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Abstract: Osteotomy is a common step in oncological, reconstructive, and trauma surgery. Drilling
and elevated temperature during osteotomy produce thermal osteonecrosis. Heat and associated
mechanical damage during osteotomy can impair bone healing, with consequent failure of fracture
fixation or dental implants. Several ex vivo studies on animal bone were recently focused on
heating production during osteotomy with conventional drill and piezoelectric devices, particularly
in endosseous dental implant sites. The current literature on bone drilling and osteotomic surface
analysis is here reviewed and the dynamics of bone healing after osteotomy with traditional and
piezoelectric devices are discussed. Moreover, the methodologies involved in the experimental
osteotomy and clinical studies are compared, focusing on ex vivo and in vivo findings.

Keywords: bone healing; bone damage; bone injury; bone surgery; osteotomy; drilling; piezosurgery;
in vivo; ex vivo

1. Historical Background

Osteotomy consists of cutting the bone. In clinical practice, it is a surgical procedure in which
a bone is divided or a piece of bone is excised.

Specifically, bone cutting techniques can be classified into two types: osteotomy that requires
a full-thickness division of the bone and corticotomy in which only the bone cortex is divided with
preservation of the periosteal and endosteal layers [1].

Osteotomy is an ancient surgical skill dating back to Hippocrates circa 415 BC, who used a new
fracture to improve the alignment of a previously angulated humerus because of trauma [2].

Corticotomy was first described by Ilizarov in the 1950s as a low-energy division of the bone
cortex preserving both the periosteum and the medullary vascularization in order to increase bone
neoformation and elongation [3] (hereinafter referred to as distraction osteogenesis). Since then, several
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osteotomy procedures have been developed for deformity correction or bone lengthening—in particular,
by De Bastiani et al. during the 1980s [2].

In 1991, Paly and Tetsworth introduced the percutaneous Gigli saw technique, also known as
the Afghan technique, as a new procedure for performing minimally invasive low-energy osteotomies
in long bones that leaves a very smooth cut, especially important for rotational correction [2,4,5].
Shortened duration of surgery, minimal soft-tissue damage and periosteum preservation make this
technique one of the most recommended still today [4,6,7]. According to our experience, however,
a low level of consistency between planning and execution characterizes the geometry of the osteotomy
plane by Gigli saw, because of the intrinsic poor control of the device with complex angulations.

Later, motorized rotatory and oscillating cutting tools were developed, which have greatly
simplified the surgical performance, allowing a precise and direct cut. Nevertheless, power saw
osteotomies have several disadvantages, such as the requirement for a relatively large open exposure,
the risk of tissue overheating resulting in possible thermal necrosis and soft tissue trauma.

In order to reduce these complications, ultrasound-based osteotomy techniques (Piezosurgery®)
have been developed in recent years [8]. In particular, its development was encouraged by the need
for high levels of precision and safety in bone surgery compared with that achieved by standard bur
and saw instruments [9].

Parallel to the latter method, interest in the possibility of applying lasers to surgical osteotomies
has also grown in recent years. In general, several studies have shown that the advantages of laser
osteotomy are numerous, such as sterilization of the operative field (bactericidal effect) and simultaneous
hemostasis during the cut, resulting in less bleeding and risk of infections, less post-operative pain
and edema, faster recovery, need for smaller surgical access and limited scarring [10]. The Er:YAG
laser, in particular, would seem to minimize the thermal damage of the bone and surrounding tissues
(5 µm) [11] and promote faster healing due to the osteoinductive effect, as well as allowing a very
precise cut and minimal invasiveness [12,13].

2. Osteotomy in Clinical Practice

According to Giraud et al. [14], osteotomies can be classified based on four criteria:

• End result
• Type
• Approach
• Incision site

The “end result” means the reason for performing the osteotomy, which can be specified as
follows: (a) excision osteotomy for removal of a pathological piece of bone; (b) reparative osteotomy
for anatomical correction and (c) osteotomy for approaching purpose, which consists in cutting a bone
that obstructs access to the main operation site (for example, the tumor site) and then repositioning it
in its anatomical location.

The “type” of osteotomy corresponds to the figure of the cut, for each of which a specific tool
is designed.

Subperiosteal and extraperiosteal are the possible “approaches” to osteotomy, whereas the
“incision site” localizes the bone region cut in long bones (epiphyseal, metaphyseal or diaphyseal) or in
short/flat/irregular bones (carpus, skull, vertebrae, facial bones, et al.).

The goal of osteotomy surgery varies according to the surgical field considered.
Osteotomy or bone cutting is a widely standardized surgical procedure used for multiple purposes

such as allowing access to malignancies, removing pathological bone fragments or realigning deformed
bone segments.

Similarly, bone drilling is a complementary surgical technique mainly used in fracture
fixation, allowing screw insertion [15]; moreover, it represents an essential step in joint [16] and
oral [17] implantology.
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In orthopedic surgical correction of skeletal anomalies, osteotomies are performed broadly for
two purposes: a simple osteotomy to acutely realign the axis of the bone and those techniques which
allow bone lengthening or bone transport [2]. In orthopedic surgery, a short healing time is particularly
important to avoid functional long-term complications (malconsolidation) [18].

In oncological and reconstructive surgery, osteotomy is commonly a mandatory step to access and
remove bone or extraosseous malignancies as well as to grant both functional and aesthetic satisfactory
reconstruction outcomes.

Most of the head and neck carcinomas involving the jaws require surgical osteotomy followed by
adjuvant radiotherapy or concomitant chemoradiotherapy [19]. The effects of radiation on bone are
well known and include alterations in the mineralized structure, alterations in the biomechanics of
the collagen structure, a decrease in the number and qualitative osteogenic cell activity and cytokine
alterations resulting in bone remodeling delay and damage [19]. However, few studies have focused on
primary reconstruction followed by early irradiation but many of the currently available experimental
models seem to be altered by radiation [19]. In the surgical reconstruction of mandibular bone
defects with biomaterials, the early administration of radiation would seem to favor reabsorbing
phenomena [20]. Similar experimental results on animal models have been found in the field of dental
implantology [21,22]. Schon et al. [23] observed both significant quantitative and qualitative bone
alterations with delayed initiation of bone formation after irradiation.

To guarantee cancer patients to receive adjuvant radiotherapy within the recommended times, it is
important to achieve a good degree of bone healing in a short time after oncological and reconstructive
surgery. In fact, considering that the normal time for secondary bone callus formation is around 4–6
weeks [24] and adjuvant radiotherapy should be ideally started within 42 days after surgery, it is easy
to understand how a delay in bone healing implies a worse oncological prognosis [25].

3. Osteotomy-Related Tissue Damage

All surgical practices potentially expose the bone and surrounding tissues to damage. In particular,
the tissue insult is mainly due to the heat produced by the friction generated between the osteotome
saw or the drill bit and the bone [15].

It has been well established that, if the temperature exceeds the universally accepted danger
threshold of 47 ◦C for 1 min or more, thermal necrosis can be produced [15,16,26–28]. As the
temperature and/or duration of the cutting procedure increases, the severity of the damage improves
up to irreversibility [15,28].

Thermal osteonecrosis substantially consists in bone cell death and subversion of endosteal
architecture [27]. Specifically, immediate (within a few minutes) and delayed (within a few hours)
effects of thermal shock can be recognized: the former consists of swelling and destruction of cell
membranes and coagulation, with relative loss of blood flow leading to cell necrosis, whereas the latter
refers to the activation of cellular signaling pathways that lead to apoptosis [27,28]. In both cases, an
inflammatory response is always associated. The direct consequence of these events is the resorption
of the bone around the screws or implants and its replacement with fibrous connective tissue [28].

Regarding the factors that influence the extent of heat production, there is currently widespread
consensus that the main parameter is rotational speed; therefore, a higher speed number (≥3000 rpm)
results in higher damage in terms of osteonecrosis [15]. Also relevant in this field are the drilling depth,
the bone density and cortical thickness [29], the diameter of the drill bit and the pressure applied [30]
and finally the one-step or graduated method of drilling [31,32].

