattern of the array. These systems have perception of the received 
signal and optimize their radiation diagrams by changing the beam shape and beam direction, 
suppressing interferences by introducing nulls in the directions of the interference signals, changing 
the level of side lobes, compensating for hardware impairments and finally, accommodating the 
mutual coupling effects that can change the amplitude and phase of the transmitted signals. 
Particularly regarding automotive radars, the authors of [3,4] present a good example of the 
importance of using digital beamforming in multiantenna systems to reduce the power received in 
the directions of interference signals, placing nulls in the radiation pattern. 

There have been technological advances in this field, where low-cost mm-wave radars 
composed of several antenna elements integrated in single board and with high resolution, have been 
presented. In [5] is presented an example of a low-cost digital beam steering receiver (Rx) phased 
array for IoT device connectivity, a cheap application to get over the communication problems. In [6], 
a frequency modulated continuous wave (FMCW) radar is described. This system generates multiple 
digital beams with high gain, low side lobe level, narrow beam width and high angular resolution 
control. The principles of the digital beamforming applied to synthetic aperture radar (SAR) systems 
are shown in [7], as well as the improvement in the resolution achieved regarding conventional 
radars.  

In [8,9], a wide variety of future applications are shown, as well as the progress that technology 
is facing in reducing the cost of phased array antennas. Massive antenna arrays using up to 128 
elements, increasing performance and gain of radar communication systems are presented in [10], 
taking advantage of digital beamforming based on coded aperture radar (CAR) technique at 77 GHz. 

In [11–13], the importance of the beamforming spectral efficiency is demonstrated, with the 
cancelation of undesired interferences by placing nulls in their directions that can lead to a lower bit 
error rate (BER). 

In [14], there is a software-defined phased array radio operating at 28 GHz that uses software to 
control multiple beam characteristics. However, additional hardware was required, a field 
programmable gate array (FPGA) board for digital control and an Ettus B200 mini software-defined 
radio (SDR) for data waveform control. In [15], a highly compact 28 GHz complementary metal–
oxide–semiconductor (CMOS) integrated circuit (IC) with multiple input multiple output (MIMO) 
and beamforming capabilities with a single wire for baseband multiplexing is reported. However, it 
requires heavy digital signal processing (DSP) MIMO operations to retrieve the information. A 
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Radar technology is required to filter the environment, focusing more accurately on the target
or targets, as well as to mitigate interference signals from the surrounding environment. Multibeam
capabilities, beamforming, high gain and tremendous versatility and reconfigurability are important
aspects for modern radar systems. Additionally, most of these characteristics allow us to overcome
propagation issues raised when these systems operate at higher frequencies. Thus, versatile and
dynamic communication systems are needed, with the ability to continuously adjust to the applications
in which they are inserted, maximizing the quality of communication. With additional signal processing
capability, adaptive antennas use new digital architectures that, in real-time, dynamically adjust the
radiation pattern of the array. These systems have perception of the received signal and optimize
their radiation diagrams by changing the beam shape and beam direction, suppressing interferences
by introducing nulls in the directions of the interference signals, changing the level of side lobes,
compensating for hardware impairments and finally, accommodating the mutual coupling effects that
can change the amplitude and phase of the transmitted signals. Particularly regarding automotive
radars, the authors of [3,4] present a good example of the importance of using digital beamforming in
multiantenna systems to reduce the power received in the directions of interference signals, placing
nulls in the radiation pattern.

There have been technological advances in this field, where low-cost mm-wave radars composed
of several antenna elements integrated in single board and with high resolution, have been presented.
In [5] is presented an example of a low-cost digital beam steering receiver (Rx) phased array for IoT
device connectivity, a cheap application to get over the communication problems. In [6], a frequency
modulated continuous wave (FMCW) radar is described. This system generates multiple digital
beams with high gain, low side lobe level, narrow beam width and high angular resolution control.
The principles of the digital beamforming applied to synthetic aperture radar (SAR) systems are shown
in [7], as well as the improvement in the resolution achieved regarding conventional radars.

In [8,9], a wide variety of future applications are shown, as well as the progress that technology is
facing in reducing the cost of phased array antennas. Massive antenna arrays using up to 128 elements,
increasing performance and gain of radar communication systems are presented in [10], taking
advantage of digital beamforming based on coded aperture radar (CAR) technique at 77 GHz.

In [11–13], the importance of the beamforming spectral efficiency is demonstrated, with the
cancelation of undesired interferences by placing nulls in their directions that can lead to a lower bit
error rate (BER).

