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Abstract: Coordinate reduction has been widely used for efficient simulation of flexible multibody
dynamics. To achieve the reduction of flexible bodies with reasonable accuracy, the appropriate
number of dominant modes used for the reduction process must be selected. To handle this issue,
an iterative coordinate reduction strategy is introduced. In the iteration step, more dominant modes
of flexible bodies are selected than the ones in the previous step. Among the various methods,
the conventional frequency cut-off rule is here considered. As a stop criterion, a novel a posteriori error
estimator that can evaluate the relative eigenvalue error between full and reduced flexible bodies is
proposed. Through the estimated relative eigenvalue error obtained, the number of dominant modes
is automatically selected to satisfy the error tolerance up to the desired mode range. The applicability
to the automation process is verified through numerical examples. It is also evaluated that efficient
and accurate flexible multibody dynamics simulation is available with the reduced flexible body,
generated by the proposed algorithm.

Keywords: flexible multibody dynamics; component mode synthesis; model reduction; error estimation

1. Introduction

Flexible multibody dynamics (FMBD) simulation is a popular way to consider system dynamics
with elastic deformation. The FMBD approach might be powerful because it can provide stress and
strain information unlike with rigid body dynamics, but it requires much heavier computational cost
than multibody dynamics (MBD) does. The computational cost comes from flexible bodies that are
finite element (FE) models with large degrees of freedom (DOFs). Coordinate reduction techniques
of the flexible bodies are then essential to effective FMBD simulation [1–6]. Among the various
methods, component mode synthesis (CMS) [7–12], a projection technique with an eigenbasis, may be
the most popular method in linear vibration with FE analysis. In the CMS methods, the residual
eigenvectors that are less important for representing the dynamic characteristics of the original FE
model are truncated. The constraint modes are then used to define the interface boundary condition
of the reduced model [7,10,12], or the attachment modes may be employed instead of the constraint
modes [9,13]. Those depend on the type of CMS method. The small number of selected eigenvectors,
known as dominant eigenvectors, are only used in the projection of the original FE model, which is a
key to the model reduction process. The following two questions then arise [2]: (a) Which eigenvectors
are dominant? (b) How many eigenvectors should be used to reduce FE models accurately? With this
motivation, many researchers have studied mode selection and error estimation methods for use with
the CMS methods.
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The rule of thumb of mode selection may be the frequency cut-off method in the mode
superposition manner, but in the CMS methods, the effective interface mass (EIM) methods by
Kammer and Tiller [14,15] may be the first trial for the mode selection method. The EIM methods
were developed for the Craig–Bampton (CB) method, which is the most popular CMS method.
The optimal model reduction (OMR) methods based on the Dirichlet-to-Neumann (DTN) map have
been studied under the substructuring strategy [16,17]. Those may be the first mode selections
considering the coupling effect between substructures. The CMSχ method is an extension of the OMR
method using the moment-matching approach instead of the DTN map [18]. Kim et al. inherited the
CMSχ method without the relatively rough assumption in the derivation process, which is called the
CMSσ method [19]. Unlike the above approaches, the eigenvector-based modal contribution (EMC)
technique is an a posteriori data-driven method that computes the substructural modal contribution by
considering the relation between the original and reduced matrices [20]. Therefore, the EMC method
can provide better mode selection performance than a priori methods can, but requires relatively huge
computational cost. Those issues were well examined by Kim et al. [20].

Ranking of the dominant modes can be arranged using the mode selection method. We can then
make a selection of the dominant modes, and then, the modes could be added to the reduced matrices
in the iterative way for better accuracy. However, more modes lead to larger reduced system matrices,
requiring a compromise between computation cost and accuracy. The use of mode selection only
may not be enough to resolve this issue. It can be treated using the error evaluation methods of the
reduced matrices. Among the various methods, the error estimators of the CB method and the Guyan
reduction proposed by Kim et al. may be the most highly accurate [21–24]. Those approaches are
direct approximations of the relative eigenvalue errors of the CB and Guyan reductions. The direct
eigenvalue error estimation is then available without knowing the reference eigenvalue.