Thermal osteonecrosis largely influences the patient’s postoperative outcome, possibly causing
screw-mediated bone fixation failure, nonunion or malunion, infections [27], implant loss and
delayed healing [33].

Reasonably, cooling during surgical osteotomies or drilling procedures appears mandatory to
avoid these complications. In this context, external irrigation with saline is the most common method
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adopted since Matthews and Hirsch have broadly demonstrated that it is the most effective cooling
method of limiting excessive thermal increase [30].

To date, histology has represented the gold standard for the study (Table 1) of heat-related bone
tissue necrosis since it allows an in situ analysis of the cells composing it [34]. Histomorphologically, the
assessment of the extent of osteonecrosis is based on the osteocyte condition in the bone lacunae [15,35];
in fact, the death of these cells in the pathological bone is documented by the empty appearance of the
lacunae [35]. Bentolila et al. found that osteocyte damage develops through four stages: (1) normal
osteocyte, (2) shrunken osteocyte, (3) osteocyte with pyknotic nucleus and (4) empty lacunae [36].

Table 1. Main investigations for heat-related bone tissue necrosis.

Cytology and Histology Molecular Biology and
Biochemistry Physics

Histologic parameters

• cell composition
• blood clot and vessels
• connective tissue, bone neoformation,

microcracks, lacunae, bridges

PCR
BMP, Wnt, osteogenesis,
inflammatory cytokines,
apoptosis, growth-factors;
Hsp70

Temperature rise

• thermocouples
• infrared thermography
• thermosensors
• fiber optic thermometer

Histomorphometric
and Micromorphometric Analysis

ELISA
test on the perisulcular fluid to
search for RANKL and OPG
levels

Micro-CT

Immunohistochemistry

• VEGF, CAS3, OPG, RANKL, OC, NADH2
and NADPH2, diaphorase activity

CBCT

Scanning electron microscopy (SEM) Laser 3D scanning

Transmission electron microscopy (TEM) Laser profilometry

Intravital microscopy

BMP: Bone Morphogenetic Protein.

However, it has recently been shown that histological/histomorphological investigation techniques
do not allow us to grasp the micro-mechanical damage induced by bone cutting surgeries within the
drilled sub-surface. Using micro-mechanical investigations such as compression and tensile tests and
microhardness, it has been revealed that micro-mechanical bone damage assessment is particularly
important [37]. It is plausible that high temperatures during surgical cutting or drilling imply greater
damage also in terms of elastic and plastic property alterations of the surrounding non-necrotic
bone tissue.

Considering that the bone remodeling process closely depends on the applied functional loads [38],
the lower mechanical resistance together with the thermal necrosis could have significant repercussions
for the post-surgical healing of osteotomies.

Finally, it is necessary to underline that micro-crack (micro-fractures) formation in the adjacent
bone to the cutting or drilling site constitutes another possible complication to consider [39] in clinical
practice. The consequence can be prosthetic or bone failure. This risk would appear to be greater if
blunt/worn tips are used [16,40].

4. How Bone Healing Occurs after Bone Injury

Bone healing is the process that restores the anatomy and function of bone after injury (fracture or
osteotomy); it can be divided into primary and secondary healing based on differences in the mobility
between the fracture fragments [41,42].

Primary healing happens when bone injured surfaces are juxtaposed and fixed through surgery
and bone remodeling through the original fracture line leads to bone healing. Secondary healing takes
place in all other circumstances and is usually divided into four stages that partially overlap each other.
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The first stage is called the “inflammatory stage”: after injury, bone blood vessels release blood
within the fracture site and hematoma develops between bone fragments. This lasts a few days
and is characterized by pain and swelling. The lack of blood supply to adjacent bone leads to bone
necrosis that is characterized histologically by empty osteocyte lacunae. After blood clot formation,
cytokines (such as PDGF, TGF-β1, VEGF, PGE1 and E2) released from platelets and mast cells stimulate
neoangiogenesis and the formation of a granulation tissue that replaces the blood clot. Mononuclear
phagocytes derived from new vessels assist the removal of necrotic bone and blood clots and aid
the construction of the soft callus that will follow. Macrophages are also believed to play a fundamental
role in fracture repair since they secrete several growth factors, such as fibroblast growth factor (FGF)
that initiates fibroplasia both in soft tissue as well as in bone repair [43].

The second stage is called the “soft callus stage”: it is characterized by a fibrous tissue whose cells
are derived from endosteum, periosteum, bone marrow and adjacent soft tissues. From this stage on,
a recapitulation of bone histogenesis occurs, leading to the third stage, called the “hard callus stage”,
whose progression strictly depends on the presence of blood supply.

If a good blood supply is present, new osteoblasts differentiate and start to lay down the bone matrix
during “intramembranous ossification”. During intramembranous ossification, both in physiological
organogenesis and in pathologic conditions, it has been demonstrated for the first time [8,44–47] that
two different processes of bone formation exist, occurring in sequence, named static osteogenesis (SO)
and dynamic osteogenesis (DO). SO is characterized by pluristratified cords of “stationary” osteoblasts
which differentiate by inductive stimuli [48–51] at roughly constant distance from the capillaries
(without moving during their transformation into osteocytes from the differentiation site); otherwise,
DO is performed by the typical monostratified laminae of “movable” osteoblasts. The following events
occur in sequence: firstly, variously polarized stationary osteoblasts (irregularly arranged inside cords)
give rise, in the same place where they differentiate, to osteocytes (clustered within confluent lacunae),
thus allowing the formation of preliminary thin trabeculae made up of woven bone that, due to their
too-high cellularity, are not effectual from a mechanical viewpoint. Afterwards, along the surfaces of
the SO-trabecular preliminary framework, dynamic osteogenesis occurs, which is mostly involved in
filling primary haversian spaces, thus giving rise to primary osteons. DO-bone consists in lamellar
bone which is mechanically more resistant compared to SO-trabecular bone, since it is less cellularized
and arranged in a more orderly pattern; moreover, it occurs in relation to mechanical stimuli, instead
of inductive vascular-derived factors (as occurs for SO).

On the contrary, if a blood supply deficiency occurs, thus leading to low local oxygen rate, cartilage
may form within the fibrous tissue; eventually, the cartilage, after hypertrophy and calcification, will
be replaced by bone, as in endochondral ossification. In the case of bone repair by endochondral
ossification, SO never seems to take place. In fact, the osteoblasts in contact with the remnants of
the calcified cartilage are directly arranged in movable laminae [52] and all appear to be functionally
polarized in the same direction, i.e., toward the calcified cartilage. Thus, in endochondral ossification,
DO is not preceded by SO.

At the end of the third stage, independently of the type of ossification (intramembranous or
endochondral), the new bone that bridges the bone fragments is usually wider than the original
bone profile. Once mechanical integrity has been re-established, the “remodeling stage” of the hard
callus takes place. This represents the last stage of bone healing, which may lead to the recovery
of the original anatomical shape. The balanced action of osteoclastic resorption and osteoblastic
deposition is governed by Wolff’s law and modulated by piezoelectricity, a phenomenon in which
electrical polarity is created by pressure exerted in a crystalline environment [53].

5. Which Animal Model Is Suitable for Bone Investigation of Osteotomic Effects?

A great variety of animal models are present in the scientific literature (Table 2) for investigations
of bone effects after osteotomy. As shown in Table 2, there are many similarities and differences
regarding bone parameters concerning animal species, and between animals and humans, at the
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same time. As if it were an aphorism, we can say that the animal model that most resembles human
bone features is . . . the human being! In fact, no animal can perfectly mimic all the static and
dynamic human bone characteristics [54]. Given the obvious ethical implications, studies of bone
healing or bone damage on humans are very difficult. Nevertheless, investigations can be done by
an indirect evaluation—for example, observing the biochemical values in the peri-implant sulcular
fluid, the radiologic exams or certain protein (such as Hsp-70) expression in bone specimens collected
immediately after an osteotomy [55,56].

Table 2. Main animal models for bone healing investigation [54,57–65].

Animal Bone Microscopic and
Macroscopic Features

Bone Composition
and Remodeling Animal Management Best Type of Study

Rodents

Mainly primary bone
in long bone cortices

and minimal
cancellous bone.