In [14], there is a software-defined phased array radio operating at 28 GHz that uses software
to control multiple beam characteristics. However, additional hardware was required, a field
programmable gate array (FPGA) board for digital control and an Ettus B200 mini software-defined
radio (SDR) for data waveform control. In [15], a highly compact 28 GHz complementary
metal–oxide–semiconductor (CMOS) integrated circuit (IC) with multiple input multiple output
(MIMO) and beamforming capabilities with a single wire for baseband multiplexing is reported.
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However, it requires heavy digital signal processing (DSP) MIMO operations to retrieve the information.
A similar concept was recently shown in [16], proposing a digital array receiver for satellite applications,
also integrating DSP algorithms, operating in a single-chip RF system on chip (SoC) solution installed
on the Xilinx ZCU1275 prototyping platform; however, operating in a fixed frequency range between
27.5 and 28.35 GHz. A 64-channel massive MIMO transceiver with a fully digital beamforming (DBF)
architecture is presented in [17]. The MIMO transceiver operates in time division duplex (TDD) mode,
at 28 GHz with a 500 MHz signal bandwidth. A high data rate in the communication was achieved
using the beam-tracking technique and two streams of 64-QAM (Quadrature Amplitude Modulation)
signals. However, one of the great difficulties of this architecture is the high cost of the hardware
structure that supports the 64 channels. Due to the high power consumption of the RF frontends,
additional space in the circuit is required for heat dissipation. A Ka band DBF array transmitter using
a direct digital synthesizer (DDS) for millimeter-wave applications is proposed in [18], operating at
24 GHz. This system reveals a complex calibration and has fluctuation over different scanning angles
that unbalance the gain of different beam peaks in the 1 × 15 antenna array. In [19], the implementation
of an X band 4 × 4 digital phased array module is shown, which includes one custom CMOS RF SoC.
This system has high side lobes due to the transmitter (Tx) calibration process that involves random
errors both in the phase and magnitude.

The concept of beamforming, in the sense of the ability to control the radiation shape of an antenna
array, can be performed either digitally, like the examples presented previously [14–19], analogically
(by using the frontend analog phase shifters [20]) or in a hybrid way [21]. A millimeter-wave hybrid
beamforming system architecture based on analog phased subarray is reported in [22]. This work
uses a 32-element antenna array with a hybrid beamforming transceiver to operate at the 28 GHz
band in TDD mode, with 500 MHz bandwidth. An important aspect is the reduction in the number
of intermediate frequency (IF) channels compared to [14–19], reducing the cost comparing to fully
digital architectures. However, one issue with this architecture is the analog phase shifting, which is
critical to increasing the insertion loss up to 19.5 dB, requiring the use of additional amplifiers to
compensate such losses. Additionally, this architecture has a higher complex design of the control
signal because of the non-linearity between the control signals (amplitude weighting control) and
output phase of this vector-sum phase. Authors in [23] explored the use of a Universal Software Radio
Peripheral (USRP) X310 connected to a computer capable of calculating the direction of arrival (DoA)
and generating beamforming in the sub-6 GHz frequency band for a satellite transponder structure.
Nevertheless, this test bed presents considerable DoA estimation errors in a lower frequency of the
operation scenario.

Millimeter-wave RF systems are evolving rapidly, to some extent supported by software-defined
radios. These systems provide a straightforward way to rapidly interact with hardware, and to test
their use. Therefore, the combination of digital technology and versatile architectures, with adaptive
antenna processing techniques, allows for powerful systems that can be used in communications and
radar approaches.

In this work, a versatile and reconfigurable 4 × 4 SDR digital beamforming phased array system
operating in the Ka band at 28 GHz is proposed. This system has the capability of electronically
and digitally manipulating and steering the radiation pattern of an antenna array, and adjusting it
to the environment, maximizing its performance and efficiency. Besides that, this system also has
the versatility to, with low complexity, change the frequency of the local oscillator (LO) and the IF to
implement communication systems and radar in the millimeter waves (Ka band), enabling the rapid
testing of new solutions based on software-defined radio. It has also the advantage of carrying out
full-duplex communication. This architecture has the potential to be used in a great variety of future
scenarios such as in 5G communications, radar applications, IoT or surveillance. It is an extension work
regarding the previous papers [24,25] with improvement in the digital processing unit and practical
measurements validation.
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This paper is organized into five sections, starting with the Introduction in Section 1, stating the
objectives and providing a brief state-of-the-art on SDR beamforming systems. Section 2 presents both
digital and analog components that constitute the proposed architecture of the software-defined radio
(SDR) phased array system. Section 3 describes the beamforming processing system while in Section 4
the experimental setup and the measurement results are presented. Finally, the last section reports the
main conclusions of the work.

