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Abstract: This study analytically explored two coupled two-level atomic systems (TLAS) as two
qubits interacting with two modes of an electromagnetic field (EMF) cavity via two-photon transitions
in the presence of dipole–dipole interactions between the atoms and intrinsic damping. Using special
unitary su(1, 1) Lie algebra, the general solution of an intrinsic noise model is obtained when an EMF
is initially in a generalized coherent state. We investigated the population inversion of two TLAS and
the generated quantum coherence of some partitions (including the EMF, two TLAS, and TLAS–EMF).
It is possible to generate quantum coherence (mixedness and entanglement) from the initial pure state.
The robustness of the quantum coherence produced and the sudden appearance and disappearance
of coherence depended not only on dipole–dipole coupling but also on the intrinsic noise rate.
The growth of mixedness and entanglement may be enhanced by increasing dipole–dipole coupling,
leading to more robustness against intrinsic noise.
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1. Introduction

Quantum entanglement (QE) is one of the main features of quantum information compared with
classical information [1–8]. It describes nonlocal correlations [9] in quantum systems, which play
major roles in quantum computation and quantum communication [10,11], teleportation [12–15],
dense coding [16,17], and cryptography [18]. Thus, the purpose of this study was to explore methods
of creating entangled states [19,20]. Von Neumann entropy, concurrence, and negativity are used to
measure the properties of quantum coherence [21–25].

Matter-cavity interactions are used to produce entangled states [26–28] and are
important examples of the physical realization of quantum information processing (QIP) [29].
The Jaynes–Cummings model (JCM) was introduced [30] to describe a two-level atomic system
(TLAS) coupled to a single-mode radiation field. This model has attracted considerable attention for
multi-photon transitions and interactions between TLAS and multi-mode EMFs [21]. Increasing the
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number of atoms interacting with an electromagnetic field (EMF) is another promising direction.
Two TLAS with different extensions interacting with one-mode or two-mode fields have been
investigated [22,31].

Many generalizations depending on the number of atomic levels, such as 2, 3, and 4-level
atoms interacting with different types of cavity fields, have been investigated [22]. The quantum
correlation dynamics between their subsystems (atom–atom, atom–field, and field–field) have also
been studied [32]. The Kerr medium effects on the dynamics of nonlocal correlations between the
two atoms that interact with a single mode field have also been studied [33]. Two TLAS interacting
with a single mode vacuum field in the presence of atom–field and atom–atom entanglements were
investigated using quantum relative entropy [22].

In real physical models, effective dissipation degrades the purity and entanglement [34–40].
One cause of dissipation is intrinsic decoherence in which the quantum effects deteriorate as the
quantum system evolves. Intrinsic decoherence was studied in several previous articles [41–47].
Thus, this work introduces a physical model wherein the su(1, 1)-system is initially assumed to have
a generalized coherent state, and an analytical description is used to investigate the entire system’s
quantum coherence and its different partitions.

In this paper, the physical model is introduced in Section 2. The effects of the decay terms and
dipole–dipole interactions on the atomic inversion of two atoms are studied in Section 3. The influences
of the intrinsic dissipation and coupling rates between the two atoms on the purity are discussed
in Section 4. In Sections 5 and 6, QE in different partitions are investigated by using negativity
measurements. Section 7 concludes this paper.

2. The Physical Model and Its Density Matrices

Much experimental work has been done on quantum entanglement using photons. It is worth
noting that the individual polarization states of the photons can be easily controlled and their quantum
coherence can be maintained over several kilometers in optical fibers [48]. Therefore, photons cannot be
held for long time, and many difficulties arise in controlling collective entanglement states even if the
photons are confined to the same cavity. It is interesting to note that the parametric amplifier type for an
interaction between two fields can be realized in a three-wave mixing parametric amplifier device [49],
and in quantum signals with Josephson circuits [50]. Therefore in this manuscript, the physical
system of two two-level atomic systems, A and B, interacting with two nondegenerate modes of an
EMF in an ideal cavity via four-photon transitions in the presence of dipole–dipole interactions is
considered. The interaction that realizes nondegenerate parametric amplifier is an important nonlinear
phenomenon [51,52]. The Hamiltonian that describes the parametric amplification interactions is
expressed as

