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Abstract: The dynamics model used for inertially or strapdown inertially stabilized platforms is
based on the rotor and motor load, and it either does not consider the stator or it implicitly assumes a
fixed stator. It has been determined that vibrations occur in the system when a controller is used in
strapdown inertially stabilized platforms with a light base support. As the system is also affected by
multi-source disturbances, which are the main factors that affect the control accuracy. For the above
two problems, this paper originally establishes a multi-body dynamics model including the controller.
The composite controller not only suppresses the vibration successfully, but also greatly improves
the disturbance compensation and tracking performance of the strapdown inertially stabilized
platforms. Specifically, a modified feedback controller is used to suppress the vibrations analyzed
according to the dynamics model. The friction feedforward and residual disturbance observer
facilitates the design of compound disturbance compensation on the basis of composite hierarchical
anti-disturbance control. To emphasize the advantages of strapdown inertially stabilized platforms,
the feedforward controller employs feedforward angular velocity and acceleration. The results of the
numerical analysis and experiments indicate that vibrations are successfully suppressed and tracking
accuracy and disturbance isolation ability are improved.

Keywords: strapdown inertially stabilized platform; dynamics modeling; vibration suppression;
disturbance compensation

1. Introduction

Inertially stabilized platforms (ISPs) are installed on moving carriers, such as aircraft and ships.
ISPs provide stable direction for the photoelectric equipment inside the platform in inertial space.
They are used extensively in airborne remote sensing, photoelectric detection, target tracking,
navigation, and optical communication [1]. Generally, the stable platform is composed of three
orthogonal mechanical frames: outer, middle, and inner frames. The photoelectric device and
gyroscope sensor are often installed in the inner frame. The gyroscope directly measures the
photoelectric equipment inertial angular velocity, and achieves inertial stable imaging by controlling
the torque motor rotation in each frame. The platform compensates for the carrier attitude influence,
external environment disturbance, and internal disturbance of the system [2]. When the photoelectric
equipment operates with a small field of view, the system needs a higher degree of stability accuracy
to obtain clearer images. Therefore, designing an effective control method is significant for improving
the overall system performance.
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Currently, the most commonly used control schemes in research and engineering utilize a
gyroscope to calculate the photoelectric equipment angular velocity error in inertial space and to
achieve closed-loop feedback control [3,4]. This scheme is simple and effective; however, to achieve
high-precision control, feedforward control is also needed in addition to feedback control.
The feedforward controller comes from the control command. However, because of the limitation of
gyro location, the control command is zero in the process of inertial stabilization, making it difficult to
design a feedforward controller. This limitation prevents further system performance improvements.
Besides being installed in the inner frame, the gyroscope can also be installed on the platform base to
measure its attitude change. The encoder sensor on the motor can be used to achieve the strapdown
inertial stabilization with reverse compensation [5,6]. This scheme is directly sensitive to base rotation.
It can effectively use the base motion information to construct the feedforward controller and achieve
perfect tracking via the reverse motion of each motor. In theory, it can achieve zero-error control
performance for some bandwidths [7].

Nevertheless, environmental and mechanical structural factors cause the platform to be disturbed
by multi-source disturbances, which include the platform base attitude change, external environment
disturbances, and internal system disturbances. Among them, the internal system disturbances, such as
nonlinear friction, wire-wound torque, mass unbalance, and model uncertainty, are more complex.
In addition, they seriously affect the stability accuracy of the line of sight (LOS).

To deal with these disturbances, a variety of methods have been independently proposed and
applied in related fields [8]. These include disturbance observer control (DOBC) [9], active disturbance
rejection control (ADRC) [10,11], disturbance accommodation control [12], and nonlinear disturbance
observer control (NDOBC) [13]. However, most control methods focus on one type of disturbance or
they consider multiple disturbances as an equivalent disturbance. This may lead to conservative
disturbance compensation in the presence of multiple disturbances [14,15]. For multi-source
disturbances, composite hierarchical anti-disturbance control (CHADC) is an important means to
address the above-mentioned problems. The idea is to design multiple loops to compensate for
the different types of disturbances, so that high-precision disturbance compensation can be achieved.
Furthermore, H∞ control [16], sliding mode control (SMC) [17,18], or adaptive control [19] is integrated
with the disturbance compensation method to achieve tracking performance and for disturbance
attenuation. The disturbance compensation loop based on CHADC is designed inside the velocity
loop; the velocity loop focuses on tracking the performance, and the compensation loop focuses on the
disturbance separately [20].

Recently, several researchers have proposed a variety of methods to handle disturbances in
IS/SISPs. The traditional design controller method focuses on feedback loops. The proportional
integral derivative (PID) control method has been widely used in industrial control systems owing to
its simple structure and parameter adjustment capabilities. A SMC has been proposed to achieve a
better steady-state accuracy than PID control [21]. As the system is affected by matched and unmatched
uncertainties, a modified feedforward-based extended state observer has also been proposed to achieve
high tracking performance [22]. Owing to nonlinear factors, such as friction, wire-wound restraint,
sensor noise, un-modeled parts, or the varying system parameter, the system stability accuracy cannot
be guaranteed by using the velocity loop. To address this problem, a novel discrete-time direct model
reference adaptive control based on nonlinear friction compensation has been introduced into the
original PI control system [23]. A stable control method based on ADRC and a noise reduction method
based on the disturbance observer (DOB) have been proposed to handle the system disturbance and to
improve the anti-disturbance capability in a strapdown inertially stabilized platform (SISP) [24].

To achieve better disturbance compensation, the main disturbance needs to be analyzed.
Then, an effective control method should be designed on the basis of the model. The primary nonlinear
disturbance in the SISP system with a harmonic drive is friction caused by the transmission mechanism
relative motion. The traditional friction compensation method measures the relative angular velocity
and fits the friction model. The feedback controller contains the negative friction compensation on the
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basis of the model [25]. The work in [26] adopted a LuGre model-based friction compensation method
to design the controller. The disadvantage of this method is the existence of a delay in the sampling
period in the control system. As the nonlinear friction torque forms the feedback loop, the instability
problem is apparent [27].