2. System Architecture

Figure 2 shows the proposed architecture of the 28 GHz SDR system, using a digital beamforming
phased array structure. This architecture has two complementary domains, the digital and the analog,
which are described below.
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2.1. Digital Component

The digital component of the proposed system includes one Ettus SDR Universal Software Radio
Peripheral (USRP) N310 from National Instruments and one Host-PC (Personal Computer). The USRP
is a network SDR equipment (uses gigabit ethernet interface) which has four independent transmitting
and receiving channels, operating at a frequency that can be chosen from 10 MHz up to 6 GHz, with up
to 100 MHz of bandwidth. This equipment is responsible for digitally generating any required signal
for the desired application and modulating it with a RF microwave carrier. The baseband signal is
digitally decomposed into two orthogonal components that feed a phase and quadrature modulator.
The block diagram of the signal modulation performed inside the USRP is shown in Figure 3. At the
USRP output, the resulting modulated intermediate frequency (IF) signal is chosen to have a 3.84 GHz
carrier frequency (fc). An equivalent reverse process is applied to the IF reception signals. The received
IF signal is demodulated in phase and quadrature, generating I/Q samples that are later sent out over
a 10 GbE connection to the HOST-PC for processing. This equipment is controlled by the HOST-PC,
where a Python script based on the USRP hardware drivers (UHD) library was developed.

The N310 architecture is divided into two segments, as shown in Figure 3: a pair of daughterboards,
each based on the Analog Devices AD9371 transceiver, and one motherboard composed by one Arm
Cortex A9 and one FPGA (Kintex-7). In this work, all the core digital signal processing is performed in the
USRP from the selection of frequency of the local oscillator, the sample rates, decimation/interpolation
and the selection of appropriate filter bandwidth. The remaining processing of the In-phase and
Quadrature (IQ) samples is performed on the PC. Regarding the communication between the HOST-PC
and the USRP, the UHD library used in the PC to control USRP parameters is illustrated in Figure 4,
which provides a set of important functions for the communication. Figure 4 focuses with high detail
on the block diagram of the software structure developed on the PC to calibrate the system and
manage the beamforming. A Python program adapted to the USRP N310 was created, to control
the generated and received waveform signals. In this script, eight threads were created, each one



Appl. Sci. 2020, 10, 7187 5 of 14

independently controlling each channel of the USRP. The process starts by requesting samples from
the USRP, encoding them with the channel number and sending them over the Transmission Control
Protocol/Internet Protocol (TCP/IP) socket. In this case, the Matlab program is the client, which for each
channel decodes the samples in an IQ vector. A calibration routine was also developed, calculating the
phase and amplitude differences existing among the RF frontend channels.
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2.2. Analog Component

The analog component of the proposed system is a transceiver composed of frequency converter
modules, between IF and RF, and also by the antenna arrays that transmit and collect the involved
signals. The operating frequency was selected in the Ka band, at 28 GHz, and the chosen IF was
3.84 GHz.

Therefore, the RF upconverter module translates the modulated 3.84 GHz IF signal to the output
operating frequency of 28 GHz. The block diagram of the upconverter is presented in Figure 5a, and its
measurements are shown in Figure 6. The RF downconverter transforms the received 28 GHz signals
down to 3.84 GHz IF, to be processed in the USRP. The block diagram of the downconverter can be
seen in Figure 7a, and its measured results are provided in Figure 8.

2.2.1. RF Frontend Modules

USRP channels can operate with frequencies up to 6 GHz (max), so to allow the system to operate
at 28 GHz, frequency conversion units are required to be attached to the USRP channels, connected to
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the antennas. Therefore, two RF frontend units were developed, allowing this conversion from 3.84 to
28 GHz and vice versa.

The chosen topology uses the heterodyne configuration. The upconverter is composed, in each
channel, by an active mixer, a bandpass filter and an amplifier. To distribute the signal from the local
oscillator (LO) to each channel mixer, discrete power splitters were also used.

The key element for the up/down conversion is the mixer. The chosen mixer was the HMC264LC3B
from Analog Devices. It is a subharmonic mixer that operates from 21 to 31 GHz at the RF port, using a
signal from Direct Current (DC) to 6 GHz at the IF port, and from 10.5 to 15.5 GHz at the LO port.

The used amplifier is the MAAL-011129 from MACOM, which is a low noise broadband amplifier
(18 to 31.5 GHz) with a gain of 18 dB @ 28 GHz [19]. The local oscillator signal is generated by the
phased locked loop (PLL) LMX2595 evaluation board which operates over a wideband (from 10 MHz
up to 19 GHz) with low noise characteristics. The power splitter that divides the LO into two channels
is the Mini-Circuits EP2k1+, which works from 1.8 to 28 GHz. The selected LO was 12.08 GHz. Finally,
a fifth order parallel coupled microstrip band pass filter was designed with 5 GHz of bandwidth,
an attenuation of approximately 40 dB at the image frequency (20 GHz) and 0.9 dB of insertion loss at
28 GHz.