ĤModes = ω1(â† â +
1
2
) + ω2(b̂† b̂ +

1
2
) + µ(âb̂ + â† b̂†). (1)

where â†(â) and b̂†(b̂) represent the field mode operators with frequencies of ωj (j = 1, 2) and µ is the
linear coupling parameter between the waveguide.

The model described by Equation (1) does not include any interactions with the two qubits.
We posit that the two nondegenerate modes of the EMF in Equation (1) interact with the two coupled
TLAS via dipole–dipole interactions. After applying rotating wave approximations, the model’s
Hamiltonian becomes:

Ĥ =
1
2 ∑

i=1,2
(ωi + ωσ̂z

i ) + ω1 â† â + ω2b̂† b̂ + J(σ+
A σ−B + σ−A σ+

B )

+ ∑
`=A,B

λ(âb̂σ+
` + â† b̂†σ−` ). (2)

where ω represents the TLAS frequency and σ̂±` and σ̂z
` are the Pauli matrices. λ is the coupling of

the TLAS–EMF interactions and J is the coupling of the dipole–dipole interactions. If the two modes
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are identical, that is, â = b̂, the degenerate two-photon transition of one field mode occurs in the
Hamiltonian system in Equation (2) in the degenerate case.

We set ω1 = ω2 = ω
2 and introduce the su(1, 1) generators K̂± and K̂0 as follows:

K̂− = âb̂ = K̂†
+, K̂0 =

1
2
(1 + â† â + b̂† b̂), (3)

which satisfies the relationship [K̂0, K̂±] = ±K̂± and [K̂−, K̂+] = 2K̂0. Therefore, K̂+K̂− = K̂2
0 − (K̂0 +

K̂2) is the Casimir operator and K̂2 = K̂2
0 −

1
2 (K̂+K̂− + K̂−K̂+) = k(k− 1) Î is the Bargmann number.

The Hamiltonian of Equation (2) is governed by su(1, 1) and a su(2) Lie algebra as:

Ĥ = ωKo + ∑
`=A,B

{ω

2
σ̂z
` + λ(K−σ+

` + K+σ−` )}+ J(σ+
A σ−B + σ−A σ+

B ). (4)

Thus, the su(1, 1) operators in the number state representation induce the following operators:

K̂0|n, k〉 = (n + k)|n, k〉, K̂2|n, k〉 = k(k− 1)|n, k〉,
K̂−|n, k〉 = Sk,n|n− 1, k〉, K̂+|n, k〉 = Sk,n+1|n + 1, k〉, (5)

Of note Sk,n =
√

n(n + 2k− 1), the connection between the Bargmann number and the field
modes’ photon number is k = 1

2 (I + â† â− b̂† b̂).
In this study, we consider the intrinsic decoherence [41]. This decoherence is described by the

Milburn equation, which is expressed as:

d
dt

ρ(t) = −i[ρ, H]− γ

2
[H, [H, ρ]], (6)

where γ is the intrinsic decoherence parameter. This equation is used to develop the density matrix
approach to the dissipative systems. The solution of the previous differential Equation (6) through the
Milburn equation can expressed as [41,53–55]:

ρ(t) =
∞

∑
k=0

(γt)k

k!
Mk(t)ρ(0)M†k(t), (7)

where Mk(t) = Hke−iHte−
γt
2 H2

, and ρ(0) is the initial density system. Based on the completeness
relation, ∑n |ψn〈ψn| = Î, of the eigenvectors of the Hamiltonian system in Equation (4) into
Equation (7); the density matrix is given by