In addition to multi-source disturbances, we found that SISP systems supported by light bases
will vibrate when using a PI feedback controller only. The vibration of the closed-loop control system
seriously affects the performance of the system, and so does adding a disturbance compensation
controller or other advanced controllers. Therefore, we need to design a controller to suppress the
vibration before disturbance compensation. To suppress the vibration, the model of this system should
be analyzed carefully. The conventional system dynamics model employs motor rotor and load only,
without considering the stator, or it implicitly assumes a fixed stator. The base of the SISP is connected
with the motor stator, and the control system command emerges from the base movement, that is,
the motor stator movement, in the inertial space. The control value corresponds to the motor output
torque, it acts on the rotor and load, and the reaction torque also acts on the base. The reason for the
vibration is that the influence of the light base support and the control on the dynamic characteristics
of the whole system is not considered. This is highlighted by the location of the gyroscope in the SISP.

To solve the multi-source disturbance and vibration problem, we first consider the motor
stator (platform base), motor rotor, and load as three rigid bodies and establish a multi-body
dynamics model by the Euler method, which is commonly used in robotics [28,29]. This model
can describe the interaction of the system better. Inspired by CHADC [16] and the triple-step
control method [30], this study establishes a composite controller comprising three parts: a modified
feedback controller, a compound disturbance compensation controller, and a feedforward controller.
The modified feedback controller is designed to suppress the vibration analyzed in the dynamics model.
The compound disturbance compensation controller is designed by the friction feedforward method
and the residual disturbance observation. On the basis of suppressing the vibration and the composite
anti-disturbance control, this study emphasizes the structural advantages of SISP, and further enhances
the dynamic performance via the feedforward controller.

In summary, compared with the current state-of-the-art research, the major contributions of
this study are as follows.

(a) To analyze the vibration, the platform base and the motor rotor are treated as an interaction
subsystem and the motor rotor and the load are treated as a two-mass-like subsystem.
Consequently, this study proposes a multi-body dynamics model including the controller for SISP.

(b) To suppress the vibration, compensate the multi-source disturbances, and to achieve high
performance, the composite controller is designed by three components based on the idea of
triple-step control. The proposed method sets the basis for the engineering design of SISPs with a
light base support.

The remaining sections of this paper are organized as follows. In Section 2, the dynamics model
for SISP is established. In Section 3, the SISP model considering light base support characteristics is
analyzed to evaluate the vibration. Section 4 proposes an improved control method that comprises
the modified PI feedback controller, the compound disturbance compensation controller, and the
feedforward controller. The experimental setup and results are described in Section 5. Finally, Section 6
presents the conclusions of this study.

2. Dynamics Modeling for the SISP

There are many kinds of SISPs according to the application, Figure 1 shows a typical three-axis
SISP for the moving base carrier.
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Figure 1. Schematic diagram of a typical three-axis strapdown inertially stabilized platforms (SISP) for
the moving base carrier.

Figure 1 shows that the gyroscope mounted on the platform base is used to measure the base
inertial angular velocity. The gyroscope generates the command in real-time to make the three motors
reverse its motion to stabilize the LOS. The platform consists of three frames: yaw, roll, and pitch.
The moment of inertia balance of each frame is typically considered in the ISP/SISP design process;
furthermore, each frame uses the same motor, driver, and control method. Thus, this study takes the
yaw frame as an example to expand the analysis.

Presently, the model in the ISP/SISP is regarded as a common model of a motor and a load
in engineering applications and academic research. However, the traditional model used in the
SISP system with light base support is limited by the vibration. A complete SISP system dynamics
model comprises the platform base, motor rotor, and load, which are treated as several rigid bodies.
To amplify the driver torque in a SISP with a heavy load, a motor with a harmonic drive is used,
as shown in Figure 2.

Figure 2. Control system diagram. (a) Motor; (b) Harmonic drive; (c) Load.

The core of the control system comprises three parts: motor rotor (a), harmonic drive (b),
and load (c). Here, the platform base and the motor rotor (a) form an interaction subsystem, while the
motor rotor (a) and the load (c) form a two-mass-like subsystem. The harmonic drive (b) mechanism
consists of a wave generator, flex spline, and circular spline [31,32]. The motor electromagnetic torque
Tm acts on the wave generator in the harmonic drive. The encoder is installed between the motor rotor
(a) and the harmonic drive (b). The encoder data represent the relative rotation angle between the
motor rotor and stator.

Each part of the system is then modeled and analyzed. The armature voltage balance equation
and the electromagnetic torque equation can be described as follows,

ua(t)− ea(t) = La i̇a(t) + Raia(t) (1)

Ktia(t) = Tm(t) (2)
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where ua(t) is the armature voltage, ea(t) is the back-EMF, La is the armature inductance, ia(t) is the
armature current, Ra is the armature resistance, and Kt is the electromagnetic torque constant. Tm(t) is
the motor electromagnetic torque acting on the wave generator in the harmonic drive.

The SISP control system typically includes the position, velocity, and current loops. The velocity
loop is the most important component; it determines the disturbance isolation capability and the
command tracking performance. Because SISP typically operates at a low velocity, the influence of the
back-EMF ea(t) can be ignored. The DC electric part is a first-order inertial object. On the other hand,
the current closed-loop system model is equivalent to a low-pass filter with a high cut-off frequency.
Therefore, for the velocity loop, the subsystem from the control voltage u(t) to the electromagnetic
torque Tm(t) can be regarded as a linear function:

Kau(t) = Tm(t) (3)

where u(t) is the control voltage as the input to the current driver and Ka is the coefficient from the
control voltage to the electromagnetic torque.

The torque balance equation for the motor rotor can be expressed as follows,

Tm(t)− Fm(t) = Jm θ̈m(t) + Bm θ̇m(t) + Twg(t) (4)

where Fm(t) is the total disturbance torque, Jm is the motor rotor equivalent moment of inertia, Bm is
the motor rotor equivalent damping coefficient, θm(t) is the motor rotor angle in the inertial space,
and Twg(t) is the wave generator input torque.

The harmonic drive enlarges Twg(t) by N times and, at the same time, it reduces the angle by
N times [33]. The relationship is as follows,

Nθm(t) = θ
′
m(t) (5)

NTwg(t) = Tf s(t) (6)

where Tf s(t) and θ
′
m(t) are the output torque and the output angle of the flex spline in the

harmonic drive, respectively.
The angular deformation in the harmonic drive ∆θ(t) [34] is expressed as follows,

∆θ(t) = θ
′
m(t)− θl(t) (7)

where θl(t) is the load inertial angle.
The transmission compliance acting between ∆θ(t) and Tf s(t) is [35,36] expressed as follows,

Tf s(t) = f (∆θ(t)) (8)

where f (∆θ(t)) is a nonlinear function.
The stiffness in the harmonic drive exhibits significant compliance when it is externally loaded [37].