Cortices are thin and
fragile.

Limited cortical
remodeling and

non-Haversian-type
remodeling. Limited

secondary osteon
formation. Higher

bone healing capacity
in craniofacial bones.

Cheap and easily
manageable. Rats are
more docile and social

than mice, although
the latter are cheaper

to house and maintain.

Osteoinduction.
Cartilage regeneration

potential. Bone
infection. Extraoral
surgical approaches.

Rabbit

Cortices are fragile and
there is less cancellous
bone than in humans.
Quick achievement of

skeletal maturity.
Small size. Lack of
biomechanical data.

Dense Haversian bone.

Similar bone density to
human. Bone

metabolism is similar
to human, with
Haversian-type

remodeling, although
with a higher rate than

humans.

Availability, housing
and handling are easy.

Cage confinement
might worsen their

bone healing
capability.

Muscolo-skeletal
research. Bone

implants. Modeling of
vertebral fracture
repair. Extraoral

surgical approaches.

Sheep

High trabecular bone
density. Good body

weight. Different bone
microstructure than

humans. Big difference
between young and
mature sheep due to

age-dependent
changes in bone

structure.

Similar bone healing
capability to humans.
Different remodeling

processes.

Although docile, their
size requires a lot of

space.

Orthopedic research.
Bone filler materials in

cranial osteotomies.
Extraoral surgical

approaches.

Goats

Good size. Presence of
Haversian systems in

the tibia, except for the
caudal part.

Similar bone healing
potential. Similar bone

composition.

Docile and tolerant to
environmental

conditions. A lot of
space is needed.

Bone filler materials in
cranial osteotomies.
Extraoral surgical

approaches. Cartilage,
ligaments and menisci

regeneration.

Pig

Plexiform bone, which
shifts to dense

secondary osteonal
bone. Good

development of the
Haversian system,

with medium canals.
Similar to humans.

Similar bone density
and bone mineral

concentration. Similar
bone remodeling.

High body weight and
aggressive nature.

Extra- and intraoral
approaches.

Osteonecrosis surgery.
Osteogenic

regeneration materials
in craniofacial bones.

Dental implants.
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Table 2. Cont.

Animal Bone Microscopic and
Macroscopic Features

Bone Composition
and Remodeling Animal Management Best Type of Study

Dog

Similar cancellous
bone to humans.

Presence of secondary
osteons with small

canals. Thinner
articular cartilage.

Variability of
trabecular bone

remodeling depending
on site, age and

species.

Docile, easy handling.
Good size.

Dental implants and
peri-implantitis.

Non-human
primates Close to humans. Comparable to

humans.

Difficult to handle and
highly trained staff are

needed.
Bone implant.

However, animal models are invaluable in the study of bone healing (Table 3). The European
Commission stressed their central role and “the three Rs” have been established as the fundamental
pillars of animal experimentation:

• Reduction: the number of animals involved must be the lowest necessary to achieve
scientific evidence;

• Refinement: animals’ suffering must be kept to a minimum;
• Replacement: if it is possible, a non-animal-based study is preferred [66,67].

Table 3. Advantages and disadvantages according to different times of euthanasia in animal models.

Advantages Disadvantages

Ex vivo

Low costs
No need for ethical approval

Amount of information on bone damage
Reproducible conditions

Large numbers

Only hypotheses regarding
possible clinical correlations

Less realistic setting

In vivo and
immediate

sacrifice

Evaluation of bone damage in an in vivo scenario
Possibility to obtain baseline results to compare

with delayed sacrifice in in vivo results

Impossible to perform bone
healing evaluations
Intermediate costs

In vivo and
delayed sacrifice

Bone healing evaluation, with the possibility to
obtain both static and dynamic evaluation of

osteotomic gap
Wide range of parameters to be analyzed

Closer to clinical setting in humans

High costs
Small numbers

Small animal to respect animal
testing hierarchy and ethics on

animals

These rules are imperative for an in vivo animal model. As far as the last point (replacement)
is concerned, it has to be said that ex vivo studies (with bone segments provided by commercial
slaughter) are suitable to evaluate osteotomic bone damage. Some authors also proposed artificial
bone specimens derived from bovine bone due to its thermal conductivity, which is similar to human
bone [68,69]. Altogether, a cost-benefit evaluation of the considered experimentation has to prove
the potential for progress in human or animal health over the damage caused to the animals [54].
According to our experience, study-specific criteria must be considered as well. The aspects to take
into consideration are:

• The type and the aim of the study
• The osteotomy device used.

The aim of the study has a central role in the correct choice of animal model: when the purpose is
to study the osteointegration of endosseous dental implants, its size has to comply with animal and
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bone-specific principles [59]. The same rule must be applied to the choice of osteotomy device: a large
device must be used on adequately sized bones.

Together with these general principles, the choice of a proper animal model has to be influenced
by other animal-specific criteria for bone:

• The specific bone site and its characteristics (femur, tibia, calvaria, mandible, vertebra)
• Bone macroscopic and microscopic features, including size and biomechanical properties
• Bone composition and density
• Bone turnover rates
• Specific conditions for bone healing, such as the critical size defect
• Costs and aspects regarding the management of the animal (including acquisition costs, housing

costs and the need for specifically trained staff).

In particular, the economical and managerial aspects of animal experimentation have to be
underlined. If a small animal model is possible, a larger animal model is to be considered unjustifiable
according to Ethics in Animal Research Guidelines: (i) small animals before larger ones have to
be selected to respect the animal testing hierarchy (European Communities Council Directive of 23
September 2010 [2010/63/EU]; (ii) compliance must be ensured with the Italian laws for the protection
of animals used for scientific purposes (Decree Law No 61 of 4 March 2014) [70].

A particular animal can be highly suitable for a study because of its bone features, but there might
not be a funding, logistic or training basis to proceed to the experimentation. At the same time, small
animals such as rodents are often suitable in terms of feasibility, but they might not match the needed
osseous characteristics, especially because of their small size.

Considering all the possible elements, the ideal animal models are non-human primates (NHPs),
followed by dogs, although the ethical issues raised recently have made their involvement in
animal experimentation increasingly difficult [71]. Nevertheless, it has to be considered that in vivo
experimentation does not always imply the sacrifice of the animal—for example, in the case of an
evaluation of microcirculatory parameters with intravital microscopy [72].

Bone macroscopic and microscopic characteristics deeply influence the choice of animal model:
rodent bones can hardly be a suitable model for developing a novel dental implant, due to their small
size. On the contrary, notwithstanding their dimensions, murine models can provide insights into the
processes that underlie the biocompatibility of biomaterials [73–75] and bone healing, also based on
multiple specific strains that have been selected over time [60,76].

Larger animals have many more clinical, biomechanical and dimensional similarities to humans.
This is reflected also by the different bone turnover rates, which are close to the human ones in dogs or
pigs and are much quicker in rodents and rabbits. Therefore, they can be crucial to study the steps and
the clinical aspects of bone healing.

A question to be raised is whether a specific animal bone site (i.e., a specific region of a particular
skeletal segment) is more suitable than another one in the study to obtain inferences about a specific
human bone site. The most used sites in animal models are the femur, tibia, calvaria, mandible and
vertebra, and each one has particular features that vary depending on the animal. A great variety of
properties has to be considered in different subsites within the same bone, in term of bone density and
cortico/cancellous thickness; for example, anterior and posterior mandible specimens show peculiar
characteristics, as well as femoral diaphysis, metaphysis, epiphysis, et al. To our knowledge, there
is no clear evidence in the scientific literature of the better adequacy of a specific anatomic site in an
animal model for speculation about a human bone site. The investigator has to take into consideration
all the above-mentioned aspects.

For instance, we chose as an animal model the in vivo rabbit calvaria in our previous
paper [8], considering:
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• The osteotomy instruments that we wanted to test (two different piezosurgical devices and
one conventional rotary osteotomy device), which required high dense bone. We consequently
excluded mice, dog alveolar bone and rabbit mandible or femur.