ρ(t) = ∑
lk

e−
γt
2 (El−Ek)

2−i(El−Ek)t 〈ψl |ρ(0)|ψk〉 |ψl〉〈ψk|, (8)

where |ψl〉 are the eigenvectors of the Hamiltonian (4) and El are their corresponding eigenvalues.
This density matrix is used to study the dynamical character of the quantum phenomena for different
initial states where the coupling system is initially in the pure state ρ(0) = |ϕ(0)〉〈ϕ(0)|. In the
space states { |1〉 = |1A1B, k, n〉, |2〉 = |1A0B, k, n + 1〉, |3〉 = |0A1B, k, n + 1〉, |4〉 = |0A0B, k, n + 2〉 },
the eigenstates |Ψl〉(i = 1, 2, 3, 4) are expressed as:

|Ψl〉 =
4

∑
m=1

χlm|m〉. (9)
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The coefficients χlm satisfy Ĥ|Ψn
l 〉 = El |Ψl〉, where El is the eigenvalue of Ĥ

El = J(1− l) + ω(n + k + 1), f or l = 1, 2,

E3 = 1
2{J + 2ω(n + k + 1)

+ (−1)l
√

J2 + 8λ2(S2
k,n+1 + S2

k,n+2)}, f or l = 3, 4.

(10)

It is worth mentioning that the eigenvectors of the Hamiltonian system in Equation (4) can be
written by another symmetric combination of |2〉 and |3〉 [56] that will also be interesting for examining
the behavior of the system when starting in an asymmetric correlated state.

We assume that the two su(2) systems are initially in the upper state, ρ̂AB(0) = |1A1B〉〈1A1B|,
while the field system in the Barut–Girardello (BG) coherent states is [57],

ρ̂ f (0) =
∞

∑
n,m=0

βmβ∗n |m, k〉〈n, k|, (11)

with

βm =
1√

n!Γ(2k + m)

√
α2m|α|2k−1

I2k−1(2|α|)
, (12)

where Iν(x) is the modified Bessel function

ρ̂(t) = ∑
m,n=0

∑
s=1,3,4

β∗mβn

{
4

∑
`=1

(1− δ`2)α
s`|Ψm

s 〉〈Ψn
` |
}

(13)

with
αmn = Am

m1 An
n1e−iλ(Em,k

i −En,k
j )t−γ(Em,k

i −En,k
j )2t, (14)

The su(1, 1)-system’s density matrix ρMs(t) obtained by tracing over the TLAS A and B as:

ρMs(t) = trAB{ρ(t)} =
4

∑
i=1
〈vi|ρ(t)|vi〉. (15)

where {|v1〉 = |1A1B〉, |v2〉 = |1A0B〉, |v3〉 = |0A1B〉, |v4〉 = |0A0B〉} is the TLAS space states.
The reduced density matrix of the TLAS ρAB(t) is obtained by tracing the cavity field degrees that
have space states {|n, k〉}(n = 0, 1, 2, ..., ∞) as:

