
applied
sciences

Article

Design of a Reinforcement Learning-Based Lane
Keeping Planning Agent for Automated Vehicles

Bálint Kővári , Ferenc Hegedüs and Tamás Bécsi *

Department of Control for Transportation and Vehicle Systems, Budapest University of Technology and Economics,
H-1111 Budapest, Hungary; balint.kovari@edu.bme.hu (B.K.); hegedus.ferenc@mail.bme.hu (F.H.)
* Correspondence: becsi.tamas@mail.bme.hu

Received: 17 September 2020; Accepted: 9 October 2020; Published: 14 October 2020
����������
�������

Featured Application: The presented method can be used as a real-time trajectory following algorithm
for autonomous vehicles using prediction based on lookahead information.

Abstract: Reinforcement learning-based approaches are widely studied in the literature for solving
different control tasks for Connected and Autonomous Vehicles, from which this paper deals with the
problem of lateral control of a dynamic nonlinear vehicle model, performing the task of lane-keeping.
In this area, the appropriate formulation of the goals and environment information is crucial, for which
the research outlines the importance of lookahead information, enabling to accomplish maneuvers with
complex trajectories. Another critical part is the real-time manner of the problem. On the one hand,
optimization or search based methods, such as the presented Monte Carlo Tree Search method, can solve
the problem with the trade-off of high numerical complexity. On the other hand, single Reinforcement
Learning agents struggle to learn these tasks with high performance, though they have the advantage
that after the training process, they can operate in a real-time manner. Two planning agent structures
are proposed in the paper to resolve this duality, where the machine learning agents aid the tree search
algorithm. As a result, the combined solution provides high performance and low computational needs.

Keywords: reinforcement learning; autonomous vehicle; vehicle dynamics; lane keeping; planning
agents; Q-learning; policy gradient; Monte Carlo Tree Search

1. Introduction

Deep Learning (DL) has gained tremendous interest in the field of vehicle control and motion
planning in general thanks to the success of DL in other fields where the advantages of Convolution
Neural Networks (CNN) are heavily utilized such as semantic segmentation, scene understanding, object
detection, and recognition [1,2]. The early concepts for designing autonomous functions used rule-based
systems where the parameters of the conditions are tuned over tests. This type of system has limitations
because it is hard to cover all the rare events in tests that can happen in the real world. At the same time,
Deep Learning techniques feature adaptation and self-tuning. Consequently, these techniques are able to
generalize behaviors for unseen cases. These characteristics make DL an obvious choice for solving vehicle
control problems. The vehicle control problem can be categorized into three main groups. The first is lateral
motion control of the vehicle, which is dedicated to managing the in-lane location of the vehicle and also
handling maneuvers that require lateral control such as lane-changing. The second is a longitudinal motion
control, which is dedicated to managing the brake and throttle pedals to hold speed, thus maintaining

Appl. Sci. 2020, 10, 7171; doi:10.3390/app10207171 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2178-2921
https://orcid.org/0000-0002-8063-6054
https://orcid.org/0000-0002-1487-9672
http://dx.doi.org/10.3390/app10207171
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/20/7171?type=check_update&version=2

Appl. Sci. 2020, 10, 7171 2 of 25

the appropriate following distance. The third group is when the lateral and longitudinal motion have to
be controlled simultaneously. For a more comprehensive study on the field of DL based vehicle control,
see in [3,4].

The authors in the Autonomous Land Vehicle in a Neural Network (ALVINN) [5,6] project endeavor
to utilize supervised learning (SL), where the input is raw camera data (30 × 32), and the neural network
only has one hidden layer with four neurons, while the output is one discrete steering angle out of thirty.
The training dataset is enlarged with data augmentation, which also decreased the occurrence of overfitting.
After the training, the real-word test shows that the trained neural network is able to hold the vehicle on
the centerline of the lane more precisely than the human driver could. The following significant result
of SL in the vehicle control field is the DARPA Autonomous Vehicle (DAVE) project [7,8]. It has to be
mentioned that the innovation in computational hardware has a significant role in the success of this
project because it uses a CNN that has 250,000 tunable parameters. The training data is collected from a
human driver with cameras implemented to the vehicle. For the steering of the vehicle, an end-to-end
solution is carried out with the help of a CNN. The trained CNN is able to detect the main signs that are
painted on the road. Moreover, it can perform lane-keeping in a way when it does not need any human
intervention. Another remarkable result is in [9], where the authors utilize CarSim [10] for data generation,
which is trained with various optimizers after filtering out the degenerated samples from the dataset.
The trained neural networks are only evaluated in the same simulator. The results showed that the steering
signal created by the neural network is noisy, which suggests the use of Recurrent Neural Networks
that has a memory of earlier inputs. By utilizing RNNs, the neural network can understand being in a
maneuver, which can result in a smooth steering signal. In [11], the authors train a Convolution Long
Short-Term Memory Neural Network (C-LSTM). In training, camera data are used with time dependencies.
The performance of the trained network compared to another network trained with simple CNN [12]
shows that the C-LSTM reaches a higher performance level in steering the vehicle.

The first reinforcement learning (RL) based control is inspired by the concept of ALVINN [13].
The output of the neural network is discrete steering angles as in ALVINN. It has an essential advantage
over the SL-based concepts, which is the ability to learn in an online manner from experiences gathered
through interactions with the environment. The architecture is a simple feedforward network in which
raw camera data are used as input. A better concept is proposed in [14], which uses the well-known
Deep Q-network algorithm for training the neural network to predict the appropriate yaw acceleration
for a lane-changing maneuver. Most of the longitudinal control problems are complex and show firm
nonlinear behavior, which makes deep learning-based solutions suitable for this type of control task
because these methods support adaptation and demonstrate the capability of handle nonlinear control
problems. The authors of [15] combine fuzzy logic with reinforcement learning and create a hybrid method
for the longitudinal control of a vehicle. The RL method is a Q estimator network, and for fuzzy inference
they use Takagi–Sugeno. The reward function only uses the distance between the ego and the front vehicle,
which is not able to provide a solution that considers safety and efficiency aspects in the decision-making.
Consequently, in such control problems, a multi-objective reward scheme is required for appropriate
control. In [16], a Policy Gradient-based agent is proposed, which uses a multi-objective reward function to
train the agent for the control task of Cooperative Adaptive Cruise Control. In the reward function, the time
distance between the ego and the front vehicle is used along with the derivative of this quantity. The actions,
in this case, are simple brake, throttle, and pass commands. The trained network is tested in simulation
and the results show that it can keep the required time distance accurately, but the control signal always
oscillates, which is uncomfortable for the passengers. This behavior can be corrected by sanctioning this
exact operation during training by the reward function, but another approach is the use of RNN networks.
The authors in [17] propose a Parametrized Batch Actor–Critic algorithm that utilizes both the policy and
value-based model-free RL techniques for a longitudinal control problem. In this case, the real-word tests

Appl. Sci. 2020, 10, 7171 3 of 25

show that the multi-objective reward system mitigates the oscillation, which results in great comfort for
passengers. In [18], the authors introduce a Deep Q-Learning (DQN)-based method that is dedicated to
controlling the braking system for avoiding collisions autonomously. Along with the original memory
buffer of DQN, they use a special memory where only experiences of critical events are stored. These types
of events are rare, so without this memory, these events become underrepresented, which deteriorates the
reliability of the agent. The trained model is tested in situations where accidents have to be avoided with
pedestrians. The model reaches excellent performance, and it is also tested according to the restrictions of
the Euro NCAP test protocol, and the model passes this test too. The methods above utilize reinforcement
learning’s unique features such as online learning; however, it also has some disadvantages like the sample
inefficiency. To mitigate these issues, several authors propose methods that combine reinforcement and
supervised learning approaches, where supervised learning accelerates the training process, but thanks to
reinforcement learning, the possibility of adaption is maintained. For such concepts see in [19,20].