The upconverter module comprises four IF inputs, four RF outputs and two LO inputs. It was
designed for a maximum power of about 10 dBm at the RF outputs, and for a maximum IF input power
of 7 dBm, resulting in an expected conversion gain of 3 dB.
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The purpose of the designed filter is to mitigate the image frequency signal and other spurious
signals generated by the mixer. It is assumed that the IF signals at the inputs are bandpass at 3.84 GHz
with the proper filtering done in the USRP. A photograph of the fabricated prototype can be seen in
Figure 5b).

The upconverter was tested using a 12 GHz signal in the LO port and with an IF of 4 GHz.
Figure 6a shows the output spectrum at one of the four RF outputs of the upconverter. It is possible to
find out the image signal (24 − 4 GHz = 20 GHz), the LO signal (2 × 12 GHz) and the desired RF signal
(24 + 4 GHz = 28 GHz). The behaviour of the filter can also be observed, since both the image and LO
signals are highly attenuated compared to the RF signal, 28.8 and 26.4 dBm, respectively.

Figure 6b presents the measured conversion gain of the upconverter at different RF frequencies.
It should be noted that the RF variation was made through the LO. The measured gain was −1 dB at
28 GHz, slightly below the expected 3 dB. Regarding the 1 dB compression point (P1dB) at the output,
8.6 dBm was obtained, a value relatively close to the expected (10 dBm, as can be seen on the link
power budget in Figure 5a).
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Figure 6. Measurements of upconverter module: (a) RF output spectrum (M1@20 GHz, M2@24 GHz,
M3@28 GHz; (b) upconverter conversion gain at different RF frequencies.

The downconverter module was designed similarly as the upconverter. The purpose of the filter
is to reject any image signal that can be captured at the RF inputs. In this structure, the mixer is the
element that imposes the maximum power on the RF inputs since it has a P1dB compression point
of 3 dBm. Thus, the maximum RF input power will be −13 dBm and the maximum power at the IF
output will be −10 dBm, resulting in an expected conversion gain of 3 dB. The photograph of the
fabricated prototype is shown in Figure 7b.
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Figure 7. Downconverter designed module: (a) block diagram; (b) fabricated prototype board.

In Figure 8a is shown the output spectrum at one IF port of the downconverter module.
The measurement test was performed using an LO of 12 GHz and RF signal of 28 GHz. Marker M1
is at the desired IF frequency, 4 GHz (28 − 24 GHz) and M3 is at the LO frequency signal (12 GHz).
The downconverter accomplished a conversion gain of 4 dB, too close to the expected 3 dB. As for the
P1dB at the RF input, −7 dBm was measured, a value well above the expected −13 dBm. The third
order intersection point is 4.4 dBm, and the intermodulation ratio is 39.2 dB.

As in the upconverter, the results suggest a shift in the central frequency of the mixer, since the
results at 25 GHz are better than at 29 GHz. In any case, at the frequency of interest, the results are
quite satisfactory and close to what was intended.
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Figure 8. Measurements of downconverter module: (a) RF output spectrum (M1@4 GHz, M3@12 GHz;
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2.2.2. Planar Antenna Array 4 × 4

The antenna used at the interface between the free space and the RF frontend modules operates
at 28 GHz and is a 4 × 4 series feed planar antenna array described in [26] and shown in Figure 9.
The antenna consists of N = 4 individual series feed linear arrays, each using four microstrip patches.
The array can provide control of the radiation pattern in the horizontal plane. In [26] is shown the
simulated radiation pattern on the horizontal axis. It is possible to observe that the radiation pattern
can be steered in different directions by applying a progressive phase shift in the feeding of each
subarray. The gain decreases progressively when the direction of radiation moves out of the boresight.
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3. Beamforming Processing

In the previous section, the architecture of the SDR system was presented, as well as the description
of each analog and digital component used. In this section, taking advantage of the absolute control
over each of the four Tx/Rx channels and the processing capacity that this system has, an example
demonstrating some of its potentialities is presented. In this work, some examples will be presented
using two possibilities, beam shaping and beam steering, to highlight the functionality of the proposed
system. Nevertheless, a multitude of techniques may still be explored in the future. Figure 10 shows
a block diagram of a beamforming system, applied to a linear array with N number of isotropic
elements, in reception. In this structure, each antenna element has an adjustment, by multiplying
each received signal by a weight factor, Wn = ane jα, where an is the amplitude excitation, and α is
the relative phase excitation to the previous element. By varying the weight factor of each channel,
and properly estimating its values, it is possible to control the radiation pattern of the array.
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The far field of the array factor can be written according to the Equation (1), which relates the
contribution of each element for the total radiation of a linear array.

AF =
N∑

n=1

ane j[(n−1)kdcosθ+α] (1)

In Equation (1), the summation of independent phasors (weights), the progressive phase is
represented by ψ = kd cosθ+α, where k = (2π⁄λ) and d the distance between elements of the array.