ρAB(t) = trMs{ρ(t)} =


ρAB

11 ρAB
12 ρAB

13 ρAB
14

ρAB
21 ρAB

22 ρAB
23 ρAB

24
ρAB

31 ρAB
32 ρAB

33 ρAB
34

ρAB
41 ρAB

42 ρAB
43 ρAB

44

 , (16)
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with

ρAB
11 = ∑

n=0
|βn|2{α11 A2n

11 + χn
11(α

13χn
31 + α14χn

41) + χn
11(α

31χn
31

+α41χn
41) + χn

31(α
33χn

31 + α34χn
41) + χn

41(α
43χn

31 + α44χn
41)},

ρAB
12 = (ρAB

21 )∗ = ∑
n=0
|βn|2{χn

11(α
13χn

32 + α14χn
42) + χn

31(α
33χn

32

+α34χn
42) + χn

41(α
43χn

32 + α44χn
42)},

ρAB
13 = (ρAB

31 )∗ = ∑
n=0
|βn|2{χn

11(α
13χn

33 + α14χn
43) + χm

31(α
33χn

33

+α34χn
43) + χn

41(α
43χn

33 + α44χn
43)},

ρAB
14 = (ρAB

41 )∗ = ∑
n=0
|βn|2{χn

11[α
11χn

14 + α13χn
34 + α14χn

44] + χn
14(α

31χn
31

+α41χn
41) + χn

31(α
33χn

34 + α34χn
44) : +χn

41(α
43χn

34 + α44χn
44)

ρAB
22 = ∑n=0 |βn|2{χm

32(α
33χn

32 + α34χn
42) + χm

42(α
43χn

32 + α44χn
42)},

ρAB
23 = (ρAB

32 )∗ = ∑n=0 |βn|2{χn
32(α

33χn
33 + α34χn

43) + χn
42(α

43χn
33 + α44χn

43)},

ρAB
24 = (ρAB

42 )∗ = ∑n=0 |βn|2{χn
14(α

31χn
32 + α41χn

42) + χm
32(α

33χn
34 + α34χn

44)

+χn
42(α

43χn
34 + α44χn

44)},

(17)

ρAB
33 = ∑n=0 |βn|2{χn

33(α
33χn

33 + α34χn
43) + χn

43(α
43χn

33 + α44χn
43)},

ρAB
34 = (ρAB

43 )∗ = ∑n=0 |βn|2{χn
14(α

31χn
33 + α41χn

43) + χn
33(α

33χn
34 + α34χn

44)

+χn
43(α

43χn
34 + α44χn

44)},

ρAB
44 = ∑n=0 |βn|2{α11χ2n

14 + χn
14(α

13χn
34 + α14χn

44) + χn
14(α

31χn
34

+α41χn
44) + χn

34(α
33χn

34 + α34χn
44) + χn

44(α
43χn

34 + α44χn
44)}.

(18)

The density matrices in Equations (17) and (18) describe the time evolution of some quantum
phenomena, such as population inversion, coherence loss, and entanglement.

3. The Population Inversion of the Two TLAS

We now consider the atomic population inversion and discuss the behavior of the collapse
and revival phenomena. The mathematical formula of atomic population inversion is the difference
between the probabilities of finding the atom in excited and ground states. In this system, the two atoms
are identical, so we can study the population of only one of the atoms in the su(2) subsystems—for
example, A based on its reduced density matrix ρA(t) =TrB

{
ρAB(t)

}
. Therefore, the population

inversion W(t) is expressed as:

W(t) = ρAB
11 (t) + ρAB

22 (t)− ρAB
33 (t)− ρAB

44 (t). (19)

As shown in Figure 1, the behavior of the function W(t) is illustrated with a fixed parameter α = 5,
k = 1/4, and the other rates vary; specifically, γ/λ and J/λ, which are related to the dissipation terms
and dipole–dipole interactions, respectively. For example, for γ = 0 and J = 0, W(t) exhibits
quasi-regular fluctuations between 1 and −1 around the zero value. The population inversion
demonstrates periods of revivals and collapses similar to the two-photon JCM [58]. When the

dissipation term e−γ(Em,k
i −En,k

j )2t is taken into account, γ/λ = 0.001 and 0.01, the amplitudes of the
oscillations decrease as the scaled time increases; see Figure 1a
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Figure 1. The atomic inversion for k = 1
4 and α = 5 with different decoherence values of γ: γ/λ = 0

(green solid curves), γ/λ = 0.001 (blue dashed curves), and γ/λ = 0.01 (red dashed dot curves) with
J/λ = 0 in (a) and J/λ = 30 in (b).