Autonomous driving requires both lateral and longitudinal control to operate in a simultaneous
manner to perform the dynamic driving task on a proper performance level [21]. A method that combines
supervised learning and reinforcement learning is presented in [22], where the authors use the exact idea
for formulating their own algorithm to solve the lateral and longitudinal control task simultaneously,
which control task is formulated as keeping the vehicle on the road. In this particular algorithm, DQN is
combined with SL, where the experiences are gathered from professional drivers to accelerate training.
The DQN’s experience memory is also filtered to eliminate poor experiences. In [23], the authors compare
the DQN and the Deep Deterministic Actor–Critic (DDAC) algorithm to show how important the usage
of continuous actions in such control problems. After training, the models are evaluated in The Open
Racing Car Simulator (TORCS), and the DQN reaches a secondary performance level thanks to the fact
that it does not support continuous actions. At the same time, the DDAC supports continuous actions,
and it provides superior performance compared to DQN. In [24], a planning feature-based, deep behavior
decision method trained with TD3 was proposed to select an optimal maneuver for autonomous vehicles
in dynamic traffic. The authors of [25] propose a CNN-based method for the same autonomous braking
system concept as introduced earlier, but in that case, the model is capable of managing both steering and
acceleration. This concept utilizes a Variational AutoEncoder (VAE) combined with RNN to predict the
position alteration of obstacles and uses the Deep Deterministic Policy Gradient (DDPG) for learning the
control policy. The model is evaluated in simulation, and the results show that it is capable of decreasing
the ration of collision by 60%. In the realm of model-free reinforcement learning algorithms, a critical part
is to specify the reward function for the task, because this feedback signal is the only thing that can lead
the training of the model to success. Unfortunately, in such complex domains, it is tough to formulate
the correct reward function. To solve that problem, Inverse Reinforcement Learning (IRL) is also utilized,
which is a subfield of RL, where the algorithm tries to develop a reward function by monitoring an expert
interacting with the environment. In [26], the authors presented a concept that utilizes IRL, and they
manage to train the agent to learn different driving styles from a presentation. Moreover, a good review of
imitation-based and behavior cloning methods applied in this field can be found in [27].

Contributions of the Paper

The paper deals with the design of a lateral control agent and proposes two new algorithms that
utilize planning after learning in the prediction phase that incorporates the real-time applicability of the
neural networks with the robustness of the Monte Carlo tree search (MCTS), which can overcome both
algorithms’ limitations. Moreover, this paper presents a unique implementation of the MCTS that enables
the utilization of such a tree search algorithm in a computationally exhausting control task like that. It also
compares the performance of both the original and the new MCTS concept. Furthermore, the paper reveals

Appl. Sci. 2020, 10, 7171 4 of 25

the importance of the lookahead information in the state representation by comparing agents trained
with and without it. Finally, the paper presents a detailed statistic and strategic comparison of all the
introduced approaches for this control task to assess and understand the different algorithms’ advantages
and disadvantages.

2. Environment

The formulation of the environment explicitly affects the level of robustness that the agents can reach.
Consequently, the goals of the environment have to cover the diversity of the trajectories, therefore a
wide variety of turn combinations have to be created along the training process. The trajectory generator
realizes the required versatility of the trajectories through a parametrizable random process that provides
a new trajectory for every episode. The random process, which results in different trajectories, starts with
choosing the diameter of a circle, which is followed by choosing the number of holding points that are
placed on the arc evenly. In the following step, the positions of the holding points are changed in their
local neighborhood randomly. At the end of this process, a random trajectory is created by its holding
points by fitting a spline to the holding points. The created spline is complemented with two other splines
that are interpreted as the edges of a lane while the original spline is the centerline. The edges enable the
customization of the lane-keeping problem through the lane width, and it is also advantageous in the
visualization of the control problem. Figure 1 shows some example trajectories.

Figure 1. Examples of randomly generated trajectories for training.

Appl. Sci. 2020, 10, 7171 5 of 25

The representation of the control task is also a necessity as the state vector is the only descriptor
that details the problem for the agent. Accordingly, the sensor information is decomposed into two parts
because the representation also has two primary intentions. On the one hand, the actual position of the
vehicle in the lane is essential, while on the other hand, the agent has to know how the lane evolves over a
limited horizon based on the current state of the vehicle.

These two components are equally important because precise trajectory tracking requires that every
decision has to be adequate both for the current situation and for the trajectory in front of the vehicle.
The current state of the vehicle is detailed with the help of two pieces of information. The first is the in-lane
position and the second is the relative yaw angle, both transformed into [−1, 1] interval. The relative yaw
angle shows the deviation of the vehicle heading from the tangent of the given point of the trajectory.
The part of the trajectory which is in front of the vehicle is detailed by relative yaw angles calculated into
equally distanced points of the horizon with respect to the current state of the vehicle. This approach
makes this part of the sensor information easily customizable. Thus, the representation can be easily
changed in the training procedure to find the suitable one. A few configurations are shown in Figure 2.
The sensor information vector is shown in Table 1.

Figure 2. Different configurations of the lookahead sensor information part.

Table 1. A configuration of the state vector.

Position Relative Yaw Relative Yaw Relative Yaw Relative Yaw Relative Yaw Relative Yaw

d ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

Actual state of the vehicle Lookahead information about the trajectory ahead

The elements in the sensor information vector that are used for the representation of the problem are
relative quantities. Thus, this information only depends on the relation between the vehicle and the lane.
This approach enables the agent to learn all the trajectories that can be constructed from the curvatures of
the turns created during training. This concept gains additional robustness over the approach that learns
only the given trajectories thanks to the influence of the absolute quantities. This can be seen as an implicit
acceleration of the training process. Moreover, the relative quantities help the agent in generalization,
which is a crucial point in the success of the training.

Appl. Sci. 2020, 10, 7171 6 of 25

2.1. Vehicle Model

The last sensitive aspect of the environment is the choice of the vehicle model, thanks to the
controversy between maneuver accuracy and computational requirements. Choosing the appropriate
complexity for a vehicle model is always a challenge because two different goals have to be reached
at the same time. On the one hand, the vehicle model should be as realistic as possible to cover all
possible driving situations, while on the other hand, the computational need of the model has to be
scaled back as much as possible to decrease the runtime of the final simulation [28]. The used vehicle
model is a nonlinear single track model complemented with a dynamic wheel model. This vehicle
model represents an excellent trade-off between computational efficiency and vehicle dynamics because it
provides fundamental dynamics for a wide variety of maneuvers. Figure 3 shows the multi-body model of
the vehicle; it also shows that the main parts of the model are the vehicle chassis and two rigidly attached
wheels that also symbolize the axles of the front and the rear. The model has several parameters; thus to
provide a transparent description, all the influential parameters are detailed in Table 2.

Figure 3. Sideview and top view of the single track nonlinear model [29].

Table 2. Parameters of the vehicle model.

Parameter Meaning

m Mass
θ The inertia of the chassis.
l f The horizontal distance between the center of the front wheel and the vehicle’s center of gravity.
lr The horizontal distance between the center of the rear wheel and the vehicle’s center of gravity.
h The height of the vehicle’s center of gravity.

θ f /r The moments of inertia of the front and rear wheel.
r f /r The radius of the front and rear wheel.

Appl. Sci. 2020, 10, 7171 7 of 25

It is also necessary to introduce the influential parameters of the wheel model, which are the
Magic formula’s C[f /r],[x/y],B[f /r],[x/y],E[f /r],[x/y] parameters, which are fitting constants of a specific
wheel–ground contact pair. These determine how much force can be transmitted between the tire and the
road surface [30] based on the slip value. Moreover, the friction coefficient also has to be mentioned as a
relevant parameter of the wheel model.

The model has three inputs, which are the breaking Mb and driving Md torques applied at the
wheels, and the third is the steering angle δ of the front wheel. The distribution of the brake torque
M[f /r],b is ideal for providing equal brake slips, while the driving torque M[f /r],d is distributed between
the front and rear with a time-dependent distribution factor ξM. In the following model description,
the variables without a subscription have to be considered in a ground-fixed coordinate system, while the
variables with subscription W have to be considered in the wheel-fixed coordinate system and variables
with subscription V have to be considered in a vehicle-fixed coordinate system, and the dot notation
represents time derivatives. The possible direction of movements of the chassis is the movement along the
x longitudinal axis, the y lateral axis, and the rotation around the chassis Ψ vertical axis, while the wheels
are only able to rotate around their horizontal axes φ[f /r], and the lateral and longitudinal slips modeled in
a dynamical manner s[f ,r],[x,y]. The equations of the chassis are based on Newton’s second law:

ẍ =
1
m
(Ff ,x + Fr,x + Fd,x) (1)

ÿ =
1
m
(Ff ,y + Fr,y + Fd,y) (2)

Ψ̈ =
1
θ
(l f FV

l, f − lrFV
r,y) (3)

where the F[f /r],[x,y] variables are the tire forces of the vehicle, the forces derived from aerodynamic drag is
modeled and calculated as follows,

FV
d,x =

1
2

cD A f ρA ẋV
√
(ẋV)2 + (ẏV)2 (4)

FV
d,y =

1
2

cD A f ρAẏV
√
(ẋV)2 + (ẏV)2 (5)

where ρA is the density of the air, cD is the coefficient of drag, and A f is the size of the frontal surface of
the vehicle.