3.1. Beam Steerin

Considering an array of N = 4 elements, with equal and unitary excitation amplitude for all
elements, an = 1, the respective phase delay to apply to each channel in order to have the array steer its
radiation to the position θ is given by α = −kd cosθ. Table 1 shows the estimated phase delays for each
channel, considering the set of chosen locations (θ), using an array of half-wavelength spaced elements.

Table 1. Beamforming phase weights.

Steering Angle θ (◦) α1 (◦) α2 (◦) α3 (◦) α4 (◦)

40◦ 0◦ 173◦ 346◦ 519◦

30◦ 0◦ 135◦ 270◦ 405◦

20◦ 0◦ 92◦ 184◦ 276◦

10◦ 0◦ 47◦ 94◦ 141◦

0◦ 0◦ 0◦ 0◦ 0◦

−10◦ 0◦ −47◦ −94◦ −141◦

−20◦ 0◦ −92◦ −184◦ −276◦

−30◦ 0◦ −135◦ −270◦ −405◦

−40◦ 0◦ −173◦ −347◦ −519◦

3.2. Beam Shaping

The concept of beam shaping is vast and brings together all the techniques that, through feeding of the
array, allows the modification of its radiation shape. Typically, this concept is used in communications to
mitigate the influence of interfering signals through side lobes (reducing or eliminating them) or confining
the width of the main lobe.

There are different reported methods in the literature, such as the Schelkunoff polynomial method,
minimum mean-square error (MMSE) weight and many others, and in this work, two methods,
Dolph–Tschebyscheff and binomial [27], were applied in the proposed digital system and tested to
demonstrate their impact on the radiation of the antenna array when compared to the uniform array.
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Using the theoretical expressions of [27], for the array of N = 4 elements, the feeding distributions
were estimated for the binomial method and for the Dolph–Tschebyscheff technique using different
values of side lobe level (SLL), such as −15 dB, −20 dB and −25 dB. The SLL represents the signals
being radiated in the unwanted direction. Applying such methods in practical application could be
very helpful to reduce the interferences.

These distributions are provided in Table 2 and were applied to the theoretical Equation (1). In the
Matlab, the different radiation patterns, considering all the techniques, were calculated using (1) and
multiplying by the theoretical beam pattern of a microstrip patch antenna (element factor), which is
the radiating element chosen. The results are shown in Figure 11.

Table 2. Estimated amplitude distribution.

Weight Method a1 a2 a3 a4

Uniform 1 1 1 1
Binomial 1 3 3 1

Dolph–Tschebyscheff (−15 dB) 1 1.33 1.33 1
Dolph–Tschebyscheff (−20 dB) 1 1.74 1.74 1
Dolph–Tschebyscheff (−25 dB) 1 2 2 1
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According to Figure 11, it is possible to observe several aspects resulting from the use of each
method. First, using the uniform distribution, with all elements fed with equal amplitude and phase,
a higher side lobe is observable, and the amplitude of this lobe reduces with the application of the
different methods, namely using the Dolph–Tschebyscheff technique (for the different SLL estimations),
and in particular using the binomial method, for which the side lobes even disappear. It can also be
proved that the amplitude distribution from the application of the Dolph–Tschebyscheff method for
very small SLL values will tend towards the binomial distribution.

Another important aspect that can be taken from Figure 11 is the variation of the half power beam
width (HPBW), using the different methods, observing that this value increases as the value of the
SLL decreases.

The standard definition of beam width is the angle aperture from which most of the power
is radiated from antennas [27]. It is a very important characteristic of an antenna array, and a
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crucial characteristic in phased array antennas and beamforming, because of the useful advantage of
minimizing unwanted interference signals by controlling the main lobe characteristics, beam width
and the side lobes.

The concept of half power beam width (HPBW) is commonly used and reflects the angular
aperture in which the gain of the antenna falls 3 dB. There are theoretical expressions reported in the
literature [27] that estimate this value.

4. Measurement Setup and Results

The measurements scenario of the proposed system is illustrated in Figure 12. The setup was
placed in an anechoic chamber, and included a power supply, providing the DC voltage to the RF
up/downconverter’s boards and the PLL LMX2595 (LO frequency of 12.08 GHz). In addition to the
frontend boards and the PLL, the setup also included the Host-PC, the Tx and Rx antenna arrays,
and the USRP N310, as can be identified in the Figure 12.
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Figure 12. Experimental setup to measure antenna radiation pattern.

Before starting the measurement process, and after carefully placing all the elements of the setup,
the first task was to calibrate the system, in order to ensure that all signals reached the antennas
in phase, and all signals received maintained their properties until they were read by the USRP.
The principle of calibration is the same as beamforming, and consists of adding certain weight (phase
and amplitude) to each channel with the purpose of compensating for the hardware impairments
in the upconverter/downconverter modules, the phase differences in the USRP daughterboard and
the temperature drifts. Using the Python/Matlab interface, a calibration routine was developed to
compensate for the phase and amplitude differences of the channels.