Combining the error estimators and the above mode selection methods can provide an automated
model reduction algorithm excluding empirical judgment [25]. This work was accelerated toward that
idea. An iterative coordinate reduction algorithm of the FMBD analysis is then proposed. The floating
frame of reference formulation (FFRF) [1,26] and its CB-based coordinate reduction are here considered
so that those may be the standard approaches in various commercial FMBD software. In the proposed
iterative algorithm, the conventional frequency cut-off rule is considered to select more simply the
important flexible modes, and the reduced matrices could be initially constructed. The accuracy of
the eigenvalues approximated by obtaining the reduced eigenvalue problem can be evaluated using
the new CB error estimation method, which is a more generalized formulation than in the previous
work [22]. If the accuracy level is less than the desired tolerance, the flexible modes are iteratively
added to the reduced matrices constructed in the previous step. In this manner, reduced matrices with
the required accuracy and a reasonable dimensions could be obtained.

In the following section, the FFRF approach with the CB coordinate reduction is reviewed, and the
CB error estimator is presented in Section 3. The iterative coordinate reduction algorithm is described
in Section 4. The performances and characteristics of the proposed algorithm are investigated through
numerical examples in Section 5. The conclusions are given in Section 6.

2. Equations of Motion for Flexible Multibody Systems

The floating frame of reference formulation (FFRF) [1,26] is widely used to describe the behavior
of multibody dynamics systems with flexible bodies. Two types of coordinate systems are combined in
FFRF; one type is the reference coordinates used to describe the translational and rotational motion of
a body. The other type involves the flexible coordinates used for the deformation of a body. To derive
equations of motion (EOMs), the i-th body in an FMBD system is considered.
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2.1. Floating Frame of Reference Formulation

The Lagrange equation for the i-th body in the FMBD system can be written as:

d
dt

(
∂Ti

∂q̇i

)T

−
(

∂Ti

∂qi

)T

+ CT
qi λ

i = Qi, (1)

where qi is the generalized coordinate vector including the reference (rigid) and flexible coordinates.
Ti is the kinetic energy. CT

qi is the constraint Jacobian matrix. λi is the vector of Lagrange multipliers.

Qi is the vector of generalized forces. The generalized forces Qi acting on the i-th body can be derived
using the virtual work δWi

d of the elastic force and δWi
e of the external forces as:

δWi = δWi
d + δWi

e, (2)

where δWi
d and δWi

e are defined as:

δWi
d = −qiT

Kiδqi, δWi
e = Qi

e
T

δqi, (3)

where Ki is the stiffness matrix and Qi
e is the external force vector. Substituting Equation (3) into

Equation (2), the generalized force Qi can be expressed as:

Qi = −Kiqi + Qi
e. (4)

The terms on the left side in Equation (1) without the third term can be written as [1]:

d
dt

(
∂Ti

∂q̇i

)T

−
(

∂Ti

∂qi

)T

= Miq̈i −Qi
v, (5)

where Mi is the mass matrix and Qi
v is the quadratic velocity vector defined as:

Qi
v = −Ṁiq̇i +

[
∂

∂qi

(
1
2

q̇iT
Miq̇i

)]T
. (6)

Using Equations (4) and (5) in Equation (1), the following EOMs neglecting the damping are obtained:

Miq̈i + Kiqi + CT
qi λ

i = Qi
e + Qi

v, (7)

and it can be specifically written in a partitioned form of the reference and flexible coordinates as:

[
Mi

R Mi
FR

Mi
RF Mi

F

] [
q̈i

R
q̈i

F

]
+

[
0 0
0 Ki

F

] [
qi

R
qi

F

]
+

CT
qi

R

CT
qi

F

 λi =

(Qi
e

)
R(

Qi
e

)
F

+

(Qi
v

)
R(

Qi
v

)
F

 , (8)

where subscripts R and F denote the quantities with respect to the reference and flexible
coordinates, respectively.