Only the equations of the front wheel are presented because the rear and front are modeled identically,
the forces of the tire are derived from the motion of the wheel, and the equations are formalized by taking
into consideration Newton’s second law and the dynamic slip equations from the work in [30]:

φ̈ =
1
θ f

(M f ,d − r f FW
f ,x −M f ,b −M f ,rr) (6)

ṡ f ,x =
1

l f ,x
(r f φ̇ f − ẋW

f − |ẋ
W
f |s f ,x) (7)

ṡ f ,y =
1

l f ,y
(−ẏW

f − |ẏ
W
f |s f ,y) (8)

Appl. Sci. 2020, 10, 7171 8 of 25

The variable ẋW
f is the longitudinal velocity of the center of the wheel, while the ẏW

f is the lateral
velocity of the same wheel center. The relaxation lengths which depend on the lateral and longitudinal
slips are calculated as follows,

l f ,[x/y] = max

(
l f ,[x/y],0

[
1−

B f ,[x/y]C f ,[x/y]

3
|s f ,[x/y]|

]
, l f ,[x/y],min

)
(9)

The l f ,[x/y],0 represents the values at wheel lock or wheel spin, while l f ,[x/y],min notes the value for
the standstill case. The SAE J2452 standard is used to calculate the torque of the rolling resistance M frr,
and the Magic formula provides the computational model for the calculation of the tire forces, which looks
as follows,

F̃W
f ,[x/y] =µ f FW

f ,z sin{C f ,[x/y] arctan(B f ,[x/y] s̃ f ,[x/y]−

E[B f ,[x/y] s̃ f ,[x/y] − arctan(B f ,[x/y] s̃ f ,[x/y])])}.
(10)

To enhance and maintain the stability of the numerical computational process, dumped slip values
are used in the calculation of the forces, which looks as follows,

s̃ f ,x = s f ,x +
k f ,x

B f ,xC f ,xµ f FW
f ,z

(r f ρ̇ f − ẋW
f) (11)

s̃ f ,y = s f ,y (12)

where k f ,x is the factor that depends on the velocity, and it is calculated as follows,

k f ,x =

 1
2 k f ,x,0(1 + cos(π

|ẋW
f |

vlow
)) if ẋW

f ≤ vlow

0, otherwise
(13)

where the damping factor k f ,x,0 belongs to the zero velocity case, and the damping factor is switched off
for the vlow case. The friction ellipse method is used to calculate the superposition of the forces, which is
given as follows,

FW
f ,x = sign(s̃ f ,x)

√√√√√ (F̃W
f ,x F̃W

f ,y)
2

(F̃W
f ,y)

2 + (
s̃ f ,y
s̃ f ,x

F̃W
f ,x)

2
(14)

FW
f ,y = sign(s̃ f ,y)

√√√√√ (F̃W
f ,x F̃W

f ,y)
2

(F̃W
f ,x)

2 + (
s̃ f ,x
s̃ f ,y

F̃W
f ,y)

2
(15)

An explicit Ordinary Differential Equation solver is used with a step size of approximately 1 ms for
the introduced wheel model. To further enhance the computational efficiency of the vehicle model, it is
implemented in C instead of python. For more details about the vehicle model see the works in [29,31].

2.1.1. Action Space

The action space is discrete and consists of steering angles only. Therefore, the velocity of the vehicle
is fixed. A simple PD controller provides the torque commands to keep the velocity of the vehicle. It is
critical to choose the number of actions appropriately, as this is also the branching factor of the tree search,
and this parameter hugely influences the complexity of the search problem. Moreover, the quality of the

Appl. Sci. 2020, 10, 7171 9 of 25

reachable trajectory tracking is also affected by the action space, but both the number of actions and the
actual values of the steering angles are influential. The reward scheme for the trajectory tracking problem
is detailed in Equation (16).

R =

{
cos φ0 + |d| if R > 0

0, otherwise
(16)

The expression incorporates two essential performance measures into a single reward function,
notably the agent gets the maximum possible reward if the vehicle stays on the trajectory, i.e., in the middle
of the lane, while its relative yaw angle is equal to zero. Furthermore, it is important to mention that the
environment works with discrete time steps that are customizable.

3. Methodology

3.1. Monte Carlo Tree Search

The most concerning weakness of classic uninformed search methods is not that they cannot find the
optimal solution if there is one, but that they cannot operate in a real-time manner because the needed
computational power is lacking. On the other hand, greedy algorithms that use heuristics to find optimal
solution come with no guarantees. Thus, they likely end up in suboptimal solutions or with no solution
at all. The Monte Carlo tree search algorithm mitigates these concerns thanks to its unique approach to
the node selection procedure and individual nodes’ value assignment. The Upper Confidence bound
applied for Trees (UCT) algorithm is responsible for selecting the currently most promising nodes in
every branch during the iteration process. Therefore, a bandit algorithm navigates through the tree from
root to leaf, which handles the exploration-exploitation dilemma as a tunable trade-off. Consequently,
the heart of MCTS is the bandit algorithm. The bandit-based approach is firstly introduced in the realm of
clinical trials [32], and the research area of animal and human learning [33]. Such methods can be applied
to any decision-making problem that has uncertainty. For more details on bandit algorithms, see [34].
MCTS algorithm’s value assignment is unique since it determines a node’s value by continuing the process
from the given state until a terminal state, with a default policy. Random play based value assignment
seems insufficient at first, but research papers that apply parallelization to this algorithm show that the
averaged value of more random play from the given node does not result in a meaningful performance
boost [35]. Thus a single random rollout is quite representative. The UCT algorithm looks as follows,

Xi + 2Cp

√
2 ln Ni

ni
, (17)

where Xi is the average value of the currently examined node, Cp is a constant that helps in the controlling
of the exploitation–exploration trade-off, and Ni is the number of visits of the ancestor node, while ni is
the number of visits of the currently examined node. The MCTS algorithm has an essential advantage
over its competitors, notably that it converges to the globally optimal solution if enough time is given [36].
For a more comprehensive study on MCTS, see in [37].

This approach can be seen as a parametrizable trade-off between the uninformed and the greedy
search concepts. The first part of the UCT algorithm represents exploitation. Therefore, if it chooses the
next node exclusively, it behaves as a greedy algorithm. On the other hand, the second part represents
exploration that leads to the node, which has the lowest visit count on the branch. Thus if it chooses the
next node exclusively, it behaves like a uninformed search algorithm.

The MCTS algorithm builds a tree-based representation of the domain by repeating the Selection,
Expand, Rollout, and Backpropagation steps.

Appl. Sci. 2020, 10, 7171 10 of 25

• Selection: Selects the nodes with the highest UCT value in every selection process until a leaf node
is found.

• Expand: If the examined node has not visited yet, it populates its child nodes, if there is any.
• Simulation: Executes a Monte Carlo rollout until a terminal state is found.
• Backpropagation: If a terminal state is found at the end of the simulation, the terminal state’s value is

backpropagated along the path from the leaf to root.

After a certain number of iterations, the MCTS suggests an action. Thus, the action selection policy is
essential. In this case, the robust-child [37] approach is utilized, which selects the action that instantiates
the child node that has the most visits from all child nodes on the branch.

In this paper, the MCTS algorithm is utilized as a benchmark for comparison to other algorithms and
a training data generator for supervised learning.

3.2. Supervised Learning

Supervised learning is a field of machine learning where the goal is to tune a function approximator to
reestablish the connection between input vector x and output label y based on the provided labeled dataset.
The reservations about SL are mostly attached to its insatiable need for data, which can be critical in several
fields because the required amount of data can not be provided. Creating datasets for training is always a
resource-intensive task, but in this case, the MCTS algorithm is used as a training sample generator for
SL, as it can solve the control problem on a high-performance level. Furthermore, the MCTS, combined
with the introduced environment that randomly creates trajectories, is a perfect fit for such an application
because it can generate as many training samples as required. SL’s dependence on labeled data shows a
theoretical limitation to SL, notably that it can only resolve previously solved problems. Still, the real-time
applicability and generalization feature of neural networks that enable the trained network to operate in a
wilder interval than presented through the training samples is undoubtedly beneficial.