The four elements of the transmitter phased array antenna were placed in the rotor arm of the
anechoic chamber, 65 cm away from the receiver (ensuring the far field distance). In Matlab/Python,
a function that calculates the correct phase to apply to each channel based on the desired direction of
beamforming θ(◦) was developed. The USRP modulated the baseband signal into two orthogonal
carrier waves, thus generating a 3.84 GHz IF signal. This signal was then applied to an upconverter
module that converted it to 28 GHz. The resultant signal was fed into one element of the antenna array.
Since there is a channel digitally controlled (in amplitude and phase) for each element of the array, it is
possible to use various beamforming algorithms. In the tests carried out, the radiation beam varied
(in relation to the perpendicular plane of the array) between −40◦ and +40◦ with one degree increments.
This procedure was repeated for nine different positions of the transmitter. For each step, the received
signal in the antennas were captured, downconverted to 3.84 GHz, and then the IQ demodulation
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was performed in the USRP to obtain the IQ samples. From these received samples, it was possible to
measure the amplitude and phase of the signal coming from each channel.

The first measurement using the system was related to beam steering, in which the phases
estimated in Table 1 were applied to the four channels, to steer the beam to different angles. Figure 13a
shows the normalized measured radiation patterns of the received signal for nine different positions of
the transmitter, using uniform amplitude in the feeding of the array.
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antenna radiation pattern for many amplitude variations.

The second measurement was devoted to the beam width of the radiation pattern. It is possible to
observe good agreement between the estimated curves of the array factor (Figure 11) and the measured
values of the radiation pattern of Figure 13b. It is noticeable that the radiation pattern with the widest
beam is the one that uses the binomial distribution (27◦) and the narrowest beam is related with those
that use uniform distribution (17◦).

Table 3 compares the information of the measured beam widths of radiation patterns from
Figure 13b and those taken from the theoretical results of Figure 11. It is possible to verify good
correspondence between the evolution of these values.

Table 3. Half power beam width (HPBW), measured and simulated.

Weight Method Beam Width Measured (◦) Beam Width Theoretical (◦)

Uniform 17◦ 24◦

Binomial 27◦ 32◦

Dolph–Tschebyscheff (−15 dB) 19◦ 26◦

Dolph–Tschebyscheff (−20 dB) 21◦ 28◦

Dolph–Tschebyscheff (−25 dB) 22.5◦ 30◦

5. Conclusions

In this work, a 28 GHz SDR beamforming antenna system was proposed for 5G, radar or IoT
applications. All the analog and digital modules were properly developed and described, allowing
us to obtain a system operating in the Ka band. The use of USRP enabled a flexible and versatile
architecture since all its characteristics could be adjusted digitally. The experimental results have
shown good agreement between the simulated and measured radiation patterns. It was possible to
verify techniques to shape the beam of the array, as well as steering it, in a simple way, through the
control of the signal amplitude and phase of each channel in the USRP. This system demonstrates great
flexibility and scalability to be used in a wide range of equipment, especially in radar, mobile and
satellite communication systems.



Appl. Sci. 2020, 10, 7187 13 of 14

Author Contributions: Conceptualization, D.M., R.A., T.V. and J.N.M.; methodology, D.M., R.A. and T.V.; software,
D.M., and R.A.; validation, D.M., R.A., T.V. and J.N.M.; formal analysis, D.M., and R.A.; investigation, D.M.,
R.A. and T.V.; resources, T.V. and J.N.M.; data curation, D.M.; writing—original draft preparation, D.M., R.A.
and T.V.; writing—review and editing, T.V. and J.N.M.; visualization, T.V.; supervision, T.V. and J.N.M.; project
administration, J.N.M.; funding acquisition, J.N.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partially supported by FCT/MCTES through national funds and when applicable
cofunded EU funds under the project UIDB/50008/2020-UIDP/50008/2020 and the European Regional Development
Fund through the Competitiveness and Internationalization Operational Program, Regional Operational Program
of Lisbon, Regional Operational Program of the Algarve, in component FEDER, and the Foundation for Science
and Technology, Project RETIOT, POCI-01-0145-FEDER-016432.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hong, W.; Jiang, Z.H.; Yu, C.; Zhou, J.; Chen, P.; Yu, Z.; Zhang, H.; Yang, B.; Pang, X.; Jiang, M.; et al.
Multibeam Antenna Technologies for 5G Wireless Communications. IEEE Trans. Antennas Propag. 2017, 65,
6231–6249. [CrossRef]

2. Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G:
A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice. IEEE J. Sel. Areas Commun. 2017,
35, 1201–1221. [CrossRef]

3. Bechter, J.; Rameez, M.; Waldschmidt, C. Analytical and Experimental Investigations on Mitigation of
Interference in a DBF MIMO Radar. IEEE Trans. Microw. Theory Tech. 2017, 65, 1727–1734. [CrossRef]

4. Bechter, J.; Eid, K.; Roos, F.; Waldschmidt, C. Digital beamforming to mitigate automotive radar interference.
In Proceedings of the 2016 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility
(ICMIM), San Diego, CA, USA, 19–20 May 2016; pp. 1–4.