• The space that we needed in order to perform several osteotomic lines, which helped us in
lowering the number of animals to sacrifice and led us to exclude mouse or rat as potential animal
models due to their small size (Reduction in “the three Rs” [70]);

• The European Communities Council Directive, which led us to exclude large animal models
(sheep, pork, dog) on an ethical basis [8].

6. Osteotomic Investigation with Rotational Instrument and Piezosurgical Devices:
Our Experience

In 2018, we performed a study [8] on an animal model to evaluate, in 16 six-month-old white
New Zealand rabbits, bone regeneration after osteotomy. The experimental procedures were executed
in accordance with the Bioethical Committee of the Italian National Institute of Health and authorized
with Decrees of the Italian Ministry of Health (protocol number 210/2013-B). Surgical procedures and
animal care and maintenance were performed according to Italian law (D.L. no. 26/2014) and European
legislation (EEC no. 63/2010).

The aim of the study was to compare bone healing dynamics in experimental osteotomies, using
two piezosurgical devices with different output power (Piezosurgery® Medical and Piezosurgery®

Plus) and a conventional rotary osteotome, in an in vivo rabbit model. The null hypothesis stated that
there would be no difference in bone healing among the three devices employed.

Four couples of linear craniotomies (1 cm in length—full thickness cut of the calvaria preserving
the dura mater) were carried out by the same surgeon in each rabbit skull, using different surgical
osteotomic systems: (a) conventional rotary bur (RO); (b) Piezosurgery® Medical (PM) and (c)
Piezosurgery® Plus (PP), both provided by Piezosurgery®—Mectron Medical Technology, (Carasco,
Italy). PP is characterized by a higher output power (75 W) compared to PM (23 W) (Figure 1). The
fascia-periosteal flaps and skin were eventually sutured. Two weeks after surgery, bone fragments
were harvested and processed for histological and histomorphometric analyses as well as for scanning
electron microscopy (SEM) investigations.
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there would be no difference in bone healing among the three devices employed. 
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osteotomic systems: (a) conventional rotary bur (RO); (b) Piezosurgery® Medical (PM) and (c) 
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Figure 1. Gross photograph showing the osteotomies performed in each rabbit skull: two by means 
of rotary bur (RO), two by means of Piezosurgery® Medical (PM), and four by means of Piezosurgery® 
Plus (PP) (as indicated by arrows). 

Results showed that osteotomies performed by means of both piezoelectric devices (PM and PP) 
produce half-sized bone gaps with respect to those produced by RO (Figure 2). 

Figure 1. Gross photograph showing the osteotomies performed in each rabbit skull: two by means of
rotary bur (RO), two by means of Piezosurgery® Medical (PM), and four by means of Piezosurgery®

Plus (PP) (as indicated by arrows).

Results showed that osteotomies performed by means of both piezoelectric devices (PM and PP)
produce half-sized bone gaps with respect to those produced by RO (Figure 2).
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osteotomy (between the two white dotted lines) obtained using the three different devices (RO, PM, 
PP), producing different bone gaps. Note that the RO device produces a gap around twice the width 
of those produced by PM and PP. Perivascular stromal spaces among the bone-forming trabeculae 
appear wider in RO osteotomy. 

Larger amounts of fibrous tissue (soft callus stage) with respect to bone tissue were present in 
RO samples than in PM and PP ones (Figure 3). 

 

Figure 3. LM micrographs showing in three different osteotomies the newly formed bone during gap 
recovery. 

Close to the forming bony trabeculae, numerous static osteoblasts arranged in cords and 
involved in preliminary bone regeneration were observed in RO samples; on the contrary, in PM and 
PP samples, bony trabeculae were mostly covered by typical prismatic dynamic osteoblasts arranged 
in monostratified laminae and involved in bone compaction (hard callus stage) (Figure 4).  

Figure 2. Light microscope (LM) micrographs showing the thickness (red dotted line) of the osteotomy
(between the two white dotted lines) obtained using the three different devices (RO, PM, PP), producing
different bone gaps. Note that the RO device produces a gap around twice the width of those produced
by PM and PP. Perivascular stromal spaces among the bone-forming trabeculae appear wider in
RO osteotomy.

Larger amounts of fibrous tissue (soft callus stage) with respect to bone tissue were present in RO
samples than in PM and PP ones (Figure 3).
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Figure 3. LM micrographs showing in three different osteotomies the newly formed bone during
gap recovery.

Close to the forming bony trabeculae, numerous static osteoblasts arranged in cords and involved
in preliminary bone regeneration were observed in RO samples; on the contrary, in PM and PP
samples, bony trabeculae were mostly covered by typical prismatic dynamic osteoblasts arranged in
monostratified laminae and involved in bone compaction (hard callus stage) (Figure 4).
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gaps, the osteoblasts are in more favorable conditions (i.e., a suitable distance from the capillaries) so 
that they more easily obtain the vascular derived inductive factors that, in turn, allow the progression 
from static to dynamic osteogenesis; as a consequence, a lower amount of fibrous tissue is observed 
in PM and PP with respect to RO. 

Independently of the device used, in all osteotomies, backscattered SEM analysis showed, as 
expected, that the newly formed bony trabeculae inside the osteotomy gap were less mineralized 
with respect to the adjacent pre-existing bone; moreover, the regenerated bone was characterized by 
higher cell density with respect to the pre-existing bone. It is possible to observe inside the healing 
gap, only in RO osteotomies, the presence of some fragments/remnants of osteotomized bone, absent 
in PM and PP osteotomies (Figure 5). 

 
Figure 5. SEM micrographs showing in RO, PM, and PP samples the lower mineralization and higher 
cell density in the newly formed bony trabeculae inside the osteotomy gaps, compared to the adjacent 
pre-existing native bone. Some fragments/remnants of osteotomized bone are only present in RO 
osteotomies (arrows). 

As far as bone regeneration is concerned (remodeling stage), the better performance of modern 
devices with respect to the traditional ones is also sustained by increased bone remodeling in PM and 
PP; in fact, a significantly higher osteoclast number (marked by tartrate-resistant acid phosphatase 
(TRAP) reaction) was observed within the gaps in PM and PP osteotomies with respect to RO ones, 
particularly concerning PP vs. RO (Figure 6).  

Figure 4. LM micrographs showing osteoblasts arranged in cords (dashed ovals) in RO. Arrows indicate
osteoblastic laminae in PP field. It is also to be underlined that in the thinner PM/PP bone gaps, the
osteoblasts are in more favorable conditions (i.e., a suitable distance from the capillaries) so that they
more easily obtain the vascular derived inductive factors that, in turn, allow the progression from static
to dynamic osteogenesis; as a consequence, a lower amount of fibrous tissue is observed in PM and PP
with respect to RO.

Independently of the device used, in all osteotomies, backscattered SEM analysis showed, as
expected, that the newly formed bony trabeculae inside the osteotomy gap were less mineralized with
respect to the adjacent pre-existing bone; moreover, the regenerated bone was characterized by higher
cell density with respect to the pre-existing bone. It is possible to observe inside the healing gap, only
in RO osteotomies, the presence of some fragments/remnants of osteotomized bone, absent in PM and
PP osteotomies (Figure 5).
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Figure 5. SEM micrographs showing in RO, PM, and PP samples the lower mineralization and higher
cell density in the newly formed bony trabeculae inside the osteotomy gaps, compared to the adjacent
pre-existing native bone. Some fragments/remnants of osteotomized bone are only present in RO
osteotomies (arrows).

As far as bone regeneration is concerned (remodeling stage), the better performance of modern
devices with respect to the traditional ones is also sustained by increased bone remodeling in PM and
PP; in fact, a significantly higher osteoclast number (marked by tartrate-resistant acid phosphatase
(TRAP) reaction) was observed within the gaps in PM and PP osteotomies with respect to RO ones,
particularly concerning PP vs. RO (Figure 6).
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Figure 6. LM micrographs showing tartrate-resistant acid phosphatase (TRAP) reaction in the three
osteotomies; in PM and PP osteotomies, the positivity (red color) is higher compared with RO.