2.2. Coordinate Reduction of Flexible Bodies

In this section, we review the FMBD formulation including the coordinate reduction of flexible
bodies [2,27,28]. The popular Craig–Bampton (CB) method [7] is here considered to reduce the degrees
of freedom (DOFs) of a flexible body. The equations of motion of an undamped flexible body under
free vibration can be expressed as:

Mi
Fq̈i

F + Ki
Fqi

F = 0, (9)
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and its eigenvalue problem is:

Ki
Fϕi

n = χi
nMi

Fϕi
n n = 1, 2, · · · , Ni

F, (10)

where χi
n and ϕi

n are the n-th eigenvalue and its corresponding eigenvector, respectively. Here, Ni
F is

the number of DOFs of the flexible body.
The mass and stiffness matrices, Mi

F and Ki
F, can be partitioned to the interior DOFs and the

boundary DOFs denoted using subscripts s and b. We consider the connecting points of joints, external
forces, and the boundary conditions as boundary DOFs for the flexible body. Then, we have:

Mi
F =

[
Mi

s Mi
c

Mi
c

T
Mi

b

]
, Ki

F =

[
Ki

s Ki
c

Ki
c

T
Ki

b

]
, qi

F =

[
qi

s
qi

b

]
. (11)

The numbers of interior and boundary DOFs are denoted as Ni
s and Ni

b, respectively.
In the CB method, the fixed-interface normal mode Φi

s and the interface constraint mode Ψi are
used to reduce and assemble the flexible body coordinates. The fixed-interface normal mode can be
obtained through the eigenvalue problem of the mass and stiffness matrices with respect to the interior
part as: [

Ki
s − κi

nMi
s

]
φi

n = 0, n = 1, 2, · · · , Ni
s, (12a)

Φi
s =

[
φi

1 φi
2 · · · φi

Ni
s

]
, (12b)

where κi
n and φi

n denote the eigenvalue and eigenvector of the interior part, respectively. The interface
constraint mode is then defined as [7]:

Ψi = −[Ki
s]
−1

Ki
c. (13)

The transformation matrix Ti
0 can be constructed using Equations (12a) and (13), then the

generalized coordinate qi
F can be written with the hybrid coordinate pi

F as:

qi
F = Ti

0pi
F, Ti

0 =

[
Φi

s Ψi

0 I

]
, pi

F =

[
pi

s
qi

b

]
. (14)

The generalized coordinate vector of the interior qi
s is expressed as:

qi
s = Φi

spi
s + Ψiqi

b, Φi
s =

[
Φi

d Φi
r

]
, pi

s =

[
pi

d
pi

r

]
, (15)

in which the subscripts d and r denote the dominant and residual terms, respectively. The number of the
dominant modes Φi

d and the residual modes Φi
r is denoted as Ni

d and Ni
r, respectively (Ni

s = Ni
d + Ni

r,
Ni

d � Ni
r).

Neglecting the residual modes, the original generalized coordinate vector qi
F can be approximated

using the reduced transformation matrix Ti
0 as:

qi
F ≈ qi

F = Ti
0pi

F, (16a)

Ti
0 =

[
Φi

d Ψi

0 I

]
, pi

F =

[
pi

d
qi

b

]
. (16b)
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Using Galerkin projection with the transformation matrix Ti
0, Equation (9) can be reduced as:

Mi
Fp̈i

F + Ki
Fpi

F = 0, (17a)

Mi
F = Ti

0
T

Mi
FTi

0, Ki
F = Ti

0
T

Ki
FTi

0, (17b)

and the corresponding eigenvalue problem is:

Ki
FΞi

n = χi
nMi

FΞi
n n = 1, 2, · · · , Ni. (18)

The number of DOFs for the reduced flexible body Ni depends on the number of dominant modes
Nd and the number of boundary DOFs Nb (Ni

= Ni
d + Ni

b). The number of dominant modes is

much smaller than the number of residual modes, and Ni can be dramatically reduced compared
to the original DOFs Ni

F. From the eigenvector Ξi
n, the original eigenvector ϕi

n in Equation (10) is
approximated as:

ϕi
n ≈ ϕi

n = Ti
0Ξi

n. (19)