5. Sturdivant, R.L.; Chang, E.; Bartholomew, D.; Brown, R.A.; De Pillis-Lindheim, S.; Rohweller, J.D. Systems
Engineering a Low Cost Digital Beam Formed Phased Array for IoT Connectivity. In Proceedings of the 2017
International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA,
14–16 December 2017; pp. 1393–1395.

6. Lee, S.; Joo, J.; Choi, J.; Kim, W.; Kwon, H.; Lee, S.; Kwon, Y.; Jeong, J.; Joo, J. W-Band Multichannel FMCW
Radar Sensor with Switching-TX Antennas. IEEE Sens. J. 2016, 16, 5572–5582. [CrossRef]

7. Younis, M.; Fischer, C.; Wiesbeck, W. Digital beamforming in sar systems. IEEE Trans. Geosci. Remote. Sens.
2003, 41, 1735–1739. [CrossRef]

8. Herd, J.S.; Conway, M.D. The Evolution to Modern Phased Array Architectures. Proc. IEEE 2015, 104,
519–529. [CrossRef]

9. Talisa, S.H.; O’Haver, K.W.; Comberiate, T.M.; Sharp, M.D.; Somerlock, O.F. Benefits of Digital Phased Array Radars.
Proc. IEEE 2016, 104, 530–543. [CrossRef]

10. Lynch, J.J.; Kona, K.S.; Nagele, R.G.; Virbila, G.L.; Bowen, R.L.; Wetzel, M.D. 128 Element Coded Aperture
Radar at 77 GHz. In Proceedings of the 2018 IEEE MTT-S International Conference on Microwaves for
Intelligent Mobility (ICMIM), Munich, Germany, 15–17 April 2018; pp. 1–4.

11. Gaydos, D.; Nayeri, P.; Haupt, R. Experimental Comparison of Digital Beamforming Interference Cancellation
Algorithms using a Software Defined Radio Array. In Proceedings of the 2019 United States National Committee
of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 9–12 January 2019; pp. 1–2.

12. Diaz, J.D.; Salazar-Cerreno, J.L.; Ortiz, J.A.; Aboserwal, N.A.; Lebrón, R.M.; Fulton, C.; Palmer, R.D.
A Cross-Stacked Radiating Antenna with Enhanced Scanning Performance for Digital Beamforming
Multifunction Phased-Array Radars. IEEE Trans. Antennas Propag. 2018, 66, 5258–5267. [CrossRef]

13. Geng, Z.; Deng, H.; Himed, B. Adaptive Radar Beamforming for Interference Mitigation in Radar-Wireless
Spectrum Sharing. IEEE Signal. Process. Lett. 2014, 22, 484–488. [CrossRef]

14. Sadhu, B.; Paidimarri, A.; Ferriss, M.; Yeck, M.; Gu, X.; Valdes-Garcia, A. A 128-element Dual-Polarized
Software-Defined Phased Array Radio for mm-wave 5G Experimentation. In Proceedings of the 2nd
ACM Workshop on Millimeter Wave Networks and Sensing Systems—mmNets ’18, New Delhi, India,
29 October 2018; pp. 21–25.

http://dx.doi.org/10.1109/TAP.2017.2712819
http://dx.doi.org/10.1109/JSAC.2017.2692307
http://dx.doi.org/10.1109/TMTT.2017.2668404
http://dx.doi.org/10.1109/JSEN.2016.2567450
http://dx.doi.org/10.1109/TGRS.2003.815662
http://dx.doi.org/10.1109/JPROC.2015.2494879
http://dx.doi.org/10.1109/JPROC.2016.2515842
http://dx.doi.org/10.1109/TAP.2018.2862252
http://dx.doi.org/10.1109/LSP.2014.2363585


Appl. Sci. 2020, 10, 7187 14 of 14

15. Johnson, M.; Dascuru, A.; Zhan, K.; Galioglu, A.; Adepu, N.; Jain, S.; Krishnaswamy, H.; Natarajan, A.
A 4-element 28 GHz Millimeter-wave MIMO Array with Single-wire Interface using Code-Domain
Multiplexing in 65 nm CMOS. In Proceedings of the 2019 IEEE Radio Frequency Integrated Circuits
Symposium (RFIC), Boston, MA, USA, 2–4 June 2019; pp. 243–246.