To better explain, it is to be remembered that bone remodeling requires preliminary osteoclast
differentiation/activation, in turn triggering the cells of the reversal phase (probably of stromal-fibroblast
origin) that induce osteoblast differentiation, so that bone formation can occur to improve bone
quality [77]. Besides the influence of an osteotomy device on bone regeneration, it is not of secondary
importance its potential injury of bone cells near the edge of the osteotomy; our results show viable
osteocytes closer to the osteotomy edge in bone cut by piezoelectric devices (in particular, concerning
PP vs. PM) with respect to the traditional ones.

Finally, our findings demonstrate that PM and PP produce thinner bone gaps, in turn easier and
faster to be recovered, with respect to RO osteotomies, where all healing processes require longer
times. Therefore, piezosurgery is more effective than the conventional techniques in improving the
progression of skeletal repair. According to these results, the null hypothesis that there would be no
difference in bone healing among the three devices could be rejected.

7. What Kind of Information Can We Obtain from In Vivo and Ex Vivo Studies of Osteotomy?

Analyzing the scientific literature, great heterogeneity in the materials and methods utilized for
studying osteotomic effects can be noted (Table 4).

Table 4. Main animal studies on osteotomic damage available in the scientific literature.

Author Animal Model Type of Study Material and
Methods

Osteotomy
Device Conclusions

Moss, 1964
[78] Dog mandible Ex vivo Ocular

micrometer

Rotary cutting
device set at

three different
speed ranges

Ultra-high-speed cutting did
not produce higher bone
damage than lower speed

mode, especially when used
with adequate coolants.
Cooling agents reduced

bone damage.

Spatz, 1965
[79] Dog jaw

In vivo
The animals were

sacrificed at 1, 2 and
7 days

postoperatively

Photomicrog
raphy

Rotating burs
at conventional
and high speed.

Ultra-high-speed
osteotomies showed better
and quicker bone healing

and smoother cut edge
compared to conventional

speed burs, particularly
evident 1 week after the

surgical procedure.

Horton et al.,
1975. [80]

Dog alveolar
bone

In vivo.
The animals were

sacrificed
immediately after the

surgical procedure
and at 3, 7, 14, 28, 56

and 90 days
postoperatively.

Light
microscope

Ultrasonic
instrument,
low-speed

rotary cutting
bur and

surgical chisel

The bur produced the
smoothest surface. Healing
in later periods appeared

histologically to be the best
with the use of the surgical

chisel. After 90 days, the
bone healing was complete.
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Table 4. Cont.

Author Animal
Model Type of Study Material and

Methods
Osteotomy

Device Conclusions

Eriksson et al.,
1984 [81]

Rabbit femur,
fibula and

tibia

In vivo.
Animals in the first

group were sacrificed
immediately after the
surgical procedure.
Half of the animals
of the second group

were sacrificed 1
week after the

thermic damage,
while the other half

were followed up for
17 weeks.

Histology,
histochemistry and
vital microscopy.

Twist driller,
thermostatically

heated saline
solution and

thermal
chamber

Histochemistry provides
a better evaluation of

bone viability after
heat-induced trauma
than histology. Vital
microscopy is more

sensitive in the
evaluation of bone

healing following heat
trauma than indirect,

histological and
histochemical methods.

Wächter and
Stoll, 1991

[82]

Bovine and
sheep

mandible

Both in vivo and ex
vivo

The animals were not
sacrificed.

Thermocouples Oscillating saw

Only the combination of
intermittent sawing and
irrigation allows a safe

osteotomy from a
thermic point of view.

Abouzgia
and

Symington,
1996 [83]

Bovine femur Ex vivo
K-type

thermocouple
(Omega)

Surgical drill
(Stryker-100)

Drilling at high speed
and large load seems to

provide a better
combination in terms of

temperature rise and
duration of temperature

elevation.

Keijser et al.,
1999 [84]

Rabbit tibia
and femur

In vivo
The animals in the

first group were
sacrificed after 1

week.
The animals in the
second group were

sacrificed after 1, 3, 5,
7, 9 and 12 weeks.

Histologic
examination and

temperature
measurement.

Cryosurgery

No pathologic fractures
were observed in rabbit
tibiae. The gap in terms

of periosteal bone
apposition between
human and animal

bones was the likely
cause of this difference.

Rabbit bone, then, is not
a suitable model to study

this kind of
biomechanical

dynamics.

Bachus et al.,
2000 [85]

Human
femur Ex vivo Thermocouple Standard

surgical drilling
Higher load reduces the
risk of thermal necrosis.

Vercellotti et al.,
2005 [86]

Dog
alveolar bone

In vivo
The animals were

sacrificed
immediately after the

surgical procedure
and at 14, 28 and 56

days postoperatively.
Some bone

specimens were
collected

immediately after the
surgery as well.

Histomorphometric
analysis

Piezosurgery
Mectron Dental

Technology,
carbide bur and

diamond bur

By day 56, the surgical
sites treated by burs

evidenced a loss of bone,
versus a bone gain in the

piezo-treated sites.
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Table 4. Cont.

Author Animal
Model Type of Study Material and

Methods Osteotomy Device Conclusions

Preti et al.,
2007 [87] Mini pig tibia

In vivo
The animals were

sacrificed at 7, 14, 28
and 56 days

postoperatively.
Some tibial bone
specimens were

collected
immediately after the

surgery as well.

Histomorphology
and levels of

bone
morphogenetic

protein (BMP)-4,
transforming
growth factor

(TGF)-β2, tumor
necrosis

factor-alpha, and
interleukin-1β
and -10 were

evaluated in the
peri-implant

osseous samples.

Piezosurgery
Mectron Dental
Technology and

drilling according to
Branemark protocol

Piezoelectric bone
surgery appears to be

more efficient in the first
phases of bone healing; it

induced an earlier
increase in BMPs,

controlled the
inflammatory process
better and stimulated

bone remodeling as early
as 56 days

post-treatment.

Maurer et al.,
2008 [88] Rabbit skull Ex vivo

Light microscopy,
environmental
surface electron

microscopy
(ESEM) and

confocal laser
scanning

microscopy
(CLSM).

Rotating instrument,
micro-saw,

Piezosurgery—Mectron
Dental Technology

Bony structure integrity
observed after the

ultrasonic technique.

Queiroz et al.,
2008 [89] Rabbit tibia

In vivo
The animals were

sacrificed
immediately after the
surgical procedure.

Immunoistoc
hemistry,

scanning electron
microscopy

Conventional
drilling

It is preferable to use a
less traumatic surgical

protocol in order to
preserve cell viability.

After the thirtieth
perforation, it is possible

to observe a protein
balance alteration.

Bertollo et al.,
2010 [16]

Pig femur Ex vivo

Infrared Thermal
Imaging Camera

(Digicam-IR,
Ircon, Niles, IL,

USA)

Pneumatic surgical
handpiece, 2- and

3-fluted drills—7100
Drill MicroAire

Surgical Instruments
LLC, Charlottesville,

VA, USA

The 3-fluted drills did
not grant a clear

advantage compared to
2-fluted drills in terms of
better bone healing and

screw fixation and of
reduction of heat rise.

Wether tibia

In vivo
The animals were
sacrificed 2 and 4
weeks after the

surgical procedure.

Light
microscopy—

Olympus, Tokyo,
Japan

Said surgical
handpiece mounted

in a sterilizable
mobile drill-press.

Rashad et al.,
2011 [90] Bovine rib Ex vivo Thermocouples

A conventional
implant drill system

(Straumann,
Freiburg, Germany)
and two ultrasonic
osteotomic devices:

Piezosurgery
(Mectron Medical
Technology) and
Variosurg (NSK,
Tochigi, Japan).

Implant site preparation
with ultrasonic devices

with adequate irrigation
can provide an equally
safe method compared

to conventional drilling.
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Table 4. Cont.

Author Animal
Model Type of Study Material and Methods Osteotomy Device Conclusions

Augustin et al.,
2012 [91] Pig femur Ex vivo Thermocouple

Combination of
internally cooled drill
and a two-step drill.

Internally cooled drill
causes the lower

temperature bone rise.