The torque hysteresis nonlinear characteristic is approximated by a linear function of the torsion
angle as a spring-damper element with stiffness and internal damping as described by Ks and Bs.
The nonlinear function (8) is presented as follows,

Tf s(t) = Ks(θ
′
m(t)− θl(t)) + Bs(θ̇

′
m(t)− θ̇l(t)) (9)

The load rotation equation is as follows,

Tf s(t) = Jl θ̈l(t) + Bl θ̇l(t) (10)
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where Jl and Bl are the load equivalent moment of inertia and the equivalent damping
coefficient, respectively.

When the motor drives the rotor and load to rotate, the reaction torque will also drive the base to
rotate in reverse. The base rotation equation is expressed as follows,

Tz(t) + Tm(t)− Fm(t) = Jb θ̈b(t) + Bb θ̇b(t) (11)

where Tz(t) is the external torque on the base, Jb is the base equivalent moment of inertia, Bb is the
base equivalent damping coefficient, and θb(t) is the base inertial angle.

In the inertial space, the relative angle between the base and the load is measured by the
encoder θe(t):

θe(t) = θ
′
m(t)− θb(t) (12)

Therefore, by sorting Equations (3)–(12), the dynamics model differential equations can be
expressed as follows,

I



Jb

Ka
θ̈b(t) +

Bb
Ka

θ̇b(t) =
Tz(t)

Ka
+ u(t)− Fm(t)

Ka

Jm

NKa
(θ̈e(t) + Nθ̈b(t)) +

Bm

NKa
(θ̇e(t) + Nθ̇b(t)) +

Jl
NKa

θ̈l(t) +
Bl

NKa
θ̇l(t) = u(t)− Fm(t)

Ka

Jl θ̈l(t) + (Bl + Bs)θ̇l(t)− Bs(θ̇e(t) + θ̇b(t))− Ks(θe(t) + θb(t)− θl(t)) = 0

(13)

Further, it can be written more generally as follows,

JΘ̈(t) + BΘ̇(t) + KΘ(t) = p(t) + f(t) + u(t) (14)

where Θ(t) = [θb(t) θe(t) θl(t)]T is the angular vector. The constant matrices are defined below,

J =

 Jb 0 0
NJm Jm Jl

0 0 Jl

 (15)

B =

 Bb 0 0
NBm Bm Bl
−Bs −Bs Bl + Bs

 (16)

K =

 0 0 0
0 0 0
−Ks −Ks Ks

 (17)

with the time-variant vectors
p(t) =

[
Tz(t) 0 0

]T
(18)

f(t) =
[
−Fm(t) − NFm(t) 0

]T
(19)

u(t) =
[
Kau(t) NKau(t) 0

]T
(20)

The traditional dynamics model simply considers the system as an ideal electromechanical system,
which is equivalent to a second order differential equation. However, for the SISP system with a light
base support, the traditional model has made some approximations and several problems cannot be
clearly explained. In this study, a more precise model of the SISP system with light base support is
obtained by establishing the interaction between multi-rigid bodies.
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3. Model Analysis

The SISP model considering light base support characteristics is analyzed when the feedback
controller is used. If the platform base equivalent moment of inertia is light, the performance is limited
owing to the vibration. This paper takes the PI feedback controller as an example, as it is that most
commonly used in engineering. For the dynamics model (13), the traditional velocity loop uses the PI
feedback controller, which is described as follows,

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ (21)

where the angular velocity error is e(t) = rv(t)− θ
′
m(t), rv(t) is the velocity command, and Kp and Ki

are the PI controller proportion and integral parameters, respectively. Because the gyro is mounted
on the platform base, we can use the indirect measurement method to obtain the feedback signal by
Equation (12), e.g., e(t) = rv(t)− θ̇e(t)− θ̇b(t).

Substituting (21) into (13), the multi-body dynamics model with the PI controller is described
as follows,

Jb θ̈b(t) + Bb θ̇b(t) + KpKa(θ̇e(t) + θ̇b(t)) + KiKa(θe(t) + θb(t)) = Tz(t)− Fm(t) + KpKarv(t) + KiKarp(t)

Jm(θ̈e(t) + Nθ̈b(t)) + Bm(θ̇e(t) + Nθ̇b(t)) + NKpKa(θ̇e(t) + θ̇b(t)) + Jl θ̈l(t) + Bl θ̇l(t) + NKiKa(θe(t) + θb(t))

= NKpKarv(t) + NKiKarp(t)− NFm(t)

Jl θ̈l(t) + (Bl + Bs)θ̇l(t)− Bs(θ̇e(t) + θ̇b(t))− Ks(θe(t) + θb(t)− θl(t)) = 0

(22)

As a result, the general form is changed to the following expression.

JΘ̈(t) + B
′
Θ̇(t) + K

′
Θ(t) = p(t) + f(t) + R

′
rT

c (t) (23)

where the command vector rc(t) is [rp(t) rv(t) ra(t)]. rp(t), rv(t), ra(t) are the position, velocity,
and acceleration commands, respectively. The matrices B and K are changed into B

′
and K

′
.

B
′
=

 Bb + KpKa KpKa 0
NBm + NKpKa Bm + NKpKa Bl

−Bs −Bs Bl + Bs

 (24)

K
′
=

 KiKa KiKa 0
NKiKa NKiKa 0
−Ks −Ks Ks

 (25)

The command matrix is expressed as follows,

R
′
=

 KiKa KpKa 0
NKiKa NKpKa 0

0 0 0

 (26)

To reproduce the vibration phenomenon in the SISP with a light base support, an Euler method
numerical analysis was performed in MATLAB. The relative angular velocity was obtained via
the angle measured by the encoder and the differentiator. The base angular velocity is a sine
signal (1 Hz, 10◦/s). The gains of the PI feedback controller are tuned as Kp = 1 and Ki = 1.
The total disturbance torque Fm employed the Stribeck friction model, including Coulomb friction,
viscous friction, and Stribeck phenomenon, which is a nonlinear low-velocity friction effect [38].
The numerical analysis parameters and results are presented in Table 1 and Figure 3, respectively.
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Table 1. Numerical analysis parameters.