3.3. Reinforcement Learning

By investigating the nature of learning and intelligence, it occurs that humans organize experiences
into a causal structure to make decisions based on the information gathered and ordered to achieve some
desired goal or behavior. Therefore, the interactions with the environment always help understand the
world and develop behavior needed for several purposes. This is the exact concept of RL. The tools of
intelligence that serve humans in problem-solving can be found in the RL framework. These tools are
the capability to think on an abstract level, the sensitivity for finding the context’s algorithm, and the
capability to recognize analogies and patterns in different scenarios. The formulation of the state descriptor
representing the control task for the agent accomplishes the same as thinking on an abstract level as
it separates the influential features of the environment from the irrelevant. The reward function and
the utilized credit assignment concept realize the algorithm’s functionality, which could be immediate
or discounted; these concepts determine how the individual slices of time steps affect the outcome.
The recognition of analogies is done by the neural network, which tries to generalize the experiences to
behave in the right fashion in unseen scenarios.

The model-free RL framework is formalized as a Markov Decision Process (MDP) {S, A, T, R}.
The agent tries to form an optimal behavior without prior knowledge, only through interactions with the
environment in an online manner. During the interactions, the agent changes the state of the environment
by triggering the execution of actions. The environment characterizes the immediate consequences of the
chosen action, which can be a reward or a punishment, depending on the scalar feedback sign. Therefore,

Appl. Sci. 2020, 10, 7171 11 of 25

the agent’s goal is to maximize the cumulative feedback for the whole process called an episode, which
can be formalized as follows,

G =
T

∑
t=1

γtrt. (18)

The training loop of RL is shown in Figure 4. For a more comprehensive study on reinforcement
learning, see in [38].

Figure 4. The RL training loop.

3.4. Value-Based

The first profound breakthroughs of RL are attached to the value-based DQN algorithm,
which showed great potential in several control areas. In this concept, the neural network is trained
to approximate the action-value function, representing the amount of reward that can be gathered from
the very state until the end of the episode. The target values for the training are formulated with the
well-known Bellman equation:

Q(st, at; θt) = rt+1 + γ max
a

Q(st+1, at; θ−t). (19)

In the equation, Q(s, a) stands for the value of action a in state s. State s′ is the next state generated
from state s by executing action a. θ−t is the weights of the target network, and θt is the weights of the
online neural network in time step t. DQN is considered as an indirect method since it does not make
direct recommendations about action selection. The predicted values of DQN are more like a situation
interpretation that reveals the potential of each action in the long run. Consequently, the predicted values
have to be exploited to formulate a policy. This way of operation shows that the predicted values of DQN
are more like a global heuristic because all the values have an absolute meaning over the entire process.

3.5. Policy-Based

The recent successes of policy-based RL in competitive domains focused tremendous attention to this
realm of model-free algorithms. In this concept, the algorithm tunes the neural network to approximate the
policy directly in the form of a probability distribution. Consequently, the Policy Gradient (PG) algorithm
operates as a dynamic heuristic because it does not present the long term returns of a particular action.

Appl. Sci. 2020, 10, 7171 12 of 25

It only reflects the necessities of the given state. Therefore, the predicted values are only comparable to
the given branch. As introduced, the output of the PG algorithm is a probability distribution, which is
determined by the θ parameters of the neural network. Thus, the optimization task is to tune the weights
of the neural network in a way that maximizes the agent’s performance indicator function J(θ) = J(πθ).
This function can be formalized in the episodic set-up as follows,

Jπθ
= E

[τ

∑
t=1

γtrt

]
(20)

Based on Equation (20), it can be seen that the essence of the algorithm is to find the local extreme
value in the direction of the largest increase in the discounted cumulated reward. The update rule of the
function approximator’s θ parameters can be determined based on [39,40], which looks as follows,

θ ← θ + α∇ log πθ(st, at)
τ

∑
t=1

γtrt (21)

and operates as follows.

1. First, it initializes the neural network’s θ weights and then the training process starts from the first
state s1.

2. The agent and the environment interacts until a terminal state occurs.
3. Calculates the discounted rewards, which are saved in the episode history with the chosen γ

discount factor.
4. Then the gradients of the states added to the gradient buffer which will update the neural network’s

weights if the update frequency encounters.

Where πθ(st, at) represents the choice probability assigned to action a in, state s, and α is the learning
rate which is one of the most critical hyperparameters of the training process that can be used to determine
the extent of change in neural network’s weights.

3.6. Planning Agents

The feature that distinguishes RL from other Machine Learning fields that it only requires the model of
the control problem and reward scheme to start. Compared to Supervised Learning, this approach greatly
simplifies the training process. Moreover, RL algorithms can be applied to control tasks that have not been
solved yet, as it does not require a labeled dataset for training. Unfortunately, this concept also has its
drawbacks. Notably, RL’s trial and error-based nature, which is undoubtedly one of its fascinating virtue,
combined with the uncontrolled fashion of how the different episodes follow each other along the training
process, makes inevitable the under-representation of experiences. In practice, both value and policy-based
RL have tools to mitigate the introduced effect. For DQN, it is the Prioritized Experience Replay, and for
the PG algorithm, the gradient buffer has the same purpose. Both tools try to stabilize the training process
and prevent the particular algorithm from over-representing specific experiences that locally occurred
more frequently than others. Still, this problem can only be solved by infinitely long training, which is not
possible, and if it would, we would arrive at the shortcomings of credit assignment. Where immediate
rewarding systems behave like heuristics that provide no guarantees, final rewards with discounting
concepts assume a particular causality between the consecutive parts of the episodes, which can be
untrue. These components make inevitable the deterioration of RL’s performance in challenging domains.
Nevertheless, the performance of RL algorithms can be enhanced in several ways. Deepmind’s researchers
introduced AlphaGo Zero [41] that initiates the integration of planning into learning and prediction.

Appl. Sci. 2020, 10, 7171 13 of 25

This approach intends to combine the absolute robustness of MCTS with the desired real-time applicability
of RL algorithms. Planning integrated into learning utilizes the tree search in every step as an operator that
improves and evaluates the policy. Hence it endeavors to improve credit assignment and action selection.
In the meantime, planning in the prediction phase utilizes the same combination of the algorithms.
It intends to overcome the wrongfully generalized experiences by exploiting the agent’s hidden expertise
with the tree search’s help. Thus it is only used as a policy improvement operator. The reservations against
these concepts are related to computational resources. In massive control tasks, both solutions require
extensive planning, which can be overwhelming, considering hyperparameter optimization. Consequently,
methods that secure real-time applicability and boost performance at once can be incredibly beneficial.
This outcome can be realized by reformulating the agent’s role as a heuristic inside the tree search selection
procedure to make the selection more effective, which enables the algorithm to maintain outstanding
performance with considerably less planning time. In these new algorithms, the PG agent is used, since it
differentiates the choices more firmly in most states than value-based RL algorithms do, which frequently
builds a tree that looks like the result of breadth-first search. This feature is crucial because the tree has
to be deep instead of broad, which can only be accomplished by making the most of the appropriated
planning time.

3.6.1. Planner-I

The prime question in all tree searches is about the node selection since this procedure can make
the search either efficient or lavish. The UCT algorithm’s idea is that it is always skeptical about the
nodes’ value, which firstly assigned than its formulated with backpropagation along with the iterations.
Therefore, it systematically overrules the node’s value with the desire to try something new because it can
not be sure about the value assignment’s validity. In the first reformulation of the UCT algorithm, the PG
agent’s predictions determine all the nodes’ values. The concept is that during the training process, the PG
agent generally learns how to react in certain cases, but still there will be scenarios where the agent will
be in fault thanks to the imperfection of the training concept. Consequently, planning as a tool is used to
overrule the wrongfully generalizes experiences. The modified UCT algorithm looks as follows,

pi + 2Cp

√
2 ln Ni

ni
(22)

where the pi is the predicted choice probability of the considered node. In the introduction of the PG
algorithm, it is mentioned that the predicted values are only comparable to the particular branch since
they add up to one in every consecutive branch. Therefore, these values are not appropriate to define the
value of a state in an absolute manner. These values can sandbag the tree search algorithm through the
backpropagation procedure since they are on the same scale. However, this environment has a unique
feature regarding that. Notably, one step inside the MCTS algorithm realizes such a small effect on the
state vector that the consecutive states’ differences are blurred. Hence they can barely be considered
Markovian. Moreover, consecutive steps do not represent strategically different scenarios in means like
they do in chess or Go, which emphasize the introduced effect. This feature enables the direct use of PG’s
predicted values without the misleading effect, which initially would require the connection between the
consecutive branches like in [42].