Figure 1b shows the influence of the dipole–dipole rate J/λ in the absence of the dissipation terms.
The function W(t) has irregular oscillations, and the amplitudes of the oscillations of W(t) decrease
gradually as the time increases. When the influences of the rates of J/λ and γ/λ are combined,
the dipole–dipole interaction inhibits the fast deterioration of the damped oscillatory behavior of the
atomic population inversion, which appears due to the dissipation term.

Figure 2a shows that the transfer of the energy between the upper atomic states and the lower
states depends on the Bargmann number k = 1, where, with the increase of the Bargmann number k,
the atomic population inversion is regular oscillatory behavior with a π-period. The atomic system
returns to its initial excited states periodically at the points λt = nπ(n = 1, 2, 3, ...). The influences
of the initial coherent field intensity α on the atomic population inversion dynamics are shown in
Figure 2b for the case (k, α) = ( 1

4 , 1). We note that the increase of the initial coherent field intensity
reduces the transfer process of the energy between the atomic states, and reduces the effect of the
decoherence term. For the case (k, α) = ( 1

4 , 1), the dynamics of W(t) are more robust against intrinsic
noise than those of the case of (k, α) = ( 1

4 , 5) of Figure 1a.
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(b)

Figure 2. As Figure 1a,b but for (k, α) = (1, 5) in (a) and (k, α) = ( 1
4 , 1) in (b) with different decoherence

values of γ: γ/λ = 0 (green solid curves), γ/λ = 0.001 (blue dashed curves), and γ/λ = 0.01 (red
dashed dot curves).

4. Coherence Loss Measures

The quantum coherence in the present system is due to: (1) The unitary TLAS–EMF interaction,
in which the coherence is the QE between the atomic system and the cavity subsystems or is the
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coherence-loss for one of them. (2) The intrinsic decoherence leads to coherence-loss; in this case the
coherence differs from the QE. Further, the effects of both the rates of dipole–dipole interactions and
the decoherence on the quantum coherence were studied via the entire system’s von Neumann entropy,
the EMF, and the TLAS.

(1) The TLAS–EMF entropy is numerically calculated using the eigenvalues λi of the density matrix
of the total system ρ̂(t) in Equation (13):

E(t) =
∞

∑
i=1

λi ln(λi). (20)

(2) The partial entropies are used to measure the coherence loss [23,59] of some partitions. Based on
the eigenvalues πi

n of the reduced density matrices of the EMF ρMs(t) in Equation (15) and of
the TLAS system ρAB(t) in Equation (16), the partial entropies are calculated as:

Ei(t) =
∞

∑
n=1

πi
n ln(πi

n), i = AB, Ms. (21)

The entropy functions E(t), EAB and EMs satisfy the Araki-Lieb (A-LI) inequality as [60]:

|EAB(t)− EMs(t)| ≤ E(t) ≤ EAB(t) + EMs(t). (22)

If the dissipation term is neglected, Equation (11) is governed only by the unitary interactions
of the TLAS–EMF system, so the TLAS–EMF system’s state is pure, E(t) = 0. According to
the A-LI inequality, Equation (22) becomes EAB = EMs, and they are used to quantify the
entanglement/mixedness. If the dissipation term is considered, then the TLAS–EMF state is a mixed;
therefore, E(t) 6= 0 and EAB 6= EMs, and the partial entropies are used to measure only the mixedness
in the subsystems.

The numerical results of the entropy functions were obtained by numerically computing the
eigenvalues of the density matrices of Equations (7), (10), and (11), and using the entropy Formulas (14)
and (15). As shown in Figures 3–5, the quantum coherence’s growth is analyzed by the functions
E(t), EAB and EMs using the same initial parameters as Figure 1. Since the atomic inversion’s revival
periods decrease in the presence of the rates of the dipole–dipole interactions and the decoherence
term, the TLAS–EMF system never reaches an initial pure state when the rates J/λ and γ/λ are not
equal to zero.