Symbol Parameter Values

Jm, Jb
Motor rotor and platform base equivalent

moment of inertia
0.0015, 0.002

[kg m2]

Jl Load equivalent moment of inertia 0.001/0.01
[kg m2]

Bm, Bb, Bl
Motor rotor, platform base, and load

equivalent damping coefficient
0.01, 0.01, 0.01

[kg m2/s]

Ks
Stiffness coefficient of the flex spline in

Harmonic drive 10 [kg m2/s2]

Bs
Internal damping coefficient of the flex spline

in Harmonic drive 0.01 [kg m2/s]

N Ratio reduction in Harmonic drive 100

Ka
Coefficient from the control voltage to the

electromagnetic torque
1

[kg m2/(s2V)]

(a) (b)

Figure 3. Numerical analysis results. (a) Light load with Jl = 0.001; (b) Heavy load with Jl = 0.01.

The simulation results reveal that when the load-equivalent moment of inertia Jl is light,
the system works normally; however, when Jl is heavy, the system vibrates. If the feedback controller
gain is reduced properly, the vibration still exists. Thus, the vibration here is not caused by the
closed-loop system large parameters. Generally, in most SISPs, the equivalent moment of inertia
on the load is much lower than that on the base; therefore, there is no problem in the controller
design that is based on the traditional model. However, when the load of the SISP is heavy,
the control voltage will increase correspondingly and cause the base to rotate with a small reverse
rotation. At this time, the strapdown mounted gyroscope measures this effect due to the light base
support, and it enters the control voltage via angular velocity deviation. The loop will cause the
system to vibrate. Specifically, it is caused by the coupling of the light base support and the SISP
structure. Therefore, the PI controller and the other controllers for the SISP with a light base support
are ineffective.

4. Improved Control Method

To address the aforementioned problems and to improve the system performance, in this
study, we designed a composite controller that includes three parts based on the structure of
triple-step control:

u(t) = u∗c (t) + uo(t) + u f (t) (27)

where u∗c (t) is the modified PI feedback controller, which is used to suppress the vibration; uo(t) is
the compound disturbance compensation controller, which is used to compensate for the nonlinear
friction and residual disturbance; and u f (t) is the feedforward controller, which is used to enhance the
system dynamic performance.
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4.1. Vibration Suppression by the Feedback Controller

To suppress the vibration, the velocity feedback PI controller is redesigned as follows,

u∗c (t) = Kpe∗(t) + Ki

∫ t

0
e∗(τ)dτ (28)

where e∗(t) = rv(t)− θ̇e(t)− θ̇∗b (t) is the new angular velocity error. When compared with the PI
controller described by (21), the modified controller uses the modified base angular velocity θ̇∗b (t).
The system from θ̇b(t) to θ̇∗b (t) is obtained via the following state space description,{

ẋ(t) = Ax(t) + Bθ̇b(t)

θ̇∗b (t) = Cx(t) + Dθ̇b(t)
(29)

where x(t) is a state variable and the constant matrices are expressed in the controllable standard form.

A =

[
0 1

a21 a22

]
(30)

B = [ 0 1 ]T (31)

C = [ 0 c12 ] (32)

D = 1 (33)

where a21, a22, c12 are all constants in the state space equation, and they satisfy the following conditions,
a21 < 0, a22 < 0, c12 = a + a22 < 0, and a > 0.

Here, Equation (29) describes the conversion of the control signal from the base angular velocity
θ̇b(t) to the modified angular velocity θ̇∗b (t). As this is a single-input single-output (SISO) system,
the input signal is a sine wave with a frequency of ω Hz, and the modified angular velocity θ̇∗b (t)
is represented as follows,

θ̇∗b (t) =k1(ω) sin ωt + k2(ω) cos ωt− k2(ω)e
1
2 a22t(cos kt + k3(ω) sin kt), (34)

where k is a constant
√

1
4 a2

22 + a21. Further, the variable parameters are as follows,

k1(ω) =
ω4 + 2a21ω2 + a2

22ω2 − a22c12ω2 + a2
21

ω4 + 2a21ω2 + a2
22ω2 + a2

21
(35)

k2(ω) =
−c12ω3 − a21c12ω

ω4 + 2a21ω2 + a2
22ω2 + a2

21
(36)

k3(ω) =
1
2

a22 −
a21a22c12ω

c12ω3 + a21c12ω
. (37)

By indicating that the parameter
√
−a21 is close to ω, the state space function can rapidly attenuate

the input signal amplitude; however, it has minimal effect on the signal far from ω. The vibration
frequency is limited by the above method to suppress the vibration.

Furthermore, we introduce Lemmas 1 and 2 to prove the stability of the control signal conversion
system (29) [39].

Lemma 1. Let us consider the following linear and time-invariant system,{
ẋ(t) = Ax(t) + Bb(t), x(0) = x0

y(t) = Cx(t) + Db(t)
(38)
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where the state x(t) ∈ Rn, the input b(t) ∈ Rp, and the output y(t) ∈ Rq. If the system is internally stable or
asymptotically stable in the sense of Lyapunov, it must be a bounded input bounded output (BIBO) system that
is stable or externally stable.

Lemma 2. For the n-dimensional linear and time-invariant system ẋ(t) = Ax(t), the necessary and sufficient
conditions for the origin equilibrium state to be asymptotically stable is provided by the Lyapunov equation,
which is given for any positive symmetric Q.

ATP + PA = −Q (39)

has a unique positive symmetric matrix P.

Theorem 1. If the parameters a21, a22, c12, and a satisfy the relations a21 < 0, a22 < 0, c12 < 0, and a > 0,
the system described by (29) is a BIBO system.

Proof of Theorem 1. According to Lemma 2, let the matrix Q equal the unit matrix, Q = I, and the
solutions to Equation (39) can easily be obtained.

P =

[−a21+a2
21+a2

22
2a21a22

− 1
2a21

− 1
2a21

1−a21
2a21a22

]
(40)

Consider the following conditions in the matrix.

−a21 + a2
21 + a2

22
2a21a22

> 0, and det P > 0 (41)

Because P is a positive matrix, asymptotic stability is achieved according to Lemma 2.
Subsequently, if the state function of a system is asymptotically stable, it is a BIBO system according to
Lemma 1. It is a practical notion of BIBO stability in the sense that tracking errors can be minimized.
Thus, the state space function from the PI controller to the modified one described by (29) is a
BIBO system.