Heinemann et al.,
2012 [92] Pig jaw Ex vivo Light microscope.

Piezosurgery—Mectron
Medical Technology,
SONICflex and the
conventional bur

method.

The bone matrix
adjacent to the defect
radius showed intact

osteocytes.

Hollstein et. al,
2012 [93] Rabbit skull Ex vivo

Light microscopy,
(ESEM), and confocal

laser scanning,
microscopy (CLSM).

Piezosurgery 3, Piezon
Master Surgery,

Piezosurgery—Mectron
Medical Technology,

VarioSurg,
Piezotome 2

The osseous
micro-structure is

preserved. Five different
piezosurgical devices

were evaluated.

Schutz et al.,
2012 [94] Pig jaw Ex vivo

Temperature sensors
and digital volume

tomography images.

Piezosurgery
3—Mectron Medical

Technology

The correct use of the
ultrasonic device

allowed a safe
osteotomy, not causing

irreversible thermal
damage in the bone.

Claire et al.,
2013 [95] Pig femur Ex vivo

Scanning laser
vibrometer, laser

profilometer, scanning
electron microscope

Piezosurgery 3 with an
OP3 style insert

tip—Mectron Medical
Technology

In the cortical mode, the
optimal load was of 150
g. The structure of the

bone has to be taken into
consideration as well.

Esteves et al.,
2013 [96] Rat tibia

In vivo
The animals were
sacrificed at 3, 7,

14, 30 and 60
days

postoperatively.

Histomorphometric
analysis,

immunohistochemical
staining, RT-PCR

(reverse
transcriptase-polymerase

chain reaction).

Piezo Master Surgery
and conventional

drilling with a 2 mm
round diamond coated

tip.

Bone healing dynamics
after piezosurgery are
comparable to those

observed with
conventional drilling.

Gulnahar et al.,
2013 [56]

Human
mandible

In vivo
Bone specimens
were collected
immediately
following the

surgical
procedure

Heat shock protein 70
(Hsp70) expression.

Conventional bur and
piezosurgery.

Conventional burs
determined more

aggressive procedures,
showing significantly

higher Hsp70 expression
in consequence of the
higher stress induced.

Ma et al.,
2013 [97] Rabbit skull

In vivo
The animals were
sacrificed at 1, 2,
3, and 5 weeks

postoperatively.

Light microscopy,
histomorphometric

analysis.

Piezosurgery—Mectron
Medical Technology,

two types of oscillating
steel saw blade.

Advanced bone healing
compared to a

traditional saw was
observed.

Bullon et al.,
2014 [98] Bovine rib Ex vivo Thermocouple

Drilling with
precipitation-hardening
stainless steel (K drills)

or with martensitic
stainless steel (S drills).

Irrigation had a
significant impact on

heat generation, while
drill use and type did

not.
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Author Animal
Model Type of Study Material and

Methods Osteotomy Device Conclusions

Lamazza et al.,
2014 [99] Bovine rib Ex vivo

Load cell and
fluoroptic

thermometer.

Piezosurgery with
different tips (IM1s,

IM2s, P2-3,
IM3)—Mectron

Medical Technology

Load, movements
management and bone

features play critical
roles in temperature rise.

Irrigation fluid
temperature and the
clogging effect also
contribute to this

phenomenon.

Stelzle et al.,
2014 [100] Pig skull Ex vivo

Thermocouple,
histomorphometric

analysis.

Piezosurgery—Mectron
Medical Technology,

spiral burs and
trephine burs

Piezosurgery generates
more bone damage and

higher temperatures
than conventional

drilling devices when
used on high load levels.

The maximum load
should be 400 g.

Stoetzer et al.,
2014 [72] Rat calvaria

In vivo
The animals were not

sacrificed.
The evaluations were

performed
immediately after the
surgery and 3 and 8

days postoperatively.

Intravital
microscopy of

microcirculatory
parameters.

Periosteal elevator and
piezoelectric device.

A better periosteal
microcirculation was
found in piezoelectric
device osteotomies.

Yang et al.,
2014 [101] Mice skull

In vivo
The animals were not

sacrificed.
The evaluations were

performed the day
following the surgery
and 2, 4 and 8 weeks

postoperatively.

Micro-CT
(micro–computed

tomography).

Surgystar diamond
round tip and

Piezoelectric System
(Synthes),

Piezosurgery provided
faster bone healing in

comparison with
mechanical

instrumentation.

Rashad et al.,
2015 [102] Bovine rib Ex vivo Thermocouple.

Conventional, sonic
and ultrasonic

osteotomic devices.

Sonic and ultrasonic
devices provided the
safer osteotomies in

terms of heat generation.
Irrigation was crucial to
prevent temperature rise.

Tekdal et al.,
2015 [55]

Human
maxilla

In vivo
The evaluations were

performed until 24
weeks

postoperatively, with
a different timetable
for each parameter

considered.

Peri-implant
sulcular fluid

(PISF) analysis,
periapical

radiographs and
cone beam
computed

tomography
(CBCT).

Piezosurgery and
conventional drilling.

On the biochemical side,
piezosurgery provided a

reduced inflammatory
response of the bone,

while on the
radiographic analysis,
conventional drilling
and piezosurgery had

similar crestal bone loss
values.

Boa et al.,
2016 [103] Bovine rib Ex vivo

Temperature
measurement

cavities.

Freehand drilling and
surgical-guided

drilling, combined
with irrigation fluids at
different temperatures.

Drilling through a
surgical guide allowed

the best results,
especially in

combination with the
use of 10 ◦C pre-cooled

irrigation fluid.
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Author Animal
Model Type of Study Material and

Methods Osteotomy Device Conclusions

Gabric et al.,
2016 [104] Rat tibia

In vivo
The animals were

sacrificed
immediately after the

surgical procedure
and at 1, 2 and 3

weeks
postoperatively.

3D laser scanning
technique (i.e., laser

triangulation
profilometry).

Piezosurgery—Mectron
Medical Technology,
Er:YAG laser both in

contact mode and
non-contact mode.

Osteotomies executed
with Er:YAG laser in

non-contact mode were
the fastest to heal.

Lamazza et al.,
2016 [105]

Bovine
rib and
femur

Ex vivo Fiber optic
thermometer.

Diamond tip—IM1s,
Mectron Medical

Technology.

Cortico-cancellous bone
samples presented more

variability in
temperature values
compared to cortical

bone samples.

Sagheb et al.
2017 [106]

Porcine
iliac crest
and tibia

Ex vivo

Temperature
measurement by

infrared
spectroscopy.

Primary implant
stability by

resonance frequency
analysis and

extrusion torque.

IM1S; IM2P; IM3P;
Piezosurgery—Mectron

Medical Technology.

No significant difference
in temperature increase

between traditional
drilling and

piezosurgery.

Szalma et al.,
2017 [107]

Pig
mandible Ex vivo

Thermocouple and
infrared

thermometer.

Diamond drills,
tungsten carbide drills,
piezoelectric diamond

sphere and saw.

The use of irrigation
fluid at 7 ◦C and

pre-drilling is crucial to
avoid a potentially
nerve-damaging

temperature rise in
piezosurgical

osteotomies. The speed
of piezosurgery and of

the other devices is
similar.

Anesi et al.,
2018 [8]

Rabbit
skull

In vivo
The animals were
sacrificed 15 days

following the
surgical procedure.

Histology and
enzymatic assay

Histomorphometry.
Scanning and

transmission electron
microscope.

Nano-mechanical
analysis

Piezosurgery Medical®

Piezosurgery Plus®,
Mectron Medical

Technology.
Physiodispenser 7000,

Nouvag AG.

Piezosurgical group
shows more advanced
stages of bone healing

compared to
conventional bur.

Favero et al.,
2018 [108]

Sheep
tibia

In vivo
The animals were

sacrificed at 1, 2 and
6 weeks

postoperatively.

Eclipse Ci
microscope (Nikon
Corporation, Japan)
with a digital video

camera (Digital Sight
DS-2Mv, Nikon

Corporation, Japan).

Conventional drilling,
both at high and mixed

speed

There was no difference
between the two groups.