Figure 3a shows the dynamics of the E(t), EAB, and EMs in the absence of the dipole–dipole
interactions and dissipation term. The TLAS, EMF, and TLAS–EMF systems’ states start from the
initial pure states and evolve into mixed states. The entire entropy E(t) has small values compared
with the values of EAB and EMs. The functions of EAB and EMs have approximately the same dynamic
behavior and reach their minimal values at the middle point of the revival intervals, and the curves
never reach their initial pure state, as shown in Figure 2a. Of note, the entropies gradually increase to
their maximum values before and after the revival periods and then decrease to minimum values in
the middle of the collapse periods.
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Figure 3. The quantifiers E(t) (solid curves), EAB(t) (dash-dot curves), and EMs(t) (dash curves) for
α = 5 and J/λ = 0. With different decoherence values: γ/λ = 0.00001 in (a), γ/λ = 0.001 in (b),
γ/λ = 0.1 in (c).

Figure 3b,c shows that the dissipation term leads to a gradual increase in the E(t),
EAB, and EMs until they reach their time-independent stationary values, corresponding to the TLAS,
EMF, and TLAS–EMF systems’ mixed states. The EMs of the EMF system and its maximum values
are greater than those of the TLAS. The amplitudes of the oscillations of EMs and E(t) increase as the
interaction time increases—that is, the system and its subsystems never come close to their initial pure
states. The increase in the rate γ/λ leads to growth of the entire entropy that is greater than growth for
the partial entropies EMs and EAB. The entropy functions rapidly reach their stationary values.

As shown in Figure 4, the functions E(t), EAB, and EMs are plotted at a dipole–dipole coupling
J = 30λ and the other parameters are the same as in Figure 3a,b. The entropy functions EAB and EMs
show rapid fluctuations with the interference between the patterns most of the time. For the small
decay rate value γ = 0.01λ, the growth of the entire entropy E(t) is less than that of the subentropies
compared to J/λ = 0 in Figure 3b. We deduce that the dipole–dipole rate increases the chaotic
oscillatory behavior of the entropy functions, and the generated mixedness of the TLAS and EMF
states is more than that of the TLAS–EMF state.

Figure 5a shows the dynamics of the mixedness of the system and its subsystems for the case
(k, α) = (1, 5). By comparing this case with the case (k, α) = ( 1

4 , 5) of Figure 3a, we find that the
mixedness of the entropies is generated regular with π-period, where the system and its subsystems
are in initial pure states at the times λt = nπ(n = 1, 2, 3, ...). The effects of the initial coherent field
intensity α on the dynamics of the mixedness are shown in Figure 5a for the case (k, α) = ( 1

4 , 1).
The small coherent field intensity leads to enhancing the generated mixedness and weakening the
effect of the decoherence term.
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Figure 4. As Figure 1 (a,b) but for J/λ = 30.
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Figure 5. As Figure 3 (a) but for different cases: (k, α) = (1, 5) in (a) and (k, α) = ( 1
4 , 1) in (b).

5. The TLAS–EMF System’s Negativity Entanglement

Entanglement between the EMF and TLAS is quantified via the negativity of the total density
matrix ρ(t) [61]. It is calculated using the matrix ρ(t)TAB of the partial transposition of the density
matrix ρ(t) in Equation (13) with respect to the TLAS states’ space {|vi〉}. The matrix elements ρ(t)TAB

are expressed as:
〈vi, j|(ρ(t))TAB |vm, n〉 = 〈vm, j|ρ(t)|vi, n〉. (23)

The negativity’s close form is expressed as:

N(t) =
4

∑
j=1
|λj|, (24)

where λj represents the negative eigenvalues of the matrix ρ(t)TAB . If N(t) = 1, then the quantum state
has maximal QE and it is zero for disentangled state; otherwise, the states have partial entanglement.
The negativity will be calculated numerically by computing the negative eigenvalues of the matrix ρ(t)TAB .