After the modified signal θ̇∗b (t) is obtained, the performance of the closed-loop system depends
on the correct selection of the PI controller parameters, Kp and Ki. We can set these parameters
on the basis of engineering experience or simulate and calculate the ideal controller parameters on
the basis of the model. Herein, we employ the engineering method to adjust the parameters in
four steps. First, the sine command is used as the input signal, in which case the changes in the
amplitude and phase can be easily observed. Second, the proportional gain is increased until it reaches
a critically stable state. In this state, the control system may produce weak vibrations, and occasionally,
we could judge whether the system is close to the critical stable state by the weak vibration.
Third, the proportional gain is reduced appropriately (i.e., by 0.6–0.8 times) and the integral gain
is added. Finally, the steady-state error of the system is observed, and a larger integral gain is selected
under the condition that the system does not diverge. If the system requirements for overshooting exist,
the step signal can be used as the input, and the integral gain can be properly reduced.

4.2. Compound Disturbance Compensation Controller

The compound disturbance compensation controller consists of two parts: a feedforward
compensation part, which is based on the major disturbance model, and a residual disturbance
observer based on the nonlinear disturbance observer (NDOB). For the electromechanical system that
includes the harmonic drive, friction nonlinearity Ff (t) is the main disturbance in Fm(t). It is the sum
of the friction at the rotor end, friction in the harmonic drive, and friction at the load end that has a
direct influence on the velocity loop. The effective method to reduce the nonlinear friction negative



Appl. Sci. 2020, 10, 7175 11 of 24

effect is the friction feedback compensation based on the model. We use the arctangent function and
the viscous model to describe the nonlinear friction, which is continuous and derivable [8].{

Ff (t) = Ac1 arctan(γVin(t))/π + Kv1Vin(t), Vin(t) ≥ 0

Ff (t) = Ac2 arctan(γVin(t))/π + Kv2Vin(t), Vin(t) < 0
(42)

γ is used as a large constant, Vin(t) denotes the angular velocity, and Ac1 and Ac2 denote the
positive and negative coulomb friction magnitudes, respectively. Kv1 and Kv2 denote the viscous
friction magnitudes in the positive and negative direction, respectively. In this study, the friction
feedforward compensation method is used, which is from the command of the control system.

For the analysis above, the total disturbance compensation based on the friction feedforward and
the residual disturbance observer is as follows,

uo(t) = Ff (t) + τ̂d(t) (43)

where Ff (t) is obtained by Equation (42). We also use the angular velocity command rv(t) instead
of Vin(t), where τ̂d(t) is the estimation of τd(t) and τd(t) is the residual disturbance after the friction
feedforward compensation.

τd(t) = Fm(t)− Ff (t) (44)

Assuming that the friction feedforward compensation Ff (t) negates the main disturbance,
the dynamics model (13) can be described as follows,

JΘ̈(t) + BΘ̇(t) + KΘ(t) = p(t)− d(t) (45)

where d(t) = [0 τd(t) Nτd(t)]T represents the residual disturbance vector. An NDOB can be designed
by using the known dynamics model of a SISP as follows [40],

d̂(t) = z(t)− LΘ̇(t) (46)

where d̂(t) = [0 τ̂d(t) Nτ̂d(t)]T is the estimation vector of d(t), L is the NDOB gain, and z(t) represents
the auxiliary vector, which can be determined from the following expression.

ż(t) = LJ−1(p(t)− BΘ̇(t)−KΘ(t)− d̂(t)) (47)

L is selected in the trade-off between the disturbance compensation and noise sensitivity.
The larger the parameter is, the stronger the anti-disturbance ability is. However, the influence
of noise is more significant in the real system. Therefore, we can adjust this parameter according to the
bandwidth of the sensor and the system requirements.

4.3. Feedforward Controller

On the basis of suppressing the vibration and composite anti-disturbance control, to emphasize
the structural advantages of the SISP and to improve the control system dynamic performance,
the angular velocity and acceleration feedforward controller is designed based on the idea of perfect
tracking control.

u f (t) = ra(t)Jm + rv(t)Bm (48)

This can improve the system dynamic performance and it can simplify the friction
feedforward form.
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4.4. Controller Analysis

First, the feedforward controller does not affect the stability of the control system. By substituting
the feedforward controller u f (t) into the dynamics model (13), only the matrix R

′
is changed, which has

nothing to do with system stability. Second, the compensate loop and outer loop stability are proven
separately [14,24,40]. The model after the disturbance compensation of the inner loop is very close to
the system nominal model. Thus, in the practical application process, the controller is designed from
the inner loop to the outer loop. The velocity loop controller parameters, i.e., Kp and Ki, are tuned by
considering only the nominal dynamics model because the disturbances are well attenuated by the
compound anti-disturbance controller in the compensate loop.

Assumption 1. The friction model (42) is in compliance with the actual system friction, and the residual
disturbance d(t) and its deviation ḋ(t) are bounded:

‖d(t)‖ ≤ δd and ‖ḋ(t)‖ ≤ εd (49)

where δd and εd are small constants, δd, εd ∈ R+, ‖ · ‖ is the 2-norm function.

As the NDOB discussed above is the minimum order observer, we make a practical assumption
and give the convergence theorem of this NDOB.

Theorem 2. For the dynamics model (45) with the NDOB (46) and (47), when the gain L of the NDOB
is strictly positive and Assumption 1 is satisfied, the disturbance estimation error ed of residual NDOB
is convergent, and there is a positive K ∈ R, which makes it converge to a small positive constant.

lim
t→∞
‖ed(t)‖ =

εd
K

(50)

Proof of Theorem 2. The disturbance estimation error has the following expression.

ed(t) = d̂(t)− d(t) (51)

The time derivative of (51) is derived as follows,

ėd(t) =
˙̂d(t)− ḋ(t) (52)

Substituting (46) and (47) into (52) leads to the following equation.

ėd(t) = LJ−1(p(t)− BΘ̇(t)−KΘ(t)− d̂(t))− LΘ̈(t)− ḋ(t)

= LJ−1(p(t)− BΘ̇(t)−KΘ(t)− d̂(t)− JΘ̈(t))− ḋ(t)

= −LJ−1ed(t)− ḋ(t)

(53)

Make M = LJ−1, the corresponding first-order differential Equation (53) is as follows,

ėd(t) + Med(t) + ḋ(t) = 0 (54)

When ḋ(t) = 0, by choosing 1
2 ed(t)Ted(t) > 0 as the Lyapunov function V(t), the time derivative

of V(t) is obtained:

V̇(t) =
1
2

ėd(t)Ted(t) +
1
2

ed(t)T ėd(t)

= ed(t)T ėd(t)

= ed(t)T(−M)ed(t)

(55)
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According to the Equation (15), the eigenvalues of J can be obtained by | λI− J |= 0, where I is
an unit diagonal matrix. The three eigenvalues of J are Jb, Jm, and Jl . In the model of SISP, the three
parameters are positive definite real numbers with physical meaning. Thus, the square matrix J is real
and positive definite.