2.3. Floating Frame of Reference Formulation with the Reduced Flexible Bodies

The generalized coordinate vector qi can be approximated using the transformation matrix Ti
0 as:

qi ≈ qi = Bi

[
qi

R
pi

F

]
, Bi =

[
I 0
0 Ti

0

]
. (20)

The EOMs of a reduced FMBD system can be obtained by substituting Equation (20) into

Equation (8) and premultiplying by BiT
as follows:

[
Mi

R Mi
RF

Mi
FR Mi

F

] [
q̈i

R
p̈i

F

]
+

[
0 0
0 Ki

F

] [
qi

R
pi

F

]
+

CT
qi

R

CT
pi

F

 λi =

(Qi
e

)
R(

Qi
e

)
F

+

(Qi
v

)
R(

Qi
v

)
F

 , (21)

where the submatrices and vectors in Equation (21) are expressed as:

Mi
RF = Mi

FR
T
= Mi

RFTi
0, Cpi

F
= Cqi

F
Ti

0,(
Qi

e

)
F
= Ti

0
T(

Qi
e

)
F
,
(

Qi
v

)
F
= Ti

0
T(

Qi
v

)
F
.

(22)

It is clear that the accuracy of the reduced EOMs depends on approximation of the flexible bodies.
Various approaches such as mode selection methods [14–17,19], modal compensation [4,5,10–12,29],
etc., have been studied to achieve better approximation of the reduced flexible bodies in structural
dynamics, but increasing Ni

d may be the simplest and the most popular remedy to get more accurate χi
n.

3. Error Estimation for a Reduced Flexible Body

The following relative eigenvalue error has been widely used to evaluate the accuracy of a reduced
flexible body:

ζ i
n =

χi
n − χi

n
χi

n
=

χi
n

χi
n
− 1, n = 1, 2, · · · , Ni. (23)

The value of ζ i
n implies a difference between χi

n in Equation (18) and χi
n in Equation (10), and thus,

it can provide information about how many modes are needed for accurate reduction of flexible
bodies. However, the computation of ζ i

n requires a huge burden because the reference eigenvalues, χi
n,

are obtained by solving the eigenvalue problems of the original flexible bodies. To overcome this issue,



Appl. Sci. 2020, 10, 7143 6 of 24

Kim et al. has proposed a posteriori error estimation techniques that offer a way to directly estimate
ζ i

n without the reference eigenvalues (χi
n) [22,23]. The previous error estimators provide accurate

eigenvalue error prediction, but the estimated errors are generally less than the exact errors [23].
This feature may cause excessive and inaccurate model reduction. In this work, a more reasonable
error estimator toward the upper bound of the exact error is proposed from a conservative point
of view.

Premultiplying ϕi
n

T by the eigenvalue problem of the original flexible body in Equation (10),
the following scalar equation could be obtained:

1
χi

n
ϕi

n
T

Ki
Fϕi

n = ϕi
n

T
Mi

Fϕi
n, n = 1, 2, · · · , Ni

F. (24)

The original eigenvector ϕi
n is then decomposed to the approximated eigenvector and the error term as:

ϕi
n = ϕi

n + δϕi
n. (25)

The approximated eigenvector ϕi
n of the flexible body is defined in Equation (19). Considering the

residual modal compensation, ϕi
n could be more accurately approximated [4,10] as:

ϕi
n = Ti

1Ξi
n, Ti

1 = Ti
0 + ω2Ti

r, Ti
r =

[
0 Fi

rsAi

0 0

]
, (26a)

Ai = Mi
sΨi + Mi

c, Fi
rs = Φi

r[Λ
i
r]
−1Φi

r
T

, (26b)

where ω is an angular frequency. Fi
rs is a flexibility matrix including the residual modes that are

defined in Equation (15). Λi
r is a diagonal matrix of the residual eigenvalues with respect to the residual

eigenvectors Φi
r. Equation (26a) shows that the approximated eigenvector in Equation (19) can be

refined with the additional transformation matrix Ti
r, which provides better representation of the

flexible mode shapes [4,10]. The derivation details are presented in Appendix A.
Substituting Equation (26a) into Equation (25), we have:

ϕi
n = Ti

1Ξi
n + δϕi

n. (27)

Substituting Equation (27) into Equation (24), the original eigenvector ϕi
n can be represented as:

1
χi

n
[Ti

1Ξi
n + δϕi

n]
TKi

F[T
i
1Ξi

n + δϕi
n] = [Ti

1Ξi
n + δϕi

n]
TMi

F[T
i
1Ξi

n + δϕi
n]. (28)

If the approximated eigenvector is close to the exact eigenvector in Equation (25), the error term
(δϕi

n) becomes small, and then, all the terms with respect to δϕi
n could be neglected to approximate

Equation (28). In addition, using Equation (26a), Equation (28) is written as:

1
χi

n
Ξi

n
T
[Ti

0 + ω2Ti
r]

TKi
F[T

i
0 + ω2Ti

r]Ξ
i
n ≈ Ξi

n
T
[Ti

0 + ω2Ti
r]

TMi
F[T

i
0 + ω2Ti

r]Ξ
i
n. (29)

Using the mass orthonormality and stiffness orthogonality conditions of the reduced flexible body
(Ξi

n
TKi

FΞi
n = χi

n and Ξi
n

TMi
FΞi

n = 1), Equation (29) is expressed as:

χi
n

χi
n
− 1 ≈ Ξi

n
T
[

ω2Ti
0

T
Mi

f Ti
r + ω2Ti

r
T

Mi
f Ti

0 + ω4Ti
r

T
Mi

f Ti
r

]
Ξi

n

− 1
χi

n
Ξi

n
T
[

ω2Ti
0

T
Ki

f Ti
r + ω2Ti

r
T

Ki
f Ti

0 + ω4Ti
r

T
Ki

f Ti
r

]
Ξi

n.
(30)



Appl. Sci. 2020, 10, 7143 7 of 24

where ω2 is χi
n, we have:

χi
n

χi
n
− 1 ≈ 2Ξi

n
T

Ti
0

T [
χi

nMi
F −Ki

F

]
Ti

rΞi
n + Ξi

n
T

Ti
r

T [
[χi

n]
2Mi

F − χi
nKi

F

]
Ti

rΞi
n. (31)

The left side of Equation (31) is the relative eigenvalue error ζ i
n defined in Equation (23). Therefore,

the right side of Equation (31) is a direct approximation of ζ i
n.

In the same manner as Equation (25), χi
n is decomposed as:

χi
n = χi

n + δχi
n. (32)

In this derivation, we assumed that the approximated eigenvector is close to the exact eigenvector
in Equation (25). This also implies that δχi

n is very small, and then, χi
n can be approximated as χi

n.
Replacing χi

n with χi
n in the right-hand side of Equation (31), we get:

ζ i
n = Ξi

n
T
[

2χi
nTi

0
T

Mi
FTi

r − 2Ti
0

T
Ki

FTi
r + [χi

n]
2Ti

r
T

Mi
FTi

r − χi
nTi

r
T

Ki
FTi

r

]
Ξi

n, (33)

and the component matrices in Equation (33) are defined by:

Ti
0

T
Mi

FTi
r =

[
0 Xi

a
0 Xi

b

]
, Ti

r
T

Ki
FTi

r =

[
0 0
0 Xi

b

]
, Xi

a = Φi
d

T
Mi

sFi
rsAi, Xi

b = AiT
Fi

rsAi, (34a)

Ti
0

T
Ki

FTi
r =

[
0 Yi

a
0 Yi

b

]
, Yi

a = Φi
d

T
Ki

sFi
rsAi, Yi

b = [ΨiT
Ki

s + KiT
c ]F

i
rsAi, (34b)

Ti
r

T
Mi

FTi
r =

[
0 0
0 AiT

Φi
r[Λ

i
r]
−2Φi

r
TAi

]
. (34c)

Using the definition of the constraint mode Ψi in Equation (13) and the orthogonality of the
eigenvector matrices Φi

d and Φi
r yields:

Xi
a = Φi

dMi
sΦi

r[Λ
i
r]
−1Φi

r
T

Ai = 0, (35a)

Yi
a = Φi

dKi
sΦi

r[Λ
i
r]
−1Φi

r
T

Ai = 0, (35b)

Yi
b =

[
−KiT

c [K
i
s]
−1Ki

s + KiT
c

]
Fi

rsAi = 0. (35c)

Substituting Equations (35a), (35b), and (35c) into Equations (34a) and (34b), Equation (33) can be
rewritten using Equations (34a) and (34c) as:

ζ i
n = Ξi

n
T
(

χi
n

[
0 0
0 Xi

b

]
+ [χi

n]
2

[
0 0
0 AiT

Φi
r[Λ

i
r]
−2Φi

r
TAi

])
Ξi

n. (36)

In the previous work [23], the second term of the right-hand side of Equation (36) was neglected
for computational efficiency of the error estimator, but it causes the predicted error to be at the low
bound of the exact error. To handle this problem, a numerical treatment is considered in this work.
In Equation (34c), Λi

r is a diagonal matrix that includes residual eigenvalues that are larger than the
maximum dominant eigenvalue. When the eigenvalues are sorted in ascending order, the following
inequality equation with the matrix norm is obtained:
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1
κi

Nd+1
‖Fi

rs‖ <
1
κi

n
‖Fi

rs‖, (37)

where κi
Nd+1 is the first residual eigenvalue and κi

n is among the dominant eigenvalues (n ≤ Nd <

Nd + 1). Therefore, the inequality in Equation (37) is clear with κi
n < κi

Nd+1.

We also found that ‖[Λi
r]
−1‖ becomes smaller than the case when all residual eigenvalues located

at the diagonal terms of Λi
r are κi

Nd+1. Assuming that all of the diagonal components are κi
Nd+1 of

[Λi
r]
−1, it can be written as (1/κi

Nd+1)I. We then have the following equation:

‖Φi
r[Λ

i
r]
−2Φi

r
T‖ ≤ 1

κi
Nd+1

‖Fi
rs‖. (38)

From Equations (37) and (38), we have:

‖Φi
r[Λ

i
r]
−2Φi

r
T‖ ≤ 1

κi
Nd+1

‖Fi
rs‖ <

1
κi

n
‖Fi

rs‖. (39)

Replacing Φi
r[Λ

i
r]
−2Φi

r
T with (1/κi

n)Fi
rs in Equation (36) and using the inequality in Equation (39),

the new error estimator (ζ̃ i
n) at the upper bound of the relative eigenvalue error (ζ i

n) can be derived as:

ζ i
n ≤ ζ̃ i

n = Ξi
n

T
(

χi
n

[
0 0
0 Xi

b

]
+

[χi
n]

2

κi
n

[
0 0
0 Xi

b

])
Ξi

n. (40)

ζ̃ i
n can be written as:

ζ̃ i
n = (χi

n +
χi

n
2

κi
n
)Ξi

n
T
[

0 0
0 Xi

b

]
Ξi

n, Ξi
n =

[
(Ξi

n)s

(Ξi
n)b

]
, (41)

and considering component matrices’ operation, the new error estimator ζ̃ i
n is simplified as:

ζ̃ i
n = (χi

n +
χi

n
2

κi
n
)(Ξi

n)
T
b AiT

Fi
rsAi(Ξi

n)b. (42)

For the lumped mass case (Mi
c = 0) [30], the error estimator ζ̃ i

n is defined as:

ζ̃ i
n = (χi

n +
χi

n
2

κi
n
)(Ξi

n)
T
b ZiT

Fi
rsZi(Ξi

n)b, Zi = Mi
sΨi. (43)

The lumped mass matrix Mi
s is a diagonal matrix, then Equation (43) can be efficiently computed

compared with Equation (42). The components (zi)nm of the matrix Zi can be rewritten by the following
tensor notation as:

(zi)nm = (mi
s)nn(ψ

i)nm, n = 1, 2, · · ·Ni
s, m = 1, 2, · · ·Ni

b. (44)