Figure 6, displays the effects of both the rates of intrinsic decoherence and the dipole–dipole
interplay on the entanglement behavior between the EMF and TLAS with the same conditions using
in the previous sections. In Figure 6a, N(t) is depicted when J = 0 has different dissipation rate values
γ ∈ [0.0, 0.03λ]. At γ/λ = 0, N(t) has regular oscillatory behavior with a π-period. This behavior
shows the ability of the unitary interactions between the EMF and TLAS to generate maximal and
partial entanglement. The negativity N(t) gradually decreases to minimum values at the end of the
period λt

π = n (where nεZ) and reaches maximum values before and after the center of the revival
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periods, as shown in Figures 1a and 6a. As the dissipation rate increases, the oscillations gradually
decrease, and after a short time, the negativity damps the oscillatory behavior.
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Figure 6. The N(t) for k = 1
4 and α = 5 with different decoherence values of γ: γ/λ = 0 (green solid

curves), γ/λ = 0.001 (blue dashed curves), and γ/λ = 0.03 (red dashed dot curves). With J/λ = 0 in
(a) and J/λ = 30 in (b).

The increase of γ/λ leads to a decrease in the entanglement until it reaches its time-independent
stationary non-zero value, which is called the stationary entangled state. The EMF and TLAS rapidly
reach their stationary entangled states by increasing the decoherence rate.

Figure 6b displays the dynamic behavior of the TLAS–EMF entanglement with the rate of the
dipole–dipole interactions J/λ = 30. For small values of γ/λ, N(t) exhibits more irregular oscillations.
The maxima increased, whereas its minima shifted upward. This means that the dipole–dipole rate
enhances the generated entanglement. We deduce that the effect of the rate J/λ is more pronounced due
to the lesser development of the entanglement compared with the previous case J/λ = 0. In general,
the dipole–dipole rate increases entanglement, delaying the appearance of stationary entanglement.

Figure 7a illustrates that the regularity of the generated TLAS–EMF entanglement is enhanced
under the effect of the Bargmann number for that case (k, α) = (1, 5). The states of the atomic system
and the two-mode coherent field cavity are disentangled periodically at the times λt = nπ(n =

1, 2, 3, ...). By comparing Figures 6a and 7a, we find that the decoherence has the same effect on the
dynamics of the generated TLAS–EMF entanglement. For the case where small initial coherent field
intensity is considered, the generated TLAS–EMF entanglement can be enhanced compared to the case
with large coherent field intensity.
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Figure 7. As Figure 6 (a) but for different cases: (k, α) = (1, 5) in (a) and (k, α) = ( 1
4 , 1) in (b) with

different decoherence values of γ: γ/λ = 0 (green solid curves), γ/λ = 0.001 (blue dashed curves),
and γ/λ = 0.03 (red dashed dot curves).
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6. Two-Atom System’s Entanglement

In the following section, the negativity function NQ(t) is used to study the QE of the two TLAS
via the state ρAB(t) in Equation (16). To calculate the negativity of the two TLAS, we find the partial
transposition of the matrix with respect to the subsystem that is expressed by the following matrix:

(ρAB(t))TA =


ρAB

11 ρAB
21 ρAB

13 ρAB
23

ρAB
12 ρAB

22 ρAB
14 ρAB

24
ρAB

31 ρAB
41 ρAB

33 ρAB
43

ρAB
32 ρAB

42 ρAB
34 ρAB

44

 , (25)

where ρAB
ij (ij = 1− 4) are the elements of in Equation (16). Then the TLAS negativity is computed

numerically using NQ(t) = ∑4
i=1 |λi|, where λi is the negative eigenvalue of the matrix (ρAB(t))TA .