16. Pulipati, S.; Ariyarathna, V.; De Silva, U.; Akram, N.; Alwan, E.; Madanayake, A.; Mandal, S.; Rappaport, T.S.
A Direct-Conversion Digital Beamforming Array Receiver with 800 MHz Channel Bandwidth at 28 GHz
using Xilinx RF SoC. In Proceedings of the 2019 IEEE International Conference on Microwaves, Antennas,
Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 4–6 November 2019; pp. 1–5.

17. Yang, B.; Yu, Z.; Lan, J.; Zhang, R.; Zhou, J.; Hong, W. Digital Beamforming-Based Massive MIMO Transceiver
for 5G Millimeter-Wave Communications. IEEE Trans. Microw. Theory Tech. 2018, 66, 3403–3418. [CrossRef]

18. Yu, Y.; Hong, W.; Jiang, Z.H.; Zhang, H.; Guo, C. Multibeam Generation and Measurement of a DDS-Based
Digital Beamforming Array Transmitter at Ka-Band. IEEE Trans. Antennas Propag. 2019, 67, 3030–3039.
[CrossRef]

19. Wu, Y.M.; Ke, C.-Y.; Wang, C.C.; Tang, Y.H.; Chen, Y.-W.; Li, C.-T.; Chang, L.-H.; Chu, C.-Y.; Su, B.; Chu, T.-S.;
et al. An X-band Scalable 4 × 4 Digital Phased Array Module using RF SoC and Antenna-in-Package.
In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6.

20. Peng, Z.; Ran, L.; Li, C. A 24-GHz low-cost continuous beam steering phased array for indoor smart radar.
In Proceedings of the 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS),
Fort Collins, CO, USA, 2–5 August 2015; pp. 6–9.

21. Wei, Z.; Ng, D.W.K.; Yuan, J. Beamwidth Control for NOMA in Hybrid mmWave Communication Systems.
In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai,
China, 20–24 May 2019; pp. 1–6.

22. Zhang, R.; Zhou, J.; Lan, J.; Yang, B.; Yu, Z. A High-Precision Hybrid Analog and Digital Beamforming
Transceiver System for 5G Millimeter-Wave Communication. IEEE Access 2019, 7, 83012–83023. [CrossRef]

23. Xiong, W.; Lu, J.; Tian, X.; Chen, G.; Pham, K.; Blasch, E. Cognitive radio testbed for Digital Beamforming of
satellite communication. In Proceedings of the 2017 Cognitive Communications for Aerospace Applications
Workshop (CCAA), Cleveland, OH, USA, 27–28 June 2017; pp. 1–5.

24. Arruela, R.; Marinho, D.; Varum, T.; Matos, J.N. A Ka-band Frontend for mmWave MIMO and Beam forming
Applications. In Proceedings of the IEEE MTT-S International Microwave and Optoelectronics Conference
(IMOC), Aveiro, Portugal, 10–14 November 2019; pp. 1–3. Available online: https://www.it.pt/Publications/
DownloadPaperConference/35051 (accessed on 14 October 2020).

25. Marinho, D.; Arruela, R.; Varum, T.; Matos, J.N. Application of Digital Beamforming to Software Defined
Radio 5G / Radar Systems. In Proceedings of the IEEE MTT-S International Microwave and Optoelectronics
Conference (IMOC), Aveiro, Portugal, 10–14 November 2019; pp. 1–3. Available online: https://www.it.pt/
Publications/DownloadPaperConference/35052 (accessed on 14 October 2020).

26. Varum, T.; Ramos, A.; Matos, J.N. Planar microstrip series-fed array for 5G applications with beamforming
capabilities. In Proceedings of the 2018 IEEE MTT-S International Microwave Workshop Series on 5G
Hardware and System Technologies (IMWS-5G), Dublin, Ireland, 30–31 August 2018; pp. 1–3.

27. Balanis, A.C. Antenna Theory Analysis and Design, 4th ed.; John Wiley & Sons: New York, NY, USA, 2016.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMTT.2018.2829702
http://dx.doi.org/10.1109/TAP.2019.2896733
http://dx.doi.org/10.1109/ACCESS.2019.2923836
https://www.it.pt/Publications/DownloadPaperConference/35051
https://www.it.pt/Publications/DownloadPaperConference/35051
https://www.it.pt/Publications/DownloadPaperConference/35052
https://www.it.pt/Publications/DownloadPaperConference/35052
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	System Architecture 
	Digital Component 
	Analog Component 
	RF Frontend Modules 
	Planar Antenna Array 4  4 


	Beamforming Processing 
	Beam Steerin 
	Beam Shaping 

	Measurement Setup and Results 
	Conclusions 
	References