As J is positive, if L is positive, V̇(t) < 0 is obtained. It shows that asymptotic stability is achieved
if L is strictly positive.

When ḋ(t) 6= 0 and Assumption 1 are satisfied, the general solution of linear time-invariant
differential Equation (54) is proposed.

ed(t) = exp(−Mt)ed(0) +
∫ t

0
exp(−M · (t− τ))(−ḋ(t))dτ (56)

where ed(0) is the initial error vector at a zero initial time.

‖ed(t)‖ ≤ ‖ exp(−Mt)ed(0)‖+ ‖
∫ t

0
exp(−M · (t− τ))(−ḋ(t))dτ‖

≤ ‖ exp(−Mt)‖ · ‖ed(0)‖+
∫ t

0
‖ exp(−M · (t− τ))(−ḋ(t))‖dτ

≤ ‖ exp(−Mt)‖ · ‖ed(0)‖+
∫ t

0
‖ exp(−M · (t− τ))‖ · ‖ḋ(t)‖dτ

(57)

where exp(−Mt) is the exponential function of matrix M.
Because J is a real positive definite square matrix, M = LJ−1 is also a real positive definite

square matrix.

M =


L
Jb 0 0
−NL

Jb
L

Jm − L
Jm

0 0 L
Jl

 (58)

We can easily get the three positive eigenvalues of M, λ1 = L
Jb , λ2 = L

Jm , λ3 = L
Jl , λ1, λ2, λ3 ∈ R+.

Subsequently, the results of the matrix exponential of M has three cases, according to the eigenvalues
of M. However, in the actual system, the three inertia parameters Jb, Jm, Jl usually do not appear to
be equal, so this paper mainly considers the eigenvalues which are different from each other.

exp(−Mt) = PλM̄P−1
λ = Pλ

exp(−λ1t) 0 0
0 exp(−λ2t) 0
0 0 exp(−λ3t)

P−1
λ , λ1 6= λ2, λ2 6= λ3, λ1 6= λ3 (59)

where Pλ is a nonsingular transformation matrix from M̄ to exp(−Mt). M̄ is a diagonal form. Using the
norm inequality theorem, we can obtain the following inequality.

‖ exp(−Mt)‖ ≤ ‖Pλ‖ · ‖M̄‖ · ‖P−1
λ ‖ (60)

As ‖M̄‖ is a real diagonal matrix, its 2-norm is as follows,

‖M̄‖ =
√

fmax(M̄
H ∗ M̄)

=
√

fmax(M̄ ∗ M̄)

=
√

exp(−2λmint)

= exp(−λmint)

(61)
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where M̄H is a conjugate transposition matrix of M̄, fmax(·) presents the largest eigenvalue of the
matrix M̄H ∗ M̄, λmin is the minimum eigenvalue of matrix M. Therefore, the inequality (60) is reduced
as follows,

‖ exp(−Mt)‖ ≤ ‖Pλ‖ exp(−λmint)‖P−1
λ ‖ = Kλ exp(−λmint) (62)

where Kλ = ‖Pλ‖ · ‖P−1
λ ‖ is a positive constant, related to the eigenvectors of matrix M.

Similarly, the norm of exp(−M · (t− τ)) is obtained.

‖ exp(−M · (t− τ))‖ ≤ Kλ exp(−λmin · (t− τ)) (63)

Thus, the inequality (57) can be written as follows,

‖ed(t)‖ ≤ Kλ exp(−λmint)‖ed(0)‖+ εd

∫ t

0
Kλ exp(−λmin · (t− τ))dτ

= Kλ exp(−λmint)‖ed(0)‖+
Kλεd
λmin

(1− exp(−λmin · t))
(64)

If the positive gain L is larger, the minimum eigenvalue λmin of M is larger. According to (64),
the convergence rate and the accuracy of disturbance estimation can be simply improved by the NDOB
gain L. As t→ 0, the disturbance observer error converges to Kλεd

λmin
.

Remark 1. J is a moment of inertia matrix composed of constants with physical meaning. In general, the moment
of inertia parameters are positive real numbers, and they are different from each other. Thus, J is a real matrix.
In addition, it is also a positive definite matrix: J ∈ R3×3. Therefore, the matrix M is a positive definite real
matrix with three different eigenvalues, which is the implicit premise of the Theorem 2.

The compensation loop is used for the compound disturbance compensation, and the system is
closer to its normal model. The feedback control stability is given below.

Theorem 3. The dynamics model is expressed as follows,

JΘ̈∗(t) + B∗Θ̇∗(t) + K∗Θ∗(t) = ed(t) (65)

where the matrix Θ∗(t) is the expansion matrix of Θ(t), and Θ∗(t) = [θb(t) θe(t) θl(t) θ∗b (t)]
T . The matrices

are as follows,

B∗ =

 Bb KpKa 0 KpKa

NBm Bm + NKpKa Bl NKpKa

−Bs −Bs Bl + Bs 0

 (66)

K∗ =

 0 KiKa 0 KiKa

0 NKiKa 0 NKiKa

−Ks −Ks Ks 0

 (67)

Along with the controller (28), when the parameters Kp and Ki are positive, the modified feedback controller
is globally asymptotically stable.

Proof of Theorem 3. Because εd is a small constant, the condition for the controller stability is that the
matrix solution of the differential equations is negative. Therefore, the controller stability conditions
are as follows,

J−1B∗ > 0, J−1K∗ > 0 (68)

To simplify the calculation, it is assumed that the system damping parameters have the same value.
It is relatively easy to calculate the results of Equation (68), as well as to determine the conditions

for which parameters Kp and Ki are positive, and the stability of the control system is achieved. In the
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real system, if the compensation loop can compensate the disturbance to ensure that Assumption 1
is satisfied, the modified PI control can guarantee system stability only when Kp and Ki have
positive values. Kp and Ki cannot be constantly increased because of the system energy limitations
and the model high-frequency part.

On the other hand, the composite anti-disturbance controller performance is verified from the
point of view of solving the dynamics model. By substituting the composite controller (27) into the
dynamics model (13), the model with the composite controller is as follows,

JΘ̈∗(t) + B∗Θ̇∗(t) + K∗Θ∗(t) = p(t) + ed(t) + R∗rT
c (t) (69)

where the expression for R∗ is presented below.

R∗ =

 0 0 0
KiKa KpKa + BmKa JmKa

NKiKa NKpKa + NBmKa NJmKa

 (70)

Based on the new dynamics model that uses the composite controller, under the same conditions
in Section 2, the numerical analysis results are presented in Figure 4.

Figure 4. Results of the numerical analysis used in the composite controller.

Compared with Figure 3, the vibration disappears, the tracking performance is better, and there
is almost no phase lag for the low-frequency command. The composite controller can suppress the
vibrations and achieve a high performance.

5. Experiments

To verify the effectiveness of the proposed method in suppressing the vibration and enhancing
the control performance, an experimental system was built to compare the traditional and
proposed methods.

5.1. Experimental Setup

The experimental set-up includes power, control board, base support, gyroscope, load, encoder,
torque motor, and a computer. The system is illustrated in Figure 5.

Figure 5. Experimental set-up.
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The power supply of the whole system in the experiment consists of a 24 VDC switching
power supply. The control board is developed based on DSP TMS320F28335. Development of
the algorithm and data storage is achieved on the computer, and the sampling time is 0.001 s in the
program. The torque motor is integrated with a harmonic drive and an incremental encoder. The key
items of these devices are shown in Table 2.

Table 2. Main devices used in the experiment.

Device Model Key Item

Gyroscope STIM210 Multi-Axis Gyro Module 262 Hz (Bandwidth)
2−14 ◦/s (Resolution)

Torque motor RH-14D-3002-E100AL 5.9 Nm (Rated Torque)
Incremental Encoder - 1000 (Pulses/revolution)

Harmonic drive - 100 (Reduction Ratio)
Motor Driver MAXON ESCON Module 50/5 5 A (Constant Current)

5.2. Parameter Selection and Identification

Based on the mechanical system finite element analysis results and the device parameters,
the model parameters in the system are given in Table 3.

Table 3. System parameters.

Symbol Value

Jm, Jb, Jl 0.0014, 0.00075, 0.0008 [kg m2]
Bm, Bb, Bl 0.001, 0.001, 0.001 [kg m2/s]

Ks 10 [kg m2/s2]
Bs 0.01 [kg m2/s]
N 100
Ka 1 [kg m2/(s2V)]

First, to identify the friction model parameters, a low-frequency sine wave (0.005 Hz, 2 V) is used
as the control voltage in the open-loop system to obtain the nonlinear disturbance for the model.
The curve for the control voltage and the relative angular velocity are shown in Figure 6.

Figure 6. Control voltage and response in the open-loop system.

It is worth noting that when the control voltage approaches zero, the relative angular velocity
exhibits a pronounced dead time phenomenon. Fm(t) is similar to the theoretical friction model,
and it is proven that the friction nonlinearity dominates the nonlinear disturbance. The friction
feedforward method is designed to compensate its negative influence. If the NDOB is used in this
system directly, there will be limitations to performance improvements. This is because the system
may have a larger d(t) or ḋ(t) at some time, which is inconsistent with Assumption 1.

Friction torque Ff (t) is fitted by the model (42). The relationship between the estimated
disturbance torque and the relative angular velocity is shown in Figure 7.
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Figure 7. Disturbance torque fitting and the estimation values.

In the experiments, the least squares method is used to fit the friction disturbance, and the friction
nonlinear torque fitting parameters are obtained as shown in Table 4.

Table 4. Nonlinear friction fitting parameters.

Symbol Parameter Value

Ac1, Ac2 Coulomb friction magnitudes in the positive and negative direction 1.8, 2.0
γ a large constant 100

Kv1, Kv2 Viscous friction magnitudes in the positive and negative direction 0.005, 0.005

Second, to verify the model fitting accuracy and the effectiveness of the friction feedforward
compensation method, the residual disturbance is estimated again. The control value and the residual
disturbance curve are displayed in Figure 8.

Figure 8. Residual disturbance curve.

Compared with Figure 7, the disturbance has been reduced from 3 V (peak to peak value) to
less than 1 V. It shows the accuracy of the friction fitting value and the effectiveness of the friction
feedforward method. From Figure 8, the residual disturbance and its first derivative are small constants
like Assumption 1. The system performance will improve by increasing the NDOB gain, and the larger
the gain, the stronger the ability to compensate for the disturbance. However, it will be considerably
sensitive to sensor noise. Therefore, this parameter is selected in the trade-off between the disturbance
suppression ability and noise sensitivity. The NDOB gain is 200 rad/s in the experiment.

Finally, the PI parameter can be adjusted by the sine or step response. The feedback controller
parameters u∗c (t) are properly tuned to achieve optimum performance in practice, along with Kp = 1
and Ki = 1. The modified feedback controller is constructed in the form of Equation (29) with the
following matrices.

A =

[
0 1

−30276 −139.2

]
(71)

B =
[
0 1

]T
(72)
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C =
[
0 −114.84

]
(73)

D = 1 (74)

The feedforward controller is easily obtained by the model parameters.

u f (t) = [0.001 0.0014][rv(t) ra(t)]T (75)

5.3. Results and Discussion

To verify the vibration suppression effect and command tracking performance of the
proposed method, a sine wave (1 Hz, 10◦/s), which is a test command in engineering, is used as the
angular velocity command. The experiments include five groups: A, B, C, D, and E. To simplify the
description, the time-varying parameters uc(t), u∗c (t), uo(t), u f (t) are represented by uc, u∗c , uo, u f in
subsequent experiments. Group A uses the PI controller uc with a heavy base support. Group B uses
the PI controller uc with a light base support and occurrence of vibrations. Group C uses the modified
PI controller u∗c with a light base support in the form of Equation (28) to suppress the vibrations. Group
D uses the proposed controller u∗c + uo + u f with a light base support in the form of Equation (27).
Group E uses the controller uc + uo + u f with a light base support. Vibrations still occur, and in
some instances, are even more pronounced. To be able to perform a one-on-one comparison for
the experiments, the same PI parameters have been retained for the five groups. The sine command,
the response curves, and the relative angular velocity error of the five groups are shown in Figures 9–13.
Furthermore, the root mean square errors (RMSEs) are shown in Figure 14.

(a) (b)

Figure 9. Group A: PI controller uc with a heavy base support. (a) Sine command and relative
angular velocity; (b) Relative angular velocity error.

(a) (b)

Figure 10. Group B: PI controller uc with a light base support. (a) Sine command and relative
angular velocity; (b) Relative angular velocity error.
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(a) (b)

Figure 11. Group C: Modified PI controller u∗c with a light base support. (a) Sine command and relative
angular velocity; (b) Relative angular velocity error.

(a) (b)

Figure 12. Group D: Proposed controller u∗c + uo + u f with a light base support. (a) Sine command
and relative angular velocity; (b) Relative angular velocity error.

(a) (b)

Figure 13. Group E: Controller uc + uo + u f with a light base support. (a) Sine command and relative
angular velocity; (b) Relative angular velocity error.

Figure 14. Angular velocity root mean square error (RMSE).

In view of Figures 9–14, the following conclusions can be drawn.

(a) There is a significant nonlinear disturbance in the system, as demonstrated in Figures 9a–11a,
especially when the angular velocity approaches zero. As a result, the system demonstrates a
larger tracking error in Figures 9b–11b.

(b) The base equivalent moment of inertia is lighter, and is more likely to cause system vibrations,
as demonstrated in Figures 10a and 13a.

(c) Comparing Figures 10a and 11a, the modified feedback controller effect is noticeable, and the
vibrations are successfully suppressed.
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(d) In Figures 13a,b, without the modified feedback controller suppressing the vibrations,
the composite controller will not suppress the vibrations, even when they are more pronounced.

(e) Furthermore, the method proposed in this study shows great disturbance compensation and
tracking performance improvements. The phase between the response and command in
Figure 12a is ahead in comparison to Figure 11a. The relative angular velocity RMSE is reduced
from 0.5165 ◦/s to 0.3610 ◦/s in Figure 14.

To find the vibration frequency more intuitively, we applied Fourier transforms to find the
frequency components of a signal buried in the noise. Based on the experiments described above,
the relative angular velocity is selected as the input signal. Thereafter, the Fourier transform of
the signal is computed, the frequency domain is defined, and the single-sided amplitude spectrum
is plotted. The amplitude is dimensionless. The results are presented in Figure 15.

(a) (b) (c)

(d) (e)

Figure 15. Single-sided dimensionless amplitude spectrum of the relative angular velocity. (a) Group A;
(b) Group B; (c) Group C; (d) Group D; (e) Group E.

From Figure 15, there is a peak of 26 Hz in Groups B and D, which has a negative effect on
this system. If the modified controller (28) is used, the signal is redesigned. The vibration frequency is
suppressed successfully similar to that in Groups A, C, and D.

In addition to the command tracking performance, another significant indicator for SISPs is
the isolation used to measure the ability of disturbance isolation of the SISP. For a constant value
disturbance or a periodic disturbance with constant amplitude, the isolation describes the system’s
ability to restrain the disturbance under this frequency. If the disturbance is in a wide frequency range,
the isolation can also be obtained by using the frequency characteristics. The smaller the isolation is,
the stronger the system’s isolation ability and the better the LOS stability accuracy are. For this system,
the inertial angular velocity after compensating is θ̇b(t) + θ̇e(t), and the external disturbance inertial
angular velocity is θ̇b(t), which is measured by the gyroscope. The amplitude-frequency curve from
θ̇b(t) + θ̇e(t) to θ̇b(t) is presented in Figure 16.

Figure 16. Frequency isolation curve.
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From Figure 16, the proposed method frequency isolation is lower than the PI control method in
the SISP. The method proposed in this study has a positive external low-frequency disturbance effect.
The isolation at a typical frequency of 1 Hz is taken as a quantitative comparison. The isolation of the
PI feedback control is 3.37%, while the isolation of the proposed method is 1.54%.

6. Conclusions

Through a system model analysis, we were able to identify some limitations of the
traditional model. In this study, a SISP multi-body dynamics model is established. Based on the
new model, a composite controller is proposed to achieve high performance while suppressing
the vibrations. The mathematical calculations and the experimental results verify the stability
of the proposed controller. The experimental results also reveal that the proposed method can
successfully suppress the vibration and improve the controller performance. Compared with the
PI control methods, this newly developed method has a significant improvement in the tracking
performance and the disturbance isolation. The RMSE of the relative angular velocity is reduced
from 0.5165 ◦/s to 0.3610 ◦/s, and the isolation is reduced from 3.37% to 1.54%. The significant
contribution of the proposed method is that the SISP model was established with a light base
support and a modified feedback controller was designed according to the vibration characteristics.
Combining the disturbance controller and the feedforward controller, high-precision control
performance was achieved, and inertial stability of the LOS was realized. These performance
improvements are significant in the fields of science and engineering.

In future work, an advanced control method, such as SMC, adaptive control, or the H∞ control,
will be used to further enhance the control performance while suppressing the vibrations.
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Abbreviations

Constants
δd, εd Bound of the residual disturbance and bound of its deviation
γ A large constant in the friction model
ω Frequency of the input sine wave
a21, a22 Constants in the matrix A
Ac1, Ac2 Positive and negative coulomb friction magnitudes
Bm, Bl , Bb Equivalent damping coefficient of the motor rotor, the load, and the platform base
c12 Constants in the matrix C
Jm, Jl , Jb Equivalent moment of inertia of the motor rotor, the load, and the platform base
K A positive constant related to the bound of the disturbance estimation error
Ka Coefficient from the control voltage to the electromagnetic torque
Kp, Ki PI controller proportion and integral parameters
Ks, Bs Stiffness and internal damping coefficient of the flex spline in harmonic drive
Kv1, Kv2 Viscous friction magnitudes in the positive and negative direction
L Nonlinear disturbance observer gain
N Reduction ratio in harmonic drive
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Variables
∆θ Angular deformation in the harmonic drive
τd, τ̂d The residual disturbance and the estimation one
θ∗b Modified platform base inertial angle
θe Relative angle between the base and the load
θm, θl , θb Motor rotor inertial angle, load inertial angle, and platform base inertial angle
θ
′
m Output angle of the flex spline

e, e∗ The angular velocity error and the new one
Fm, Ff Total disturbance torque and the friction torque
rp, rv, ra The position, velocity, and acceleration commands
Tm, Tz Electromagnetic torque of the motor and external torque on the base
Twg, Tf s Output torque of the flex spline and input torque of wave generator
u The control voltage as the input to the current driver
u∗c , uo, u f The modified feedback controller, the compound disturbance compensation controller,

and the feedforward controller
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