Appl. Sci. 2020, 10, 7171 14 of 25

3.6.2. Planner-II

In the second case, the value part of the UCT algorithm is the same as in the original, thus identical to
the MCTS algorithm. However, the exploration part is different because of PG’s prediction rules. Therefore,
it also ends up in a neural network driven tree search algorithm but in a different manner. The modified
UCT algorithm looks as follows,

Xi + pi

√
2 ln Ni

ni
(23)

This concept creates a different synergic combination between the PG and MCTS since it eliminates
the systematic overruling of the exploitation part by exploration, which is now driven by the trained
PG agent. Consequently, it initiates a more effective selection procedure, which results in enhanced
performance despite the less amount of provided planning time.

3.7. Operation of the Algorithms

For clarification, MCTS can be considered as a model-based search algorithm that operates as follows.
In every given state, a search tree is built with a fixed depth, which is determined by the number of
executed iterations. After the iterations, the search tree suggests an action according to the utilized action
selection policy that seems to be the best over the limited horizon, then the suggested action is executed by
the environment, and the process repeats itself in the same way in every step.

The new algorithms operation is very similar to pure MCTS. The difference is that these new
algorithms utilize the trained PG agent inside the selection procedure through the reformulation of the
UCT-t algorithm. As it makes the selection more effective, it enables the back scaling of the planning time,
which results in an algorithm that maintains real-time applicability on an enhanced performance level.

Compared to that, the original RL and SL algorithms do not use any additional techniques;
therefore, the action selection is made by the neural network’s feedforward function called prediction.

Algorithm 1 presents the actual operation of the proposed Planning agents. There are only two
differences between the proposed algorithms. The first is the value assignment, which is a prediction with
PG agent for Planner-I and a rollout for Planner-II, and the second is the calculation of the node’s UCT
value. For further clarification Figure 5 displays the operation of the new algorithms from another aspect.

Figure 5. The operation of the planning agents.

Appl. Sci. 2020, 10, 7171 15 of 25

Algorithm 1 Planning agent-based control.

1: procedure CONTROL(RootNode, Agent, IterationCnt)
2: for i in IterationCnt do
3: Iteration(RootNode, Agent) . Run modified MCTS
4: end for
5: Action=argmax(RootNode.Children.Visit) . Choose the most visited node
6: end procedure
7:
8: procedure ITERATION(Node, Agent)
9: Node.Visit += 1

10: if Node.Reward == -1 Or Node.Depth == DepthLimit then . Terminal node Case
11: return Node.Reward
12: else if Node.Visit == 0 then . Unvisited node Case
13: for i in Actions do
14: Node.Children[i].Create(Node, Action)
15: end for
16: if Planner-I then . Predict, if using Planner-I
17: Node.Value=Agent.Predict(Node)
18: else
19: Node.Value=MCTSRollout(Node) . Rollout, if using Planner-II
20: end if
21: return Node.Value
22: else . Visited node Case
23: for child in Node.Children do
24: child.UCT();
25: end for
26: BestChild=Node.Children(argmax(Node.Children.UCT))
27: v=Iteration(BestChild, Agent) . Recursive Call
28: Node.Value+=v
29: return v
30: end if
31: end procedure

4. Results

In describing the agent’s state vector, numerous claims are made about the lookahead part’s role and
necessity. Consequently, the lookahead’s legitimacy has to be justified, which is realized by comparing
two types of agents’ performance on tens of thousands of randomly generated trajectories, while the
environmental seeds are fixed to ensure representativity. In this testing scenario, each agent takes the
same number of steps in the trajectory by starting from the exact point. The previously introduced reward
scheme evaluates each step, and this method goes for all courses. Table 3 shows the average cumulated
reward and the share in failed episodes for all two agents types.

Table 3. Statistic performance of algorithms with and without lookahead sensor information.

DQN PG PG without Lookahead

Average cumulated reward [-] 407 420 381
Share in failed episodes [%] 3.2 3.43 18.14

The percentage of the agent which does not use lookahead is approximately six times higher than
the one that does, and obviously the average cumulated reward reflects the same. To understand what is
lacking, the assessment has to go beyond statistics. Figure 6 presents different scenarios to give an intuitive
sense of the two types of agents’ operation and their differences. The agent that does not use the full sensor
information operates as an improperly tuned controller that overshoots. Therefore, it can not prepare
for a sharper turn in the trajectory because it misses the right time to act. Consequently, it significantly

Appl. Sci. 2020, 10, 7171 16 of 25

deviates from the centerline in sharp turns. Moreover, the agent can not hold the vehicle in the lane in
many cases. In the meantime, the agents with lookahead deliberately start to deviate from the centerline
to hold the vehicle in the lane, which means that they learned how to react if the trajectory ahead of the
vehicle evolves in a certain way. In some sense, this behavior can be interpreted as seeing beyond a local
optimum and choosing a global one instead.

The tree search algorithm’s operation time is introduced as a major concern since a tree search has to
be carried out in every step to choose from the possible actions. Therefore, it is crucial to find the right
trade-off between the appropriated planning time and performance for the pure MCTS algorithm because
the proper amount of lookahead is a necessity when sharp turns or turn combinations are ahead of the
vehicle. In the original set-up, the MCTS algorithm uses the same 0.1 s time step as the environment.
In such control tasks, a 5 s lookahead can be considered as a minimum for accurately controlling the
vehicle. Consequently, a 50-layer deep tree has to be built in every step to reach the required 5 s lookahead.
Unfortunately, this amount of planning can not be carried out in every step because the computational
resources are lacking. Thus, a different strategy is formulated where the MCTS’s time step is changed to
0.5 s. This approach significantly reduces the required planning time by reaching the desired depth in
the tenth layer. It also gives an intuition that the direction of the next action matters more than the exact
steering angle because the state-space created by the MCTS differs from the environment’s state-space
ahead of the vehicle. Still, it controls the vehicle in the right fashion. This concept enables to reduce
the number of populated nodes, while the algorithm can act on time and take sharp turns and turn
combination. Table 4 shows the average cumulated reward and a share in failed episodes for the MCTS
with 0.1 s and 0.5 s step sizes where both algorithms get the same planning time and the same courses to
drive on.

Table 4. Statistic performance of Monte Carlo tree search (MCTS) with 0.1 s step size and MCTS-I with 0.5 s
step size.

MCTS-I MCTS

Average cumulated reward [-] 301 442
Share in failed episodes [%] 36.4 3.8

The difference between the average scores is tremendous, just as the gap between the share in failed
episodes, where the MCTS-I algorithm’s percentage is almost ten times higher than the modified MCTS’s.
These results suggest that this new approach is beneficial and enables using such an algorithm on a
high-performance level.

In the training of a neural network with SL, the most critical step is data preparation. First, all the x
input vectors have to be normalized, which means it has to be done in all training samples. It is hugely
influential since it helps avoid numerical problems such as vanishing and exploding gradients and makes
the optimization problem better conditioned, which means less tuning can be enough. The representation
of all classes equally is also a key component in reaching the highest possible accuracy. It is also essential
to filter the training samples because there are episodes where the MCTS fails to hold the vehicle in the
lane. Hence theses experiences are omitted. Finally, the training dataset also has to be shuffled to maintain
the classes’ equal representation in every batch. The hyperparameters such as the learning rate, batch size,
and number of epochs are chosen with trial and error.

Appl. Sci. 2020, 10, 7171 17 of 25

PG
DQN
Without lookahead

PG
DQN
Without lookahead

PG
DQN
Without lookahead

PG
DQN
Without lookahead

Figure 6. Comparison of Agents with and without lookahead information.

4.1. Statistical Comparison

Before starting to compare the performances, the convergence of both RL algorithms has to be
evaluated. Figure 7 shows the convergence of the PG and DQN algorithms. The PG converges
faster and a more stable manner than the DQN algorithm, and it also reaches a higher average score.
Therefore, the PG algorithm seems superior by any measure. Consequently, the same relation is expected
between the performances.

In the statistical comparisons, all the algorithms have to take five hundred steps starting from the
same position on the exact ten thousand episodes, which are ensured with environment seeds to hold
up representativity. Figure 8a shows the performance of both the MCTS and SL algorithms through the
frequency of cumulated rewards collected into ten-point wide intervals. MCTS scores at least 450 points in
86% of the episodes, which means its performance is 90% or higher, while it is only true the 70% of the
SL’s episodes. In the meantime, the SL algorithm has a considerably higher share in failed episodes than
the MCTS algorithm has. Still, looking at the overall performance and the similarities in the characteristics
suggests that the training of the SL agent is successful. It is interesting, though, that the MCTS algorithm can
not solve all the episodes. This phenomenon is caused by the trade-off between performance and planning
time. The MCTS’s share in failed episodes can be decreased to zero, but it would cost unreasonably much
planning that would seriously question the utilization of such an algorithm for this particular control task.

Appl. Sci. 2020, 10, 7171 18 of 25

0 20000 40000 60000 80000 100000
Episodes

0

25

50

75

100

125

150

175

200

Cu
m

ul
at

ed
 R

ew
ar

d

PG
DQN

Figure 7. Convergence of PG and DQN algorithms.

The statistical comparison of the PG and DQN algorithms in Figure 8b confirms the expectations.
The PG algorithm reaches a higher performance level as it has a greater share in the best possible scores
then the DQN does. However, the DQN share in failed episodes in slightly lower than the PG’s. Therefore,
it performs better in some sense. By comparing to Figure 8a, RL-based solutions can not reach the
performance level of the MCTS or SL, but in terms of failed episodes, the RL-based solutions perform
better. The relation between the RL’s and MCTS’s performance yields that the combined algorithm can
synergize the advantages to mitigate the weaknesses to overperform both its ancestors.

Figure 8c,d presents the performance of the two new algorithms, which are the combination of RL
and MCTS. The Planner-I algorithm’s performance is shown in Figure 8c, where it is compared to its
ancestors. The Planner-I algorithm boosts the performance of the PG algorithm and pushes it closer to the
performance level of MCTS. In the meantime, it decreases the share in failed episodes nearly to the half of
the MCTS’s share, while it is also lower than the PG’s share. Compared to the SL, it performs above 90%
in only 60% of the episodes, which is slightly lower, but SL’s share in failed episodes is five times higher.
Therefore, the overall performance is better than the SL agent. The Planner-II algorithm realizes the same
characteristics, but it comes closer to the performance of MCTS than Planner-I does. Compared to MCTS’s
86%, it scores above 90% in 79% of the episodes, and its share in failed episodes is less then MCTS’s, but it
is higher than the share of Planner-I. Compared to SL, the Planner-II’s performance is better in the region
above 90%, and its share in failed episodes is more than three times lower.

For further comparison, all the algorithms average cumulated reward and share in failed episodes
are presented in Table 5, where MCTS-II refers to the pure MCTS with the same planning time that is
appropriated for the Planner-I and Planner-II algorithms.

Appl. Sci. 2020, 10, 7171 19 of 25

0%
5%

10%
15%

20%
25%

30%
35%
40%

45%
50%

0
32

0
33

0
34

0
35

0
36

0
37

0
38

0
39

0
40

0
41

0
42

0
43

0
44

0
45

0
46

0
47

0
48

0

Fr
eq

ue
nc

y [
%

]

Cumulated Reward

MCTS Supervised Learning

(a) MCTS and SL

0%

5%
10%
15%
20%
25%
30%

35%
40%
45%
50%

0
32

0
33

0
34

0
35

0
36

0
37

0
38

0
39

0
40

0
41

0
42

0
43

0
44

0
45

0
46

0
47

0
48

0

Fr
eq

ue
nc

y [
%

]

Cumulated Reward

PG DQN

(b) PG and DQN

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

0
32

0
33

0
34

0
35

0
36

0
37

0
38

0
39

0
40

0
41

0
42

0
43

0
44

0
45

0
46

0
47

0
48

0

Fr
eq

ue
nc

y [
%

]

Cumulated Reward

PG Planner-I MCTS

(c) PG, Planner-I and MCTS

0%
5%

10%
15%
20%

25%
30%
35%
40%
45%
50%

0
32

0
33

0
34

0
35

0
36

0
37

0
38

0
39

0
40

0
41

0
42

0
43

0
44

0
45

0
46

0
47

0
48

0

Fr
eq

ue
nc

y [
%

]

Cumulated Reward

PG Planner-II MCTS

(d) PG, Planner-II and MCTS

Figure 8. Comparison of the algorithms’ performance on the long run.

Table 5. Statistic performance of all the algorithms.

MCTS MCTS-II MCTS-I PG DQN PG-II Planner-I Planner-II

Average score [-] 442 395 301 420 407 380 435 437
Failed episodes [%] 3.8 15.1 36.4 3.43 3.2 18.14 2 3

The MCTS-I that does not utilize the introduced concept about the step sizes has the absolute worst
performance by all measures. The MCTS-I is followed by the PG-II, which does not utilize the lookahead
sensor information part as other agent does. This part of the ranking justifies the paper’s side contributions
about the state vector for RL and the modifications in MCTS since the algorithms that do not utilize
the mentioned concepts are got stuck on a mediocre performance level. The next algorithm in line is
the MCTS-II, which does not utilize RL in the node selection procedure. The performance of MCTS-II
highlights the importance of the integration of RL into MCTS’s node selection procedure as this is the only
difference compared to the new algorithms. In the meantime, the average score of MCTS-II is not even
close to the scores of the new algorithms, not to mention the share in failed episodes, which is seven times
more compared to Planner-I and five times to Planner-II. The average score of pure ML-based methods
such as the DQN, PG, and SL algorithms is close to each other, but the RL based methods have a lower
share in failed episodes. Therefore, overall, RL outperforms SL. Both of the new algorithms enhance
PG’s performance, which can be observed by comparing the average scores, and decreases the number of
failed episodes. Compared to MCTS, both of the new algorithms decrease the number of failed episodes,
and they come close to the average score of MCTS, but they can not reach it. However, both new algorithms

Appl. Sci. 2020, 10, 7171 20 of 25

have a feature that exceeds MCTS, which is real-time applicability. In conclusion, the synergy between RL
and MCTS has resulted in algorithms that enhance RL’s performance and hone MCTS in terms of failed
episodes, while they maintained real-time applicability.

4.2. Strategic Comparison

Statistical comparison is an excellent way of presenting results, but unfortunately it cannot put the
means behind the numbers. Thus, to do so, a strategic comparison is carried out, which reveals the
reasons that formulate the statistical results. Figure 9 presents one complicated and one simple section
of a trajectory. The planning and training based controllers are separated for clarity. The comparison of
the agents for the complicated situation is displayed in Figure 9a. In this figure, the PG algorithm carries
out an exciting behavior before taking turns. Notably, it slightly deviates from the centerline to prepare
for the turn, to hold the vehicle on the centerline during the turn. This behavior seems wise, but in turn
combinations it stays on the outer path and misses the right time to act, which results in a significant
overshoot at the exit of the turn combination. Consequently, it finds an excellent strategy for entering into
a turn, but not for exiting it. In the meantime, DQN and SL choose similar strategies both for entering and
exiting the turns. They cut the turns from the inner path. The difference is that the DQN agent cut the
corner more firmly than SL does, and it tries to go back to the centerline immediately. The reason for this
is in the utilization of the lookahead. The SL agent is trained with the dataset generated with the MCTS
that considers the entire lookahead in every step, while the DQN algorithm gets a hundred thousand
episodes to figure out how to use it. Consequently, the SL agent behaves like considering the whole turn
combination, not just the next turn. However, at the end of the turn, the SL still misses the right time to act,
which results in the same deviation as the DQN does. This behavior can be interpreted as a flaw in the
generalization of the experiences during the training process. At the bottom of Figure 9a, it can be seen
that the SL agent quickly goes back to the centerline after the deviation, while DQN seems to stay deviated,
and PG endeavors to go back but more slowly. This behavior is observed several times; therefore, it may
be why the DQN reaches the lowest average cumulated reward from all the trained ML-based agents.

Figure 9c presents the strategic comparison of all the algorithms that use planning. MCTS-II
is the same as the pure MCTS, but the provided planning time is identical to the new algorithms.
Its trajectory shows that the made decisions lack the wisdom of a deep tree that covers the turn combination.
Consequently, it cannot hold the vehicle in the lane. The new algorithms’ style and strategy show the
PG algorithm’s marks, mostly in the entering of the turn. In the meantime, planning’s impact is also
remarkable, as the overshoot of the new algorithms is considerably lower than the pure PG’s. It is
interesting, though, that Planner-I has a lower overshoot than Planner-II since it uses the PG to determine
the nodes’ value, which is definitely a more substantial impact on the UCT algorithms final value than
the regularization of the explore component. This phenomenon shows the effect of the backpropagation
on changing the firstly assigned values of the nodes. The PG algorithm naturally has a bigger overshoot.
Consequently, Planner-I reaches the edge of the lane in earlier steps during the search, and it finds out
the flaws of the PG’s strategy, so it has more steps to interfere. In the meantime, the UCT algorithm of
Planner-II utilizes a different synergy between RL and MCTS, where RL has a lower impact, which in
this particular case, prevents the algorithm from finding the flaws in PG’s strategy on time. The MCTS
algorithm’s trajectory shows that the depth of its tree is proper since both the entering and the exiting of
the turn combination are precise. Despite the end of the turn combination, the trajectory of the MCTS
shows the same style marks as the SL does, which reassures the previously introduced ideas about the
SL’s strategy.

Figure 9b,d presents a much simpler trajectory section to shows how the algorithms behave in
ordinary scenarios. In Figure 9b, the ML-based agents are compared. All the agents have the same

Appl. Sci. 2020, 10, 7171 21 of 25

behavior as in the more complex case presented in Figure 9a, but the strategical differences seem less
significant. Still, PG uses the outer path at the beginning of the turn to stay on the centerline. Since the
turns are less sharp, the deviation at the end of the turn is marginal. The same goes for the strategy of the
DQN and SL agents. They cut the turns from the inner path. However, in this particular case, the DQN
agent cuts the turns more accurately than the SL. The planning based algorithms for the simpler trajectory
section are presented in Figure 9d. The effect of the PG on the new algorithms is still recognizable, but as in
the previous case, the deviations from the centerline are less significant, and in this section, the behavior of
Planner-I and Planner-II are very similar. Therefore, the effect of the differences in the UCT algorithm can
mostly be observed in sharper turns. In the meantime, MCTS holds the vehicle precisely on the centerline
between turns and deviates from it as less as possible and only if it is necessary.

SL
PG
DQN

(a) SL, PG, and DQN on sharp turn
combination

SL
PG
DQN

(b) SL, PG, and DQN on easy path

Planner-II
Planner-I
MCTS
MCTS-II

(c) Search based solutions on sharp turn
combination

Planner-II
Planner-I
MCTS

(d) Search based solutions on easy path

Figure 9. Strategical comparison of the algorithms on various trajectory sections.

Along with the presentation of the new algorithms, it is mentioned that the provided planning time is
remarkably decreased, and still by the integration of RL into the UCT algorithm, the selection procedure
becomes more efficient, which results in enhanced performance. However, it is hard to interpret what
happens inside the tree and what efficient node selection means. Figure 10 resolves this issue and supports

Appl. Sci. 2020, 10, 7171 22 of 25

the interpretation of used phrases by visualizing the tree built for a single decision. Figure 10a–c are
created in a sharp turn combination to see how the tree covers the lane ahead of the vehicle, where all
three algorithms starts the planning from the same position. All the subfigures have the max-path marked
with red color, which only reflects the suggestion of the currently carried out search where only the action
of the first step is realized since the tree search suggest one action at the time. Moreover, the vehicle’s
next position is not identical to the visualized node because the step size of the environment and the
MCTS is different, as mentioned previously. Consequently, the real trajectory can and will deviate from
the max-path. However, the MCTS’s max-path style has the highest possibility to become a reality, as it is
honed with the greatest amount of planning compared to the new algorithms. Figure 10a displays the
search tree built by the pure MCTS algorithm. The nodes with blue colors are the ones that the tree search
algorithm visited during the iterative planning process and the black ones that the algorithm populated.
The difference between the number of blue and black nodes shows the strength of the MCTS algorithm,
as it does not need to visit all the nodes to provide such great performance. By comparing Figure 10b,c
with Figure 10a, the effectiveness of the new algorithm’s selection procedure can be seen through the
depth of the different trees as the new algorithms can use nearly the same length of road section ahead
of the vehicle as MCTS uses in every decision. These figures also shows the paper’s main contribution
through the difference between the number of populated nodes. This visualization gives a great intuition
on how to interpret the effect of decreased planning time and highlights that despite the narrower tree,
the utilization of trained agents as heuristics prevents the algorithms from making bad moves. Moreover,
the new algorithms outperform pure MCTS in terms of failed episodes and real-time applicability.

Populated nodes
Visited nodes
Max path
Vehicle position

(a) MCTS

Populated nodes
Visited nodes
Max path
Vehicle position

(b) Planner-I

Populated nodes
Visited nodes
Max path
Vehicle position

(c) Planner-II

Figure 10. Search trees built by different algortihms.

5. Conclusions

This paper presents two new algorithms for the lateral vehicle control problem of a dynamic nonlinear
single track vehicle model in the form of lane-keeping, along with the in-depth statistical and strategic
comparison of six different ML and search-based algorithms. Two more side contributions are introduced:
one in the implementation of the MCTS algorithm and one in the formulation of the RL-agents state vector.
In the justification of these side contributions, the comparisons showed that both the modification of
MCTS and the state vector complied with lookahead information is necessary to utilize such sophisticated
algorithms on a high-performance level in massive control tasks. The new algorithms reformulate the
UCT algorithm to make the tree search’s node selection procedure more effective by utilizing RL as a
heuristic. The new synergy of RL and MCTS enhances RL’s performance and decreases the failed episodes,
belove the share of both MCTS and PG. Moreover, every other presented algorithms’ average performance
falls short of the performance of the new algorithms. The only measure where the new algorithms fail
to exceed MCTS is the average score, but they come close. However, the new algorithms can maintain

Appl. Sci. 2020, 10, 7171 23 of 25

real-time applicability, which seems a fair trade-off considering the slightly lower average performance.
Consequently, new algorithms overcome the overall performance of their ancestors. It is essential to
mention that no domain-specific cut-offs are utilized in the tree searches, which show that the introduced
new algorithms may be applied in a wild variety of control problems as its strength does not depend on
handcrafted features or domain-specific knowledge.

Author Contributions: Conceptualization, B.K. and T.B.; methodology, B.K.; software, B.K. and F.H.; validation, T.B.;
formal analysis, F.H.; investigation, B.K. and T.B.; writing—original draft preparation, B.K., T.B., and F.H.; visualization,
B.K. and F.H.; supervision, T.B. All authors have read and agreed to the published version of the manuscript.

Funding: The research has been supported by the National Research, Development and Innovation Office (NKFIH)
through the project “National Lab for Autonomous Systems” (NKFIH-869/2020). The research was also supported by
the Hungarian Government and co-financed by the European Social Fund through the project “Talent management in
autonomous vehicle control technologies” (EFOP-3.6.3-VEKOP-16-2017-00001).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish
the results.

Abbreviations

The following abbreviations are used in this manuscript.

ALVINN Autonomous Land Vehicle in a Neural Network
C-LSTM Convolution Long-Short-Term-Memory Neural Network
CNN Convolution Neural Networks
DDAC Deep Deterministic Actor-Critic
DDPG Deep Deterministic Policy Gradient
DL Deep Learning
DQN Deep Q Networks
IRL Inverse Reinforcement Learning
MCTS Monte-Carlo Tree Search
MDP Markov Decision Process
ML Machine Learning
PG Policy Gradient
RL Reinforcement Learning
SL Supervised Learning
UCT Upper Confidence bound applied for Trees
VAE Variational AutoEncoder

References

1. Deng, L.; Yang, M.; Qian, Y.; Wang, C.; Wang, B. CNN based semantic segmentation for urban traffic scenes
using fisheye camera. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA,
USA, 11–14 June 2017; pp. 231–236.

2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems 25; Curran Associates, Inc.: New York, NY, USA, 2012;
pp. 1097–1105.

3. Aradi, S. Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles. IEEE Trans.
Intell. Transp. Syst. 2020, 1–20. [CrossRef]

4. Kuutti, S.; Bowden, R.; Jin, Y.; Barber, P.; Fallah, S. A Survey of Deep Learning Applications to Autonomous
Vehicle Control. IEEE Trans. Intell. Transp. Syst. 2020. [CrossRef]

5. Pomerleau, D.A. Alvinn: An autonomous land vehicle in a neural network. In Advances in Neural Information
Processing Systems; Morgan-Kaufmann: Burlington, MA, USA, 1989; pp. 305–313.

http://dx.doi.org/10.1109/TITS.2020.3024655
http://dx.doi.org/10.1109/TITS.2019.2962338

Appl. Sci. 2020, 10, 7171 24 of 25

6. Pomerleau, D.A. Neural network vision for robot driving. In The Handbook of Brain Theory and Neural Networks;
Citeseer: Princeton, NJ, USA, 1996.

7. Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.;
Zhang, J.; et al. End to end learning for self-driving cars. arXiv 2016, arXiv:1604.07316.

8. Muller, U.; Ben, J.; Cosatto, E.; Flepp, B.; Cun, Y.L. Off-road obstacle avoidance through end-to-end learning.
In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2006; pp. 739–746.

9. Rausch, V.; Hansen, A.; Solowjow, E.; Liu, C.; Kreuzer, E.; Hedrick, J.K. Learning a deep neural net policy for
end-to-end control of autonomous vehicles. In Proceedings of the 2017 American Control Conference (ACC),
Seattle, WA, USA, 24–26 May 2017; pp. 4914–4919.

10. Mechanical Simulation Corporation. CarSim. Available online: https://www.carsim.com (accessed on 8 August 2020).
11. Eraqi, H.M.; Moustafa, M.N.; Honer, J. End-to-end deep learning for steering autonomous vehicles considering

temporal dependencies. arXiv 2017, arXiv:1710.03804.
12. Rothe, R.; Timofte, R.; Van Gool, L. Dex: Deep expectation of apparent age from a single image. In Proceedings

of the IEEE international conference on computer vision workshops, Santiago, Chile, 7–13 December 2015;
pp. 10–15.

13. Yu, G.; Sethi, I.K. Road-following with continuous learning. In Proceedings of the Intelligent Vehicles’ 95.
Symposium, Detroit, MI, USA, 25–26 September 1995; pp. 412–417.

14. Wang, P.; Chan, C.Y.; de La Fortelle, A. A reinforcement learning based approach for automated lane
change maneuvers. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China,
26–30 June 2018; pp. 1379–1384.

15. Dai, X.; Li, C.K.; Rad, A.B. An approach to tune fuzzy controllers based on reinforcement learning for autonomous
vehicle control. IEEE Trans. Intell. Transp. Syst. 2005, 6, 285–293. [CrossRef]

16. Desjardins, C.; Chaib-Draa, B. Cooperative adaptive cruise control: A reinforcement learning approach.
IEEE Trans. Intell. Transp. Syst. 2011, 12, 1248–1260. [CrossRef]

17. Huang, Z.; Xu, X.; He, H.; Tan, J.; Sun, Z. Parameterized batch reinforcement learning for longitudinal control of
autonomous land vehicles. IEEE Trans. Syst. Man, Cybern. Syst. 2017, 49, 730–741. [CrossRef]

18. Chae, H.; Kang, C.M.; Kim, B.; Kim, J.; Chung, C.C.; Choi, J.W. Autonomous braking system via deep
reinforcement learning. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6.

19. Zhao, D.; Wang, B.; Liu, D. A supervised actor–critic approach for adaptive cruise control. Soft Comput. 2013,
17, 2089–2099. [CrossRef]

20. Wang, B.; Zhao, D.; Li, C.; Dai, Y. Design and implementation of an adaptive cruise control system based on
supervised actor-critic learning. In Proceedings of the 2015 5th International Conference on Information Science
and Technology (ICIST), Changsha, China, 24–26 April 2015; pp. 243–248.

21. Hegedűs, T.; Németh, B.; Gáspár, P. Challenges and Possibilities of Overtaking Strategies for Autonomous
Vehicles. Period. Polytech. Transp. Eng. 2020, 48, 320–326. [CrossRef]

22. Xia, W.; Li, H.; Li, B. A control strategy of autonomous vehicles based on deep reinforcement learning.
In Proceedings of the 2016 9th International Symposium on Computational Intelligence and Design (ISCID),
Hangzhou, China, 10–11 December 2016; Volume 2, pp. 198–201.

23. Sallab, A.E.; Abdou, M.; Perot, E.; Yogamani, S. End-to-end deep reinforcement learning for lane keeping assist.
arXiv 2016, arXiv:1612.04340.

24. Qian, L.; Xu, X.; Zeng, Y.; Huang, J. Deep, Consistent Behavioral Decision Making with Planning Features for
Autonomous Vehicles. Electronics 2019, 8, 1492. [CrossRef]

25. Porav, H.; Newman, P. Imminent collision mitigation with reinforcement learning and vision. In Proceedings
of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA,
4–7 November 2018; pp. 958–964.

26. Kuderer, M.; Gulati, S.; Burgard, W. Learning driving styles for autonomous vehicles from demonstration.
In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA,
USA, 26–30 May 2015; pp. 2641–2646.

https://www.carsim.com
http://dx.doi.org/10.1109/TITS.2005.853698
http://dx.doi.org/10.1109/TITS.2011.2157145
http://dx.doi.org/10.1109/TSMC.2017.2712561
http://dx.doi.org/10.1007/s00500-013-1110-y
http://dx.doi.org/10.3311/PPtr.15848
http://dx.doi.org/10.3390/electronics8121492

Appl. Sci. 2020, 10, 7171 25 of 25

27. Ly, A.O.; Akhloufi, M.A. Learning to drive by imitation: An overview of deep behavior cloning methods.
IEEE Trans. Intell. Veh. 2020. [CrossRef]

28. Lin, Y.; McPhee, J.; Azad, N.L. Longitudinal dynamic versus kinematic models for car-following control using
deep reinforcement learning. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 1504–1510.

29. Fehér, Á.; Aradi, S.; Hegedüs, F.; Bécsi, T.; Gáspár, P. Hybrid DDPG Approach for Vehicle Motion Planning.
In Proceedings of the ICINCO 2019—16th International Conference on Informatics in Control, Automation and
Robotics, Prague, Czech Republic, 29–31 July 2019.

30. Pacejka, H. Tire and Vehicle Dynamics; Elsevier: Amsterdam, The Netherlands, 2005.
31. Hegedüs, F.; Bécsi, T.; Aradi, S.; Gáspár, P. Motion Planning for Highly Automated Road Vehicles with a Hybrid

Approach Using Nonlinear Optimization and Artificial Neural Networks. Stroj. Vestn. J. Mech. Eng. 2019,
65, 148–160. [CrossRef]

32. Thompson, W.R. On the likelihood that one unknown probability exceeds another in view of the evidence of two
samples. Biometrika 1933, 25, 285–294. [CrossRef]

33. Bush, R.R.; Mosteller, F. A stochastic model with applications to learning. Ann. Math. Stat. 1953, 24, 559–585.
[CrossRef]

34. Lattimore, T.; Szepesvári, C. Bandit Algorithms; Cambridge University Press: Cambridge, UK, 2018; in press.
35. Chaslot, G.M.B.; Winands, M.H.; van Den Herik, H.J. Parallel monte-carlo tree search. In International Conference

on Computers and Games; Springer: Berlin/Heidelberg, Germany, 2008; pp. 60–71.
36. Kocsis, L.; Szepesvári, C. Bandit based monte-carlo planning. In European Conference on Machine Learning;

Springer: Berlin/Heidelberg, Germany, 2006; pp. 282–293.
37. Browne, C.B.; Powley, E.; Whitehouse, D.; Lucas, S.M.; Cowling, P.I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;

Samothrakis, S.; Colton, S. A survey of monte carlo tree search methods. IEEE Trans. Comput. Intell. Games 2012,
4, 1–43. [CrossRef]

38. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press: Cambridge, UK, 1998; Volume 135.
39. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy gradient methods for reinforcement learning with

function approximation. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA,
2000; pp. 1057–1063.

40. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Mach. Learn. 1992, 8, 229–256. [CrossRef]

41. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.;
Bolton, A.; et al. Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]
[PubMed]

42. Bécsi, T.; Szabó, Á.; Kővári, B.; Aradi, S.; Gáspár, P. Reinforcement Learning Based Control Design for a Floating
Piston Pneumatic Gearbox Actuator. IEEE Access 2020, 8, 147295–147312. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIV.2020.3002505
http://dx.doi.org/10.5545/sv-jme.2018.5802
http://dx.doi.org/10.1093/biomet/25.3-4.285
http://dx.doi.org/10.1214/aoms/1177728914
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1038/nature24270
http://www.ncbi.nlm.nih.gov/pubmed/29052630
http://dx.doi.org/10.1109/ACCESS.2020.3015576
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Environment
	Vehicle Model
	Action Space

	Methodology
	Monte Carlo Tree Search
	Supervised Learning
	Reinforcement Learning
	Value-Based
	Policy-Based
	Planning Agents
	Planner-I
	Planner-II

	Operation of the Algorithms

	Results
	Statistical Comparison
	Strategic Comparison

	Conclusions
	References