In addition, as we described, neglecting Ti
r

T
Mi

f Ti
r, the previous error estimator [23] was

derived as:
ηi

n = χi
n(Ξ

i
n)

T
b ZiT

Fi
rsZi(Ξi

n)b. (45)
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Therefore, the previous and proposed error estimators may become lower and upper bounds of the
exact relative eigenvalue errors, respectively. This could be investigated numerically through example
problems. The proposed error estimators in Equations (42) and (43) only need the eigensolutions
obtained from the reduced flexible models in Equation (18), and thus, those could be efficiently
computed. It should be also noted that the error estimation performance highly depends on how close
the reduced eigensolution is to the reference eigensolution because the error estimator is derived with
the following two assumptions: a small eigenvector error and the use of χi

n. In practice, when the
relative eigenvalue error is ≤10%, the error estimator works well [21,24,25].

It is a better way to evaluate the model reliability through the eigenvector error rather than
the eigenvalue error. The modal assurance criterion (MAC) is then a typical way to compare the
reference and approximated eigenvectors. However, it should be noted that plotting MAC might
require the reference eigenvectors. To avoid this problem, the proposed technique indirectly estimates
the eigenvalue errors without using the reference eigensolutions. In addition, the comparison of the
eigenvalues, which are scalar, is much less expensive than the eigenvector operation. The trend of the
accuracy of the eigenvalues follows the one of the eigenvectors since the eigenvalues are computed by
using eigenvectors in the typical eigenvalue solvers such as subspace iteration and Lanczos algorithms.
However, since eigenvectors are less convergent than eigenvalues, and we here use ei as 0.1% in the
numerical examples for a conservative point of view.

4. Iterative Reduction Process

The reduced flexible body (RFlex) can decrease the computational cost compared to the
full-ordered flexible body (FFlex), but it has a disadvantage in that the accuracy is relatively low
because the residual modes are truncated. Therefore, it is necessary to construct a reliable RFlex
when performing effective FMBD analysis. Using the frequency cut-off rule and the a posteriori error
estimator derived in Equation (43), the iterative coordinate reduction process with a decision about the
number of dominant modes (Ni

d) is proposed to make a reliable RFlex. The goal of the process is to find
Ni

d satisfying the specified relative eigenvalue error tolerance ei within the desired mode range Ni
m.

The initial input variables are the error tolerance ei, the initial number of dominant modes Ni
init, and the

mode range Ni
m. The size of the initial RFlex is then (Ni

init + Ni
b)× (Ni

init + Ni
b). After constructing

the reduced flexible model, its eigenvalue problem of the RFlex in Equation (18) should be solved to
construct the diagonal matrices of the reduced flexible model, and then, those could also be used to
estimate its relative eigenvalue error using Equation (43) for the n-th mode, where n = 1, 2, · · · , Ni

m.
Using the estimated error, it is determined whether the relative eigenvalue error of a certain mode is
greater than the error tolerance or not. If there is a mode with an error larger than the error tolerance,
the dominant modes are added in the transformation matrix to create a new RFlex. If the n-th mode in
the previous step did not satisfy the error tolerance, the iteration process starts from the n-th mode
when determining the eigenvalue error of the newly created RFlex. Because adding dominant modes
means improving the accuracy of RFlex, the eigenvalues before the n-th mode naturally satisfy the
error tolerance. The iteration process stops when the estimated errors from the first to Ni

m-th modes
are less then the desired error tolerance ei. When the dominant modes are added Ni

iter times, the size
of RFlex becomes (Ni

init + Ni
iter + Ni

b)× (Ni
init + Ni

iter + Ni
b). Through this process, the size of RFlex

that achieves the desired accuracy can be selected. The schematic diagram of the process is shown in
Figure 1.
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Figure 1. Iterative process using the error estimator. In the process of generating the reduced model,
the dominant mode addition operation is repeated to satisfy that all of the relative eigenvalue errors
within the specified mode range Ni

m are less than ei. FMBD, flexible multibody dynamics.

After the iterative reduction process, the reliable Ni
m modes will be used to solve the EOