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Abstract: The performance of a long short-term memory (LSTM) recurrent neural network
(RNN)-based language model has been improved on language model benchmarks. Although a
recurrent layer has been widely used, previous studies showed that an LSTM RNN-based language
model (LM) cannot overcome the limitation of the context length. To train LMs on longer sequences,
attention mechanism-based models have recently been used. In this paper, we propose a LM using
a neural Turing machine (NTM) architecture based on localized content-based addressing (LCA).
The NTM architecture is one of the attention-based model. However, the NTM encounters a problem
with content-based addressing because all memory addresses need to be accessed for calculating
cosine similarities. To address this problem, we propose an LCA method. The LCA method searches
for the maximum of all cosine similarities generated from all memory addresses. Next, a specific
memory area including the selected memory address is normalized with the softmax function.
The LCA method is applied to pre-trained NTM-based LM during the test stage. The proposed
architecture is evaluated on Penn Treebank and enwik8 LM tasks. The experimental results indicate
that the proposed approach outperforms the previous NTM architecture.

Keywords: language model; neural Turing machine; content-based addressing; memory de-allocation
mechanism-based neural Turing machine

1. Introduction

A language model (LM) estimates the probability of the current word based on the previous word
sequence. For the word sequence W = (w1, w2, ..., wN), the probability of the LM is denoted as P(W).

P(W) = P(w1, w2, ..., wN) (1)

where N is the length of W. When the number of words in the word history (w1, w2, ..., wi−1) increases,
it becomes increasingly difficult to calculate the probability for the current word wi, because the word
history will not appear in the text corpus. For this reason, the Markov assumption is applied to the LM
to compute P(wi|w1, ..., wi−1). Here, the length of the word sequence which affects wi is (n− 1).

For modeling the LM, the conventional method is an n-gram but it has the following two problems:
an unseen word sequence problem and a limitation in the length of the word history. To address these
problems, an LM using a deep neural network (DNN) was proposed to model word sequences [1].
It could predict the probability of the unseen word sequence with a high-dimensional hyperplane of
the DNN. However, the DNN-based LM cannot solve the limitation in the length of the word history.

To solve the aforementioned limitation, a recurrent neural network (RNN) was used to model
the longer word sequence [2]. In the RNN-based LM, a recurrent hidden layer performs the role of
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memory through recurrence. The recurrent hidden layer can learn from the first word to the (n− 1)-th
word. Therefore, the RNN-based LM solves the aforementioned issue. However, the output of the
recurrent hidden layer trained in the previous time step is gradually vanished and is replaced by the
current input when the time step is increased. This is referred to as the vanish gradient problem.

For the vanish gradient problem of the RNN-based LM, a long short-term memory (LSTM) [3]
was used in the RNN-based LM [4]. The LSTM consists of an input gate, output gate, forget gate,
and one or more memory cells [3]. The LSTM RNN-based LM stores the word sequence in the memory
cells of the hidden nodes and deletes previous information of the word history depending on the
context. However, LSTM language models can effectively use only 200 words or character sequences on
average [5]. Therefore, although the LSTM RNN can potentially encode longer contextual information,
the LSTN RNN cannot solve the limitation that exists in the length of the word history.

Recently, attention mechanisms have been used in sequence-to-sequence models such as LMs.
An advantage of using the attention mechanism is that it supports the interpretation of deep learning
models by showing how a deep learning model attends to different blocks of the input sequence [6].
Typical attention-based deep learning models are a Transformer [7] and a neural Turing machine
(NTM) architecture [8].

The Transformer replaces LSTM RNN models with multi-head self-attention and positional
encoding. Multi-head self-attention computes a sequence of vector-space representations related to
different positions in a sequence. Positional encoding makes the Transformer understand long-range
dependency with relative word or character positions. The Transformer has been used in LMs, and has
been reported to significantly outperform LSTM RNN-based LMs [9]. However, the Transformer can
only be treated with a fixed-length input sequence [10]. The input sequence has to be divided into
a number of sub-sequences before being input to the Transformer. Transformer-XL [10], GPT-2 [11],
and bidirectional encoder representations from Transformers (BERT) [12] are proposed to solve the
aforementioned problem of the Transformer.

Another attention-based deep learning model is the NTM architecture. The NTM architecture
comprises a controller and an external memory [8]. The controller is based on previous deep
learning model topologies. The external memory comprises M-dimensional vectors. The controller
writes its output to the external memory and reads information from the external memory.
Recently, the performance of NTM architectures has been improved using a memory de-allocation
mechanism [13,14]. We refer to this NTM architecture as the memory de-allocation mechanism-based
NTM (MDM-NTM) architecture [14]. In [15], an NTM-based LM was first proposed on the Penn
Treebank (PTB) dataset [16]. In addition, the NTM-based LM using a highway network-based controller
showed performance improvement on the PTB dataset [17].

However, the MDM-NTM architecture presented a problem in content-based addressing
for generating attention vectors [18]. Content-based addressing calculates a cosine similarity
value between a key generated by the controller and a vector of the external memory [19].
This addressing is necessary to access all memory addresses to calculate the cosine similarity and
softmax normalization [20]. This causes the MDM-NTM to infer the wrong answer because the
controller obtains information that is not related to the input from the external memory. Hence,
content-based addressing is required to read an area of the external memory related to the input.

In this paper, we propose an NTM architecture using localized content-based addressing
(LCA-NTM). The LCA method searches a memory address, and cosine similarity of this address
is the closest to 1. Next, softmax normalization is performed on a selected area of the external
memory. This area includes the d memory addresses on both sides of the selected memory address.
The LCA method is applied to test stage on pre-trained NTM-based LM. We evaluated the proposed
LCA-NTM-based LM on the PTB LM task and the enwik8 LM task.
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2. Related Works

Language modeling has two important problems: (1) unseen word sequence problem and (2)
a limitation in the length of the longer word history. To solve the unseen word sequence problem,
a DNN was used in the LM [1]. In DNN-based LMs, a semantic embedding vector that expresses
semantic information in 8-10 words was used as the input of the DNN for the improvement of a
model performance [21]. In addition, an optimization method of calculation in a softmax layer was
proposed [22]. However, the DNN-based LM has the limitation of the length of the word history.
The limitation occurs because the number of input layers increases as the number of words in context
information increases.

RNN was applied to the LM for training with a longer word history [2]. In RNN-based LMs,
one word is used as an input, and the output of the recurrent hidden layer at time (t − 1) is also
used as input. Therefore, recurrent hidden layers maintain information of longer word sequences.
Therefore, it solves the problem of the limitation in the length of the longer word history. Discriminant
training [23], class-based clustering [24], and noise-contrastive estimation (NCE) [25] were used in
the RNN LM for computation speed improvement of the softmax layer, because the dimension of
the output layer is the vocabulary size and the number of weight parameters for the RNN-based
LM is higher than that of the DNN-based LM. Despite the recurrent hidden layer, the RNN-based
LM is difficult to train with a longer word sequence due to gradient vanishing and explosion [26].
The problem is that the error rate converges to zero or infinity when error back-propagation is
performed.

To solve the gradient vanishing problem, LSTM was proposed [3]. LSTM is a hidden node
structure that consists of one or more memory cells, an input gate, an output gate, and a forget gate.
In [27], the performance of LMs based on RNN and LSTM RNN was compared. The LSTM RNN-based
LM achieved an absolute improvement of 0.3% in comparison with the RNN-based LM in terms of
word error rate (WER) on 12 M words of English Broadcast News transcription task. Although the
gradient clipping [28] works well, LSTM has an issue. In addition, the LSTM RNN-based LM cannot
treat input sequences longer than 200 words or character sequences [5].

To train LMs on longer word or character sequences, an attention mechanism has been used for
LMs. The attention mechanism is an effective method for selecting important information on longer
sequences [29]. In the LM, the attention mechanism supports the LM to obtain the ability of how
LMs attend to different blocks of input sequences [6]. One of the most widely used attention-based
models is the Transformer [7], and it outperforms LSTMs on LM tasks [9]. The Transformer is an
encoder-decoder model and relies on a self-attention mechanism [30] on multi-head and positional
encoding [7]. Multi-head attention allows the LM to attend to information on different vector-space
representations at different positions of a sequence. To provide position information of a sequence
to the Transformer, positional encoding is used to obtain long-range dependency from position
information on sequence order. However, the Transformer encodes longer context information into a
fixed size sequence [10]. In [31], the training dataset was split into shorter chunks and then used as the
input of the Transformer. A drawback of this method is that fixed-length chunks lead to the context
fragmentation problem [10].

Recently, in order to solve the context fragmentation problem, Transformer-XL [10], GPT-2 [11],
and BERT [12] have been proposed and widely used in various tasks. The Transformer-XL uses a
hidden state computed at the previous time step as previous context information for the current chunk.
This chunk-level recurrence allows the Transformer-XL to maintain long-term dependency and treat the
context fragmentation problem. The Transformer-XL showed high performance results of perplexity to
54.52 on the word-level PTB dataset and bits-per-character (BPC) to 0.99 on the character-level enwiki8
dataset [10]. GPT-2 is a multi-layer decoder of the Transformer. In [11], a pre-trained GPT-2 consisted
of 12-layer decoder blocks. Each decoder block had 768 hidden nodes and 12 heads for a multi-head
self-attention layer. In LM tasks, the GPT-2 achieved a higher performance of BPC to 0.93 with
1542 M weight parameters, in comparison to the result of the Transformer-XL. BERT is a multi-layer
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bidirectional encoder of the Transformer. BERT is proposed for pre-training deep bi-directional
vector space representations by considering left and right context information in all layers. In [12],
BERT showed the best performance in NLP tasks, such as a question-answering task and a named
entity task.

Another deep learning model based on the attention mechanism is the NTM architecture [8].
The NTM architecture is analogous to the Von Neumann machine with a controller that interacts with
an external memory through an attention mechanism. The controller is a deep learning model and
the external memory is a set of M-dimensional real-valued vectors. In [8], the experiments showed
that the NTM architecture with an LSTM-based controller is capable of learning simple algorithms
such as copy, associative recall, and priority sort algorithms. In addition, the MDM-NTM architecture
improved the performance of read and write operations from the vanilla NTM architecture [14]. In the
MDM-NTM architecture, the memory attention mechanism decides where information is stored in the
external memory and maintains the order of sequences through a temporal link. In the experiments,
the MDM-NTM architecture showed a performance improvement on the bAbI question-answering
task, graph traversal, and block puzzle problems in comparison with the vanilla NTM architecture.
Recently, LMs based on the NTM architecture have been proposed. In [15], the NTM architecture was
first used for the LM task and it showed perplexity to 98.6 on the word-level PTB dataset. It exhibited
better performance than DNN and LSTM-based LMs, but lower performance than the LM based
on the Transformer-XL. On the character-level PTB corpus, the MDM-NTM architecture using the
highway network-based controller achieved the performance of BPC to 1.147 [17]. It exhibited better
performance than the trellis network (BPC 1.158) [32], the AWD-LSTM network (BPC 1.169) [33],
and the vanilla Transformer (BPC 1.227) [34].

Despite the success of the LM based on the NTM architecture, content-based addressing of the
NTM architecture is necessary to access all external memory addresses to calculate cosine similarity
and softmax normalization [20]. To address this issue, content-based addressing is required to select
external memory addresses related to the input sequence. In this paper, we propose localized
content-based addressing (LCA). We describe more details of the NTM architecture in Section 3
and the proposed LCA-NTM architecture in Section 4.

3. Neural Turing Machine

As shown in Figure 1, the NTM architecture consists of a controller and an external memory [14,18].
The controller is a deep learning model F. The external memory EM is an element of a set RN×M.
N is the number of M-dimensional real-valued vectors. If the controller F does not perform a read
and write operation to the external memory, then the NTM architecture is equal to the deep learning
model topology. We assume that the number of read vectors is R, R read vectors ri

t (i = 1, 2, ..., R) are
generated by the read operation at time t and its dimension is M. The input xt and R read vectors
ri

t−1 generated from read operations at time (t− 1) are concatenated and then used as the input of F.
The controller emits an interface vector ξt and a controller output vector ot. Moreover, ξt is used to
interact between F and EM. After the read operation is performed, R read vectors ri

t are generated
at time t. R read vectors ri

t are used as the input of a deep learning model G. The dimension of an
output vector G(r1

t , ..., rR
t ) generated from G is the same as the dimension of ot. Notably, ot is added to

G(r1
t , ..., rR

t ) and then projected into an output vector yt. Furthermore, yt is equal to the final output
of other deep learning model topologies, and the dimension of yt is the same as the dimension of a
target vector.
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Figure 1. Overview of NTM architecture. The controller interacts with the external memory using read
and write operations. The external memory stores information, which is a high-dimensional vector of
the input vector.

3.1. Content-Based Addressing and Location-Based Addressing

To generate the read and write weighting vectors, content-based addressing and location-based
addressing are performed sequentially in the NTM architecture [14]. The interface vector ξt is used for
addressing these methods. ξt consists of the following elements: kt, kst, gt, st, γt, et, and vt. kt (∈ RM×1)

is a key vector at time t. kst (∈ R) is a key strength at time t. gt (∈ R) is an interpolation factor at time
t. st (∈ R3x1) is a shift vector at time t. γt (∈ R) is a sharpening factor at time t. et (∈ RM×1) is an
erase vector at time t. vt (∈ RM×1) is a converted input vector at time t.

For content-based addressing, a cosine similarity is measured with kt and a vector of each
external memory address. The cosine similarity is normalized with the softmax function. The value of
content-based addressing in the i-th memory address at time t is determined as follows:

CAt[i] =
exp(CS(EMt[i, ·], kt)kst

∑N
j=1 exp(CS(EMt[j, ·], kt)kst

(2)

where exp is an exponential function, CS is the cosine similarity function, and EM[i, ·] is the
M-dimensional real-valued vector of the i-th external memory address. After content-based addressing,
location-based addressing is performed. CAt is interpolated with ωt−1 using scalar gt. ωt−1 is a
weighting vector generated at time (t− 1). Interpolated weighting wip

t is calculated as follows:

wip
t = (1− gt)ωt−1 + gtCAt (3)

wip
t is used to calculate a convolution wcv

t with the shift vector st. The i-th element of wcv
t is determined

as follows:

wcv
t [i] =

N−1

∑
j=0

wip
t [j]st[i− j] (4)

After shifting, sharpening is performed with wcv
t and γt to obtain the final weighting vector ωt.

The t-th element of ωt is calculated as follows:

ωt[i] =
(wcv

t [i])γt

∑N−1
j=0 (wcv

t [j])γt
(5)
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kt, kst, gt, st, and γt are assigned to each read and write weighting. In the NTM architecture, the number
of read and write weightings is R and one, respectively. Therefore, a dimension of ξt is 3× (|kt|+
|kst|+ |gt|+ |st|+ |γt|) + |et|+ |vt| = 3× (M + 1 + 1 + 3 + 1) + M + M = 5M + 18.

3.2. Read and Write Operations

For the read operation, the NTM architecture attends to a specific external memory area, which is
related to the input vector and generates read vectors. The read vector is a M-dimensional real-valued
vector, defined as the weighted summation over all vectors of the external memory. Specifically, for the
i-th read vector at time t, we define

ri
t = EM>t ωr,i

t (6)

where EM>t is a transposed external memory at time t, and ωr,i
t is the i-th N-dimensional read weighting

vector at time t. The read weighting vector is an attention vector generated by Section 3.1.
For the write operation, the NTM architecture generates a write weighting vector to determine the

external memory addresses and stores the input vector to the selected memory addresses. We define
the write operation as follows:

EMt = EMt−1 ◦ (OM−ωw
t e>t ) + ωw

t v>t (7)

where EMt and EMt−1 are the external memories at time t and (t − 1), respectively. ◦ is the
element-wise product. OM is a matrix of the same size as that of the external memory. All elements
of OM are 1. e>t is a transposed erase vector at time t. The erase vector determines the ratio at which
information stored in the external memory is erased. v>t is the converted input vector that is transposed
at time t. ωw

t is an N-dimensional write weighting vector at time t. The write weighting vector is the
attention vector generated by Section 3.1.

4. Neural Turing Machine Using Localized Content-Based Addressing

Previous content-based addressing, as described in Section 3.1, is necessary for accessing all
memory addresses for the calculation of the cosine similarities and using these similarities for
generating the attention vector. Consequently, the attention vector can include weights to the memory
address, which are not related to the input vector. The unnecessary memory area is reflected in the
external memory, which results in performance deterioration.

Hence, we introduce the NTM architecture using LCA-NTM. As shown in Figure 2, cosine
similarities are calculated using a key vector kt and each external memory address. Subsequently,
the LCA selects a memory address that shows the maximum cosine similarity. This process is the main
difference with vanilla content-based addressing, because vanilla content-based addressing does not
select the maximum cosine similarity. If all the cosine similarities are negative, vanilla content-based
addressing is used. After searching for the maximum value of cosine similarity, softmax normalization
is performed on d memory addresses on both sides of the selected memory address to generate the
content-based addressing vector CAt. CAt[i], where softmax is not performed, is 0. Algorithm 1
describes the proposed LCA procedure in detail.

The proposed NTM architecture attends to a specific memory area selected by LCA. The result
of the LCA is the content-based addressing vector. Vanilla location-based addressing is applied to
the content-based addressing vector generated from LCA. The final weighting vector is generated
by location-based addressing. The proposed LCA method is applied to test the stage on pre-trained
NTM-based LM.

For the i-th read vector at time t, we define,

rLCA,i
t = EM>t ωLCAr ,i

t (8)
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where ωLCAr ,i
t is the i-th N-dimensional read weighting vector at time t. The proposed NTM architecture

stores the converted input vector to the selected memory addresses. Selected memory addresses are
decided by the write weighting vector. We define the write operation in the proposed LCA-NTM
architecture as,

EMt = EMt−1 ◦ (OM−ωLCAw
t e>t ) + ωLCAw

t v>t (9)

where ωLCAw
t is an N-dimensional write weighting vector at time t. LCA searches for the maximum

cosine similarity value. To search for this value, the cosine similarity values are not sorted because
all values have to be considered in the deterministic algorithm for obtaining the maximum value.
It takes O(N), where N is the number of vectors in the external memory. The time complexity of
softmax normalization used for LCA is O(2d + 1) because the denominator for softmax normalization
is dependent on the selected memory area and comprises (2d + 1) memory addresses. Therefore,
the time complexity of the LCA is O(N + 2d + 1).

Algorithm 1: Proposed LCA procedure
Data: EMt, kt, kst

Result: CAt

1 CAt ←~0;
2 CSt ←~0;
3 for i = 0 to (N − 1) do
4 CSt[i]← EMt [i,·]·kt

‖EMt [i,·]‖‖kt‖ ;

5 end
6 if CSt <~0 then
7 for i = 0 to (N − 1) do

8 CAt[i]← exp(CSt [i])kst

∑N−1
j=0 exp(CSt [i])kst

;

9 end
10 else
11 max ← CSt[0];
12 idx ← 0;
13 for i = 1 to (N − 1) do
14 if max < CSt[i] then
15 max ← CSt[i];
16 idx ← i
17 end
18 end
19 for i = 0 to (idx− d− 1) do
20 CAt[i]← 0
21 end
22 for i = (idx− d) to (idx + d) do

23 CAt[i]← exp(CSt [i])kst

∑idx+d
j=idx−d exp(CSt [i])kst

;

24 end
25 for i = (idx + d + 1) to (N − 1) do
26 CAt[i]← 0
27 end
28 end
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Figure 2. Overview of localized content-based addressing at time t. (a) The cosine similarity is
calculated using a key vector kt and each external memory address. EMt[i] is the i-th vector of the
external memory. If we assume that the number of vectors in the external memory is five, we obtain
five cosine similarity values CSt. (b) The maximum cosine similarity value is searched. CSt[i] is a
cosine similarity value of the i-th memory address. In this Figure, the third memory address shows the
maximum cosine similarity value. Subsequently, softmax normalization is performed on specific cosine
similarity values calculated from d memory addresses on both sides of the selected memory address.
In this Figure, d is 1. After softmax normalization, we obtain a content-based addressing vector CAt.
CAt[i] is the i-th value of the content-based addressing vector, whereas w[0] and w[5] are zero. Vanilla
location-based addressing is applied to it and then, we obtain the weighting vector.

5. Experiments and Discussion

To evaluate the proposed LCA-NTM architecture, the vanilla NTM-based LM was trained, and we
evaluated the pre-trained NTM-based LM using the LCA method. We trained and tested all LMs on
the character-level PTB LM task [16] and the enwik8 LM task [35]. We compared the proposed NTM
architecture with state-of-the-art LMs and the MDM-NTM architecture.

5.1. Experimental Environment

The PTB dataset is composed of sentences collected from the Wall Street Journal news domain.
The character-level PTB dataset was used in the experiments. However, the character-level PTB dataset
does not contain spaces between characters; therefore, it is difficult to recognize a specific word from
the character sequence. Hence, space markers (-space-) and a marker for the beginning of a sentence
(-bos-) were added to the character-level PTB dataset. Therefore, the total number of characters used
for the experiments was 50. The character-level PTB dataset used for the experiments contained 4.88,
0.38, and 0.43 M characters, as the training, validation, and test sets, respectively. The PTB LM task
experiment was repeated five times because we verify the stability of hyper-parameters in different
LMs and test their generalization.

The enwik8 dataset contains 100 M characters of unprocessed Wikipedia text. The total number
of characters was 206. Following previous studies, we split the enwik8 dataset into 90, 5, and 5 M
characters for the training, validation, and test sets, respectively. The enwik8 LM task experiment was
repeated three times.

We used a 3.40GHz Intel Xeon E5-2643 v4 CPU and four Nvidia GTX 1080 Ti GPUs. We used
two evaluation metrics: BPC and training time. BPC is the average number of bits required to encode
one character [31]. A bit is used as a unit of entropy. We defined BPC as loss/log(2). To evaluate the
inference time of each model, we measured the inference time per batch.

5.2. Experimental Results in Character-Level Penn Treebank LM Task

The LSTM RNN is the baseline LM in the experiments. We trained the baseline LM on PyTorch
with the following hyper-parameters: the number of nodes in the embedding layer was 50, the number
of hidden layers was 3, the dimension of each hidden layer was 1024, the learning rate was initialized
at 1 × 10−1, the number of epochs was 300, the number of batches was 6, the weight decay was
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1× 10−6, and the length of the back-propagation through time (BPTT) was 120. For training the
Transformer-based LM, we used the following hyper-parameters (We used the following open source
to train the LSTM RNN and Transformer-based LM: https://github.com/pytorch/examples/blob/
master/word_language_model): the number of nodes in the embedding layer was 50, the number
of heads in the encoder and decoder was 4, the number of hidden layers was 3, the dimension of
each hidden layer was 1024, the learning rate was initialized at 1× 10−3, the number of epochs was
300, the number of batches was 6, the weight decay was 1× 10−6, and the length of the input chunks
was 120.

Moreover, we compared the MDM-NTM-based LM with the trellis (https://github.com/
locuslab/trellisnet) and AWD-LSTM networks (https://github.com/salesforce/awd-lstm-lm).
The hyper-parameters of the trellis and AWD-LSTM networks were the same as those used in previous
studies. However, the number of batches was 6 and the BPTT length was 120 for the experiments.
In addition, we only applied a dropout factor to the hidden layers, and not the embedding, input,
or output layers.

To train the MDM-NTM-based LM, we used the LSTM RNN as the controller. The following
hyper-parameters were used for the experiments: the number of nodes in the embedding layer was
50, the number of hidden layers was 3, and the numbers of dimensions of each hidden layer were
1024, 512, and 512. We used the external memory consisting of 1024 vectors. The dimensions of
each vector were 512. The learning rate was initialized at 1× 10−3 and reduced on the plateau of an
objective function with a factor of 1× 10−1. The number of epochs was 300, the size of the batch was 6,
the weight decay was 1× 10−7, and the character sequence length was 120.

Table 1 shows the evaluation results of MDM-NTM-based LMs on the PTB LM task.
All MDM-NTM-based LMs had a faster inference time than the trellis network. We measured the
performance of the MDM-NTM architecture according to the number of read vectors. The number
of read vectors was doubled to evaluate their effect. The MDM-NTM-based LM using a single read
vector demonstrated a higher performance with a BPC of 1.5986 than the MDM-NTM-based LMs
using two and four read vectors. Each BPC sample of experiment results on the PTB LM task is shown
in Table A1.

Table 1. Evaluation results of MDM-NTM-based LMs on the PTB LM task (nWP, number of weight
parameters; nRV, number of read vectors; nVEM, number of vectors in the external memory; WD,
weight decay; IT, inference time (ms/batch); µ, mean of BPC results; σ, standard deviation of
BPC results).

Model nWP nRV nVEM WD IT

BPC

Validation Test

µ σ µ σ

LSTM 13.2 M - - 1× 10−6 141 1.8949 0.0033 1.8254 0.0031
Transformer 13.2 M - - 1× 10−6 22 1.6042 0.0006 1.5954 0.0004
Trellis Network 13.4 M - - 8× 10−7 4915 1.3858 0.0013 1.3578 0.0019
AWD-LSTM 13.8 M - - 1.2× 10−6 61 1.5224 0.0039 1.4720 0.0036
MDM-NTM 18.3 M 1 65 1× 10−7 1348 1.7335 0.0011 1.6977 0.0010

18.3 M 1 129 1× 10−7 1481 1.6362 0.0008 1.6019 0.0009
18.3 M 1 257 1× 10−7 1710 1.6592 0.0011 1.6288 0.0009
18.3 M 1 513 1× 10−7 2147 1.6688 0.0006 1.6316 0.0007
18.3 M 1 769 1× 10−7 2625 1.6529 0.0006 1.6214 0.0008
18.3 M 1 1024 1× 10−5 2872 1.7354 0.0004 1.6998 0.0007
18.3 M 1 1024 1× 10−7 2710 1.6330 0.0006 1.5986 0.0007
23.6 M 2 1024 1× 10−5 2518 1.7716 0.0003 1.7341 0.0005
23.6 M 2 1024 1× 10−7 2590 1.7210 0.0009 1.6906 0.0002
34.2 M 4 1024 1× 10−7 3250 1.7428 0.0005 1.7044 0.0009

https://github.com/pytorch/examples/blob/master/word_language_model
https://github.com/pytorch/examples/blob/master/word_language_model
https://github.com/locuslab/trellisnet
https://github.com/locuslab/trellisnet
https://github.com/salesforce/awd-lstm-lm
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The analysis for the performance of the MDM-NTM-based LM according to the number of read
vectors led to three important findings: (1) the number of weight parameters increased with the number
of read vectors. To generate the read vectors, the controller outputs the key vectors. The number
of key vectors was the same as the number of read vectors. The key vectors were M-dimensional
vectors, where M is a dimension of the vector in the external memory. Furthermore, the number of read
vectors affected the dimension of the input layer in the controller, because the read vectors generated
at time (t− 1) were used as the input to the controller. (2) BPC decreased depending on the number
of read vectors. When the MDM-NTM-based LM used one to four read vectors, the performance
decreased. This implies that the PTB LM task was insufficient for training all weight parameters of the
MDM-NTM-based LM using two or more read vectors. (3) The inference time was disproportional
to the number of read vectors. We assumed that a larger number of read vectors required a longer
inference time. However, the MDM-NTM-based LM using two read vectors showed a faster inference
time than that using one read vector.

We evaluated the performance of the MDM-NTM architecture according to the weight decay.
The weight decay reduced the model overfitting by imposing increasingly large penalties as the weight
parameters increased [36]. To implement the weight decay, a set of assumed weight parameters
such as W, 1

2 λWWT was added to the loss function and a penalty is imposed. Here, as λ increases,
an increasingly large penalty was imposed on W. We used two λ values, 1× 10−5 and 1× 10−7, during
the experiments. Table 1 presents the evaluation results of the MDM-NTM architecture according to
weight decay. When we used λ = 1× 10−5 for the weight decay, the MDM-NTM-based LM using one
and two read vectors demonstrated a BPC of 1.6998 and 1.7341, respectively. The performance of the
MDM-NTM-based LM using λ = 1× 10−5 for the weight decay was lower than that using 1× 10−7.

Two important findings were observed after analyzing the performance of the MDM-NTM-based
LM according to the weight decay: (1) BPC decreased according to the weight decay. When the value
of λ of the weight decay used in the MDM-NTM-based LM along with a single read vector ranged
from 1× 10−7 to 1× 10−5, the performance degraded, that is, BPC increased from 1.5986 to 1.6998.
When λ of the weight decay was extremely high, the model was trained to underfit. When λ of the
weight decay was extremely low, the model was trained to overfit. Therefore, the MDM-NTM-based
LM using λ = 1× 10−5 for the weight decay showed an underfitting in the experiments. (2) The
inference time was disproportional to λ of the weight decay. We assumed that the training time was the
same, even when the MDM-NTM-based LM was trained with any value assigned to λ of the weight
decay, because the number of weight parameters did not change. However, the experimental results
demonstrated that the inference times of each model are different.

We measured the performance of the MDM-NTM architecture according to the number of vectors
in the external memory; Table 1 presents the evaluation results. When we used 1024 as the number of
vectors in the external memory, the MDM-NTM-based LM demonstrated the highest performance,
with a BPC of 1.5986. The inference time decreased when the number of vectors in the external memory
decreased.

Three important findings were observed regarding the performance of the MDM-NTM-based LM
according to the number of vectors in the external memory: (1) the number of weight parameters is
the same, although the number of vectors in the external memory decreased. All MDM-NTM-based
LMs used the same controller and all the vectors in the external memory had the same dimensions.
The number of weight parameters is related to the controller and the dimension of the vector in
the external memory. Therefore, the number of weight parameters is not related to the number of
vectors in the external memory. (2) BPC is not proportional to the number of vectors in the external
memory. We assumed that the MDM-NTM-based LM demonstrated the highest performance when
the number of vectors in the external memory was 120, because the length of the character sequence
was limited and the LM could predict the next character without additional vectors in the external
memory. However, the MDM-NTM-based LM using the external memory consisting of 129 vectors
exhibited a BPC result which was the same as that of the MDM-NTM-based LM using the external
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memory consisting of 1024 vectors. (3) The inference time is proportional to the number of vectors
in the external memory. The time complexity of content-based addressing is O(N) because of the
denominator of the softmax normalization. Therefore, the time spent in the calculation required for
softmax normalization influenced the inference time.

We applied the proposed LCA mechanism to the pre-trained MDM-NTM architecture during
the evaluation stage. The pre-trained MDM-NTM architecture showed that the highest performance
in Table 1 was used. In Table 2, when the selected memory address was 257, the performance
of the LCA-NTM-based LM was 1.5648 BPC. The performance was higher than that of the
MDM-NTM-based LM.

Table 2. Evaluation results of LCA-NTM-based LM according to number of selected memory addresses
on the PTB LM task (nWP, number of weight parameters; nRV, number of read vectors; nVEM, number
of vectors in the external memory; nSVEM, number of selected vectors in the external memory;
WD, weight decay; IT, inference time (ms/batch); µ, mean of BPC results; σ, standard deviation of
BPC results).

Model nWP nRV nVEM nSVEM WD IT

BPC

Validation Test

µ σ µ σ

LSTM 13.2 M - - - 1× 10−6 141 1.8937 0.0032 1.8254 0.0029
Transformer 13.2 M - - - 1× 10−6 22 1.6042 0.0006 1.5954 0.0004
Trellis 13.4 M - - - 8× 10−7 4915 1.3858 0.0013 1.3578 0.0019
AWD-LSTM 13.8 M - - - 1.2× 10−6 61 1.5224 0.0039 1.4720 0.0036
MDM-NTM 18.3 M 1 1024 - 1× 10−7 2710 1.6330 0.0006 1.5986 0.0007
LCA-NTM 18.3 M 1 1024 65 1× 10−7 158 1.6580 0.0022 1.6249 0.0024

18.3 M 1 1024 129 1× 10−7 154 1.6432 0.0029 1.6103 0.0027
18.3 M 1 1024 257 1× 10−7 159 1.6172 0.0021 1.5648 0.0018
18.3 M 1 1024 513 1× 10−7 155 1.6230 0.0024 1.6071 0.0022
18.3 M 1 1024 769 1× 10−7 157 1.6419 0.0015 1.6297 0.0014

Two important findings were observed regarding the performance of the LCA-NTM-based
LM: (1) the BPC of the proposed architecture was lower than that of the MDM-NTM-based LM,
except when the selected memory address was 257. We analyzed errors with cosine similarities
and discovered that negative values or values close to zero existed, although positive values were
also obtained in the cosine similarities of the selected memory address. In the LCA, these cosine
similarities were used to generate an attention vector. The proposed NTM architecture yields worse
results than the MDM-NTM-based LM. Furthermore, although many of the cosine similarity values
were approximately unity, the maximum cosine similarity was always selected in the LCA. If two
maximum cosine similarities exist, LCA selects only the first cosine similarity that has the maximum
value. These drawbacks led to the performance degradation of the proposed LCA-NTM architecture.
(2) The inference time of the proposed NTM architecture in the test stage was twice that of the
MDM-NTM-based LM in the test stage. To obtain the maximum cosine similarity, we used the search
algorithm for the LCA. The time complexity of the previous content-based addressing was O(N)

because the denominator of softmax normalization had to be computed. However, the time complexity
of the LCA was O(N + 2d + 1).

5.3. Experimental Results in enwik8 LM Task

We compared the results achieved through the proposed LCA-NTM architecture with those of
the Transformer [10]. For the baseline LM, we also used the previous experimental result of the LSTM
RNN-based LM [37]. For training the MDM-NTM-based LM, we used the LSTM RNN as the controller.
The number of dimensions of the hidden layers was 1024, and the number of hidden layers was 4.
We used an external memory consisting of 128 vectors. The number of dimensions of each vector was
256. In addition, the batch size was 20. We could not train or evaluate the large-scale MDM-NTM-based
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LM because the Nvidia GTX 1080 Ti GPU has a 11-GB memory capacity, and the batch size would
have been considerably small if we trained a large-scale MDM-NTM-based LM.

We evaluated the performance of the MDM-NTM architecture according to the number of read
vectors. Table 3 shows the evaluation results. When we used four read vectors, the MDM-NTM-based
LM demonstrated the highest BPC performance of 1.3922. The inference time increased when the
number of read vectors was increased. Each BPC sample of experiment results on the PTB LM Task is
shown in Table A2.

Table 3. Evaluation results of MDM-NTM-based LMs on the enwik8 LM task (nWP, number of
weight parameters; nRV, number of read vectors; nVEM, number of vectors in the external memory;
WD, weight decay; IT, inference time (ms/batch); µ, mean of BPC results; σ, standard deviation of
BPC results).

Model nWP nRV nVEM WD IT

BPC

Validation Test

µ σ µ σ

LSTM 18.1 M - - - - - - 1.4610 -
Transformer 44.1 M - - - - - - 1.1120 -
MDM-NTM 30.2 M 1 128 1× 10−7 2940 1.4502 0.0010 1.4475 0.0007

34.9 M 2 128 1× 10−7 3118 1.4473 0.0009 1.4419 0.0012
37.8 M 3 128 1× 10−7 3397 1.4185 0.0011 1.4117 0.0010
42.5 M 4 128 1× 10−7 3644 1.3970 0.0008 1.3922 0.0009

The analysis of the performance of the MDM-NTM-based LM according to the number of read
vectors led to two important findings: (1) BPC decreased depending on the number of read vectors.
When the MDM-NTM-based LM used from one to four read vectors, the performance improved.
(2) The inference time was proportional to the number of read vectors. We assumed that a larger
number of read vectors required a longer inference time. The MDM-NTM-based LM using one read
vector showed a faster inference time than that using two or more read vectors.

Furthermore, we applied the proposed LCA mechanism to the pre-trained MDM-NTM
architecture during the test stage. The pre-trained MDM-NTM architecture showed that the
highest performance in Table 3 was used. In Table 4, when the selected memory address was
97, the performance of the LCA-NTM-based LM showed a BPC of 1.3887. The performance was
higher than that of the MDM-NTM-based LM. An important finding was observed regarding the
performance of the LCA-NTM-based LM. The BPC of the proposed architecture was lower than that
of the MDM-NTM-based LM, except when the selected memory address was 97. The performance
improvement was not insignificant compared to that observed through the experimental results on
the PTB LM task. We analyzed the errors with cosine similarities and discovered that more negative
values existed than those in the experimental results on the PTB LM task. Therefore, the proposed
NTM architecture applied vanilla content-based addressing, not LCA. These drawbacks led to the
performance degradation of the proposed LCA-NTM architecture.
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Table 4. Evaluation results of LCA-NTM-based LM according to number of selected memory addresses
on the enwik8 LM task (nWP, number of weight parameters; nRV, number of read vectors; nVEM,
number of vectors in the external memory; nSVEM, number of selected vectors in the external memory;
WD, weight decay; IT, inference time (ms/batch); µ, mean of BPC results; σ, standard deviation of
BPC results).

Model nWP nRV nVEM nSVEM WD IT

BPC

Validation Test

µ σ µ σ

LSTM 18.1 M - - - - - - - 1.4610 -
Transformer 44.1 M - - - - - - - 1.1120 -
MDM-NTM 42.5 M 4 128 - 1× 10−7 3644 1.3970 0.0008 1.3922 0.0009
LCA-NTM 42.5 M 4 128 33 1× 10−7 320 1.4120 0.0018 1.4113 0.0021

42.5 M 4 128 65 1× 10−7 321 1.4007 0.0020 1.3995 0.0019
42.5 M 4 128 97 1× 10−7 318 1.3895 0.0017 1.3887 0.0020

6. Conclusions and Future Work

We presented the LM using the LCA-NTM architecture. The LCA methods selected a memory
address that represented the maximum cosine similarity. This differed from vanilla content-based
addressing, because vanilla content-based addressing does not search for the maximum cosine
similarity. The specific memory area, including the selected memory address, was normalized using a
softmax function. For the PTB LM task, when the selected memory address was 257 when applying
the LCA, the performance of the LCA-NTM-based LM showed a BPC of 1.5648. For the enwik8
LM task, when the selected memory address was 97, the BPC performance of the LCA-NTM-based
LM showed a BPC of 1.3887. These results indicate that the proposed approach outperformed the
MDM-NTM-based LM.

In a future work, we intend to modify the LCA-NTM architecture to select multiple addresses
according to the cosine similarity. In addition, we will implement methods to improve the inference
time of the LCA-NTM architecture. We will also evaluate the LCA-NTM architecture on web-scale LM
tasks, such as WikiText-103 and One Billion Word.
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Abbreviations

The following abbreviations are used in this manuscript:

NTM Neural Turing machine
LCA Localized content-based addressing
LCA-NTM Neural Turing machine architecture using localized content-based addressing
LM Language model
DNN Deep neural network
RNN Recurrent neural network
MDM Memory de-allocation mechanism
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MDM-NTM Memory de-allocation mechanism-based neural Turing machine
PTB Penn Treebank
BPC Bits-per-character
EM External memory
LSTM Long short-term memory
BERT Bidirectional encoder representations from Transformers
BPTT Back-propagation through time

Appendix A. Details of Experimental Results

Table A1. Each BPC sample of evaluation results on the PTB LM task (nRV, number of read vectors;
nVEM, number of vectors in the external memory; nSVEM, number of selected vectors in the external
memory; WD, weight decay; DT, data type; TF, Transformer; TL, trellis network; AWD, AWD-LSTM;
MDM, MDM-NTM; LCA, LCA-NTM).

Model nRV nVEM nSVEM WD DT
Repetition

1 2 3 4 5

LSTM - - - 1× 10−6 Val 1.8920 1.8907 1.8954 1.8998 1.8965
Test 1.8215 1.8299 1.8230 1.8248 1.8278

TF - - - 1× 10−6 Val 1.6045 1.6039 1.6044 1.6048 1.6032
Test 1.5957 1.5951 1.5953 1.5961 1.5950

TL - - - 8× 10−7 Val 1.3848 1.3839 1.3869 1.3873 1.3861
Test 1.3560 1.3555 1.3589 1.3606 1.3580

AWD - - - 1.2× 10−6 Val 1.5235 1.5248 1.5160 1.5204 1.5273
Test 1.4709 1.4750 1.4679 1.4690 1.4772

MDM

1 65 - 1× 10−7 Val 1.7329 1.7326 1.7354 1.7339 1.7327
Test 1.6977 1.6965 1.6989 1.6987 1.6967

1 129 - 1× 10−7 Val 1.6368 1.6357 1.6374 1.6350 1.6361
Test 1.6028 1.6012 1.6032 1.6008 1.6015

1 257 - 1× 10−7 Val 1.6608 1.6587 1.6574 1.6599 1.6592
Test 1.6302 1.6281 1.6277 1.6293 1.6287

1 513 - 1× 10−7 Val 1.6697 1.6678 1.6685 1.6691 1.6689
Test 1.6326 1.6309 1.6310 1.6322 1.6313

1 769 - 1× 10−7 Val 1.6528 1.6539 1.6530 1.6525 1.6523
Test 1.6213 1.6227 1.6219 1.6208 1.6203

1 1024 - 1× 10−5 Val 1.7351 1.7352 1.7361 1.7355 1.7351
Test 1.6988 1.6999 1.7009 1.7001 1.6993

1 1024 - 1× 10−7 Val 1.6335 1.6332 1.6319 1.6334 1.6330
Test 1.5995 1.5987 1.5975 1.5992 1.5981

2 1024 - 1× 10−5 Val 1.7719 1.7715 1.7714 1.7713 1.7719
Test 1.7347 1.7342 1.7336 1.7334 1.7346

2 1024 - 1× 10−7 Val 1.7197 1.7205 1.7212 1.7225 1.7211
Test 1.6903 1.6905 1.6907 1.6909 1.6906

4 1024 - 1× 10−7 Val 1.7431 1.7425 1.7420 1.7429 1.7435
Test 1.7052 1.7034 1.7032 1.7047 1.7055

LCA

1 1024 65 1× 10−7 Val 1.6617 1.6589 1.6569 1.6573 1.6552
Test 1.6279 1.6267 1.6221 1.6258 1.6220

1 1024 129 1× 10−7 Val 1.6479 1.6452 1.6413 1.6415 1.6401
Test 1.6148 1.6122 1.6081 1.6085 1.6079

1 1024 257 1× 10−7 Val 1.6178 1.6171 1.6136 1.6172 1.6203
Test 1.5669 1.5633 1.5632 1.5635 1.5671

1 1024 513 1× 10−7 Val 1.6210 1.6262 1.6213 1.6257 1.6208
Test 1.6052 1.6100 1.6057 1.6094 1.6051

1 1024 769 1× 10−7 Val 1.6403 1.6440 1.6401 1.6420 1.6431
Test 1.6294 1.6314 1.6273 1.6299 1.6305
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Table A2. Each BPC sample of evaluation results on the enwik8 LM task (nRV, number of read vectors;
nVEM, number of vectors in the external memory; nSVEM, number of selected vectors in the external
memory; WD, weight decay; DT, data type; MDM, MDM-NTM; LCA, LCA-NTM).

Model nRV nVEM nSVEM WD DT
Repetition

1 2 3

MDM

1 128 - 1× 10−7 Val 1.4489 1.4514 1.4503
Test 1.4468 1.4485 1.4472

2 128 - 1× 10−7 Val 1.4461 1.4480 1.4478
Test 1.4402 1.4429 1.4426

3 128 - 1× 10−7 Val 1.4197 1.4188 1.4170
Test 1.4130 1.4115 1.4106

4 128 - 1× 10−7 Val 1.3959 1.3976 1.3975
Test 1.3915 1.3935 1.3917

LCA

1 128 33 1× 10−7 Val 1.4095 1.4130 1.4135
Test 1.4094 1.4103 1.4142

1 128 65 1× 10−7 Val 1.4016 1.3979 1.4026
Test 1.3997 1.3971 1.7017

1 128 97 1× 10−7 Val 1.3872 1.3914 1.3899
Test 1.3867 1.3915 1.3879
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