Junior et al.,
2018 [109]

Bovine
femur Ex vivo

T-type
thermo-couple and
Scanning Electron
Microscope (SEM)

Piezoelectric tips
(Driller) and

tri-helicoid dental burs
(Dentoflex)

The use of either rotatory
burs or piezoelectric tips
generates a temperature
that does not affect the

tissue healing. Burs
create a smooth surface,

and piezoelectric tips
show a rougher and

condensed bone surface.
The wear of both

systems does not cause a
relevant increase in

temperature after the
preparation of 30

surgical beds.



Appl. Sci. 2020, 10, 7165 18 of 28

Table 4. Cont.

Author Animal
Model Type of Study Material and

Methods
Osteotomy

Device Conclusions

Lajolo et al.,
2018 [110] Porcine rib Ex vivo

Implant site
preparation with
conventional drill

system vs.
piezoelectric system.

Infrared
thermometer was

positioned
underneath

Premium
Surgical Kit

Kohno, Sweden
& Martina s.p.a.

OP4 insert.
Piezosurgery—

Mectron Medical
Technology

“Bone overheating using a
piezosurgery unit is a
potential risk during

implant site preparation”.

argued by
Stacchi et al.,

2018 [111]

Methodological flaws were revealed: OP4 insert is not suitable for implant suite preparation according to
manufacturer’s booklet. Excessive pressure load applied on the piezosurgical tip during implant site

preparation. No correct movement of the piezosurgical handpiece was applied in the study.

Singh et al.,
2018 [15]

Bovine
bone Ex vivo Optical microscope Vibrational bone

drilling

Rotational speed is the
major responsibility of

heat generation, although
all parameters considered
affect the result. The best

results were obtained with
a mid-range rotational

speed.

Stocchero et
al., 2018 [112]

Sheep
mandible

In vivo
The animals were

sacrificed at 5 and 10
weeks

postoperatively.

Histomorphometric,
µ-CT and

biomechanical
analysis

Two different
drilling protocols

In the long term, no
difference was observed
between the two groups,

although in the early
period, there was greater
cortical bone remodeling

in the undersized
preparation group.

Tepedino et
al., 2018 [113]

Bovine
bone Ex vivo

Thermo-control laser,
Scanning Electron
Microscopy (SEM)

and light microscope

Conventional
rotating bur and
Piezosurgery 3

with an OP5
insert—Mectron

Medical
Technology

Piezosurgery caused lower
bone damage and

temperature rise than the
conventional rotating bur.

Zheng et al.,
2018 [114] Pig femur Ex vivo Infrared camera

Ultrasonically
assisted drilling,

conventional
drilling

Ultrasonically assisted
drilling provided less bone

damage and generated
lower temperatures.

Alam et al.,
2019 [115]

Bovine
femur Ex vivo

Thermocouples,
two-component

dynamometer (Type
9271A, Kistler),

system microscope
(BX53, Olympus),
digital microscope
(DP22, Olympus)

Vibrational
drilling—Orthofix,

Italy

The best results were
obtained by setting a

lower drilling speed, a
lower feed rate and a
frequency of 20 kHz.

Pavone et al.,
2019 [116] Rat calvaria

In vivo
The animals were

sacrificed
immediately after the

surgical procedure
and at 7, 15, 30 and

60 days
postoperatively.

Histometric and
histological analysis

Er,Cr:YSGG laser,
trephine drill

The Er,Cr:YSSG laser
osteotomy allowed the
best healing in animals

exposed to cigarette
smoke.

Zhang et al.,
2019 [117]

Tibetan pig
femur and

radius
In vivo Light microscope

Drilling in five
different bits
geometries

Chisel edge, drill bit
geometry, flute number,

edges, steps and direction
affect bone damage level

and its characteristics.

Crovace et al.,
2020 [118]

Dogs and
cats;

calvaria or
spine

In vivo.
Ostetotomic bone

immediate sampling;
the animals were not

sacrificed.

X-ray or CT scan.
Histology

Piezosurgery,
Mectron Medical

Technology

No signs of bone
overheating.
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Most of the studies investigated the effects of the heat generated by the metal–bone interface during
drilling: indeed, the resulting friction can cause thermal osteonecrosis. Thermal damaged bone is of
great clinical relevance because it is not capable of holding the implants and screws for a long time [15].

Well documented experimental osteotomic studies were conducted in the late 1950s, when
Thompson [119] reported the “index of viability”, i.e., a parameter for evaluating the distance between
the first normal osteocyte and the edge of the osteotomy; it indicated the drill’s cutting effects upon
the cellular elements of the bone. This index can be carried out on ex vivo and in vivo samples and
this author well distinguished for the first time between ex vivo and in vivo studies on animals [119].
A zone of aseptic thermal necrosis was described by Thompson in 1958 [119], which was characterized
by the degeneration of the osteocytes (pyknosis of the nuclei, complete disintegration of the cells,
osteocyte lacunae devoid of cellular elements). Decreased bone damage is indicated by a low viability
index value and larger bone damage by the higher values.

In the mid-1960s, it was demonstrated that increased bur cutting speed with a cooling agent
does not cause increased bone damage, i.e., decreased bone damage occurred if increased speed was
applied [78]. Ultraspeed or increased speed was also supported by in vivo findings of Spatz [79], in
terms of lesser inflammatory response and faster bone recovery.

A rudimentary ultrasonic device was verified in the 1970s, found to be related to slower bone
healing compared to rotational bur [80]. Ultrasonic and piezoelectric osteotomy was developed and
rediscovered in the early 2000s; on the contrary, bone healing outcome proved to be faster with
piezosurgical devices with respect to a traditional rotational bur [8].

In 1983, Eriksson et al. investigated the friction and the heat generated from the metal–bone
interface during drilling: it was eventually established that the lowest temperature threshold for thermal
osteonecrosis is 47 ◦C for one minute. This study was particularly informative because it was conducted
in an in vivo animal model (rabbit) and represents nowadays a pillar of the relevant literature [120].

Conflicting conclusions in terms of the effect of temperature in bone tissue can be seen by
comparing in vivo and in vitro studies, as Wächter et al. [82] concluded in their study. The scholar
revealed lower bone temperature in in vivo samples: bleeding flow could evacuate more thermal
energy with respect to ex vivo settings [82].

Post-osteotomy callus formation and bone healing are influenced by the biological status and
potency of the bone at the cut surfaces [121]. Excessive heat and thermal necrosis may irreversibly
impair the bone healing process [122]. To limit the temperature increase, both bur and oscillating saws
are usually cooled during the cutting process [123].

Thermal damage in the surrounding cortical bone depends not only on the maximum temperature
value but also on the duration of temperature elevation and consequently on drilling time. High speed and
increased force in drilling cause a small rise in temperature, due to the decrease in the drilling time [83].

Drilling with forces between 57 and 130 N is related to a minor increase in temperature, and
similarly, the time interval in which the temperature remains above 50 ◦C is shorter [85]. Moreover, the
results from Bachus contradict the work published by Abouzgia et al. [85] which had even shown that
the cortical bone temperatures decreased between 1.5 and 9.0 N.

Factors that influence heat generation during bur osteotomy were investigated by several studies
and they include speed, drill force, irrigation, drill design and drill diameter. Another widely used
technology as a standard tool for osteotomies is the oscillating saw [102].

From Vercellotti’s [86] paper to nowadays, most studies have compared the effects on bone of
traditional rotatory osteotomes versus ultrasonic (piezosurgical) devices. The research interest in
ultrasonic osteotomy is justified by the fact that piezosurgical osteotomy is extremely precise and
provides arbitrary cut geometries, prompt handling, efficient bone cutting and minimal damage to
adjacent soft tissue structures [102].

Vercellotti et al. [86] applied an in vivo model of dog alveolar ridges, demonstrating an improved
bone healing process in the piezosurgically treated group. The index of viability of bone cells
after piezosurgery was studied histologically by numerous authors in bone grafting procedures for
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dental purposes [124,125]. Histomorphometric and molecular analysis was evaluated together by
Preti et al. [87]; the authors established that piezosurgery may accelerate the earlier phases of the dental
implant osteointegration when compared with rotational drilling.