As shown in Figure 8, the effects of the rates of dipole–dipole interactions and dissipation term
γ ∈ [0.0, 0.03λ] on the TLAS entanglement are displayed with the same conditions used in the previous
section. As demonstrated in Figure 8a, in the absence of the dissipation rate, the negativity oscillates
between its extreme values with regular oscillatory behavior, which shows the unitary interaction’s
ability to generate TLAS entanglement. First, the negativity remains zero for a short period, until a
particular time, when it suddenly increases from to its partial maximum value. After that, it decreases
and suddenly disappears over a short period (the death period). The sudden appearance and
disappearance of the entanglement [62–64] is repeated at further intervals of λt. The dissipative rate
plays an important role in the negativity’s dynamic behavior. At low dissipation rates, NQ(t) fluctuates
with no death periods over the course of the interactions. Larger values γ/λ decrease the entanglement
until it reaches its stationary state. Sudden appearance and disappearance does not occur.
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Figure 8. The NQ(t) for k = 1
4 and α = 5 with different decoherence values of γ: γ/λ = 0 (green solid

curves), γ/λ = 0.001 (blue dashed curves), and γ/λ = 0.03 (red dashed dot curves). With J/λ = 0 in
(a) and J/λ = 30 in (b).

Figure 8b, shows the behavior of the generated TLAS entanglement on the dipole–dipole rate
when (J/λ = 30). At low dissipation rates, the negativity demonstrates chaotic oscillatory behavior
and never reaches zero (the disentangled state), as shown in Figure 8b. After the damping term is
taken into account, the negativity increases and its minimum values are greater than those of J/λ = 0
in Figure 8a. The dipole–dipole rate J/λ increases the amplitudes and the negativity’s oscillations and
also delays reaching stationary entanglement.

Figure 9a confirms that the Bargmann number has the same the effect on the previous quantum
phenomena. For the case (k, α) = (1, 5), the TLAS–EMF interactions lead to generate atomic
entanglement periodically with π-period. Compared to the case of Figure 8a, the time intervals
of the sudden appearance and disappearance of the entanglement are increased clearly. Figure 9b
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shows that the ability of the TLAS–EMF interactions to generate the entanglement is weakened with
the small initial coherent field intensity.
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Figure 9. As Figure 8 (a) but for different cases: (k, α) = (1, 5) in (a) and (k, α) = ( 1
4 , 1) in (b) with different

decoherence values of γ: γ/λ = 0 (green solid curves), γ/λ = 0.001 (blue dashed curves), and γ/λ = 0.03
(red dashed dot curves).

Our results have potential applications in quantum information, such as: Generation of mixedness
and entanglement under the decoherence [29]. The maximally entangled state of the two-qubit system
can be used to employ quantum teleportation [65,66] or quantum dense coding [67]. The generated
stable, maximally mixed state can be used to realize quantum computation [68,69] and qubit-channel
metrology [70].

7. Conclusions

In the present context, the coupled TLAS interacting with two nondegenerate modes of an
electromagnetic field represented by su(1,1) Lie algebra were investigated. The intrinsic damping
effect of an effective dissipation term was studied by solving the Milburn equation. We investigated
the effects of the dissipation and dipole–dipole rates on some quantum effects, namely, the atomic
population inversion, quantum coherence, mixedness, and entanglement of the entire EMF and
TLAS states. The atomic inversion’s revival and collapse periods depended on the dissipation and
dipole–dipole rates. The dissipation and dipole–dipole rates may have controlled the behavior of some
quantum effects that were measured using the negativity and von Neumann entropy. The oscillatory
behavior of the different quantum effects and their stationary values were enhanced by the increase in
the dipole–dipole rate. Through the results, we noticed clear effects of the dipole–dipole interaction
and the decoherence on the phenomena of the collapses and revivals of the population inversion.
Moreover, the oscillations decrease when increasing the dipole–dipole interaction and the function
will fluctuate randomly. While increasing the decoherence, the amplitude of the oscillations decreases
until it is erased after a short period of time. The entropies and negativity inspect the periodicity
phenomenon and are generated mixedness and weaken the effect of the decoherence terms by adding
the dipole–dipole interaction.
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