Bone surfaces were examined by Maurer [88] with three microscopic techniques (light microscopy,
environmental scanning electron microscope—ESEM, confocal laser scanning microscope—CLSM) after
using different procedures of osteotomy (reciprocate micro-saw, Lindemann bur, ultrasonic osteotome).
ESEM and CLSM entail an appraisal of unmodified bony specimens, being non-destructive examination
techniques. In this histological investigation, ultrasonic osteotome activity was not related to osteonecrosis
of the trabecular bone. CLSM permits a quantitative evaluation of bone surface roughness [88].

Augustin and co-workers [91] in an ex vivo model studied in depth the thermal damage to bone
as a combined result of the temperature and the duration of elevated temperature: the relation of
maximum bone temperature and the period of that increased temperature over the critical value
was described. Drilling with carbide spiral drills (2.5–4.5 mm) for dental implantology, the bone
temperature persisted around 50 ◦C for 50 s in 95% of results, not adequate for avoiding thermal
osteonecrosis during drilling (≤47 ◦C for one minute, as demonstrated by Eriksson et al.) [120].

Comparing different ex vivo inserts for piezosurgical osteotome, it was found that cortical bone
thickness had surprisingly no influence on intraosseous temperature generation, which remained,
however, below the threshold of 47.8 ◦C for 1 min, without irreversible thermal damage in the bone [94].
These data were statistically supported and in contrast to the previous study of Eriksson, which was
conducted with traditional rotary osteotomes [81]. Considering the investigation methods, these
results are difficult to compare. The author concluded that in vivo measurements need to be carried
out to confirm the data.

While cortical bone thickness appeared a secondary factor following piezosurgery, the structure
of the bone seemed to be an important factor in the cut characteristics: higher cut lengths and widths
were present in the spongeous bone compared to the cortical bone [95].

Esteves et al. [96] conducted an in vivo study on rat tibia (histological, histomorphometric,
immunohistochemical and molecular analysis); comparative appraisal of bone recovery after osteotomic
lines performed by rotating drill or piezosurgery did not demonstrate significant differences between
the two animal groups.

An in vivo histomorphometric study by Ma et al. [97] revealed no statistically significant differences
in comparing bone healing after osteotomy performed with piezosurgery versus oscillatory saws;
increased bone remodeling activity in early phases was observed for the piezoelectric surgery group.

Cortico/cancellous samples (ex vivo) are a simulation of in vivo conditions frequently used
by scholars, but they are affected by greater variability of results. In an ex vivo bone model with
a piezosurgical device, three main factors were finally identified among the others for having a
great influence on the heat production: working load, working movement management and bone
features [99]. Rashad et al. in 2015 found that ultrasonic osteotomies cause significantly lower heat
compared to rotary bur osteotomies [102]. However, both these scholars concluded that (in vivo)
animal studies were essential for understanding how bone healing occurred after ultrasonic osteotomies
and how blood flow and biological factors fit together with ex vivo findings [99,102].

In a rotatory bur (drilling bur), it was found by histopathology that the heat generation is
mainly dependent on rotational speed: at high rotational speed (3000 r/min), there is a severe thermal
osteonecrosis [15]. These results contradict previous findings in the 1960s and 1970s, when ultraspeed
or high rotational speed were recommended for avoiding thermal osteonecrosis [78–80].

Modulating the irrigation temperature can be an effective strategy in reducing heat during
osteotomy with a drilling bur. Studies on endosseous dental implant site demonstrated that the use of
precooled irrigation at 10 ◦C entails a significant reduction in peak temperature compared with what
was achieved when irrigating at room temperature [103].

Bone removal approximating the inferior alveolar nerve canal was investigated through an
ex vivo experimental study conducted by Szalma [107]. Compared to a drill, this ex vivo study
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confirmed that piezoelectric bone removal approximating the inferior alveolar canal resulted in higher
temperature-increasing effects on the surface of the inferior alveolar nerve [107]. The author eventually
suggested combined bone removal (i.e., tungsten carbide pre-drilling completed with piezoelectric tip)
with 7 ◦C pre-cooled irrigation to limit the intracanal temperature increase [107].

During endosseous dental implant site preparation, bone overheating using a piezosurgery was
measured, resulting in two times more with respect to a conventional drill [110].

Augmented bone overheating with piezosurgical devices compared to a bur drill was an
unexpected finding. Other authors questioned some of the methods that led to these results, such as
Stacchi et al. [111], who discussed the previous ex vivo investigation of Lajolo et al [110]. For example,
ultrasonic tip choice in the experiment can lead to abnormal heat generation if the use is improper for
the purpose (side-cutting insert instead of dental implant site preparation insert). Stacchi et al. (2018)
also described that applied pressure load on the handpiece was excessive for that device and this
could induce a higher temperature rise [111]. Pressure load should be chosen according to the specific
characteristics of the tip and device (piezosurgical, rotatory, and oscillating or reciprocating saw).
Moreover, as in the paper of Lajolo et al [126], the laboratory supported arm for the handpiece should
reproduce the movement of the hand in the operative theater (sliding movement is not comparable to
rotating movement). Non-overlapping conditions between experimental and clinical setting could
lead to distorted interpretation of results from studies conducted in laboratory settings [111].

Previous findings of Lajolo [126] and Szalma [107] about bone overheating with piezosurgical devices
were questioned by Zheng [114] in a further ex vivo model. He found that the cortical bone temperature
during piezosurgical osteotomy was lower than during rotational drilling. Moreover, according to this
study, the impact of the drilling factors on bone temperature was in the order of drill diameter, rotational
speed, feed speed and the frequency and amplitude of the piezosurgical vibration [114].

Erbium-doped yttrium aluminum garnet (Er:YAG) laser was applied as osteotome in maxillo-facial
surgery in 2007 [10]. A single study in vivo compared a Er:YAG laser with the piezosurgical technique,
without histomorphometric evaluation but with bone volume measurement by laser triangulation
profilometry [104]; considering the limit of investigation methods, the Er:YAG laser showed faster bone
healing with respect to the piezosurgical sample. Pavone et al. (2018) [116] carried out an in vivo study
in rats exposed to inhalation of cigarette smoke, comparing a Er,Cr:YSGG laser (erbium, chromium:
yttrium, scandium, gallium and garnet) and trephine drilling. The Er,Cr:YSGG-S group revealed higher
bone formation with statistical significance compared to the trephine drilling group.

Microcracks are mechanical complications that can be considered a further parameter to evaluate
bone damage after the osteotomy procedure and fixation/prosthesis positioning [127,128]. If the
gap formed by the microcracks around the prosthesis surface overtakes 50 mm, the capacity of the
bone tissue growing into the prosthesis will be decreased [127,128], proving that drill geometries
influence the mechanical and thermal damage: a standard surgical drill edge (chisel) seems to augment
bone damage.

8. Future Perspectives

Several ex vivo studies on animal bone were recently dedicated to heat production during
osteotomy with conventional drills and piezoelectric devices, particularly in endosseous dental implant
sites. In our opinion, outcomes from ex vivo animal models cannot be transferred to clinical practice,
because the static finding of bone damage does not necessarily correlate with the effectiveness of the
bone healing process (Table 3). Discussing ex vivo results, scholars should only advance perspectives
as regards the in vivo conditions, both on animal models and in surgery, since it is not known whether
the described bone damage has consequences for bone healing.

The informativeness of the measured data depends on the time of execution, i.e., in tissue out
of living (ex vivo) or in living tissue of an animal (in vivo). In turn, in in vivo experiments, histology
can be carried out at different stages: immediately after cutting procedures, during the bone healing
process and at the end of bone restoration.
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Micro-mechanics, histology, ultrastructural analysis, molecular biology and biochemistry, both in
ex vivo or in vivo, are altogether necessary to elucidate the sophisticated processes leading to bone
restoration after the cutting procedure.

Therefore, all the above-mentioned techniques, integrating and completing each other, should
contribute to shedding new light on the very complex issue of bone healing after osteotomy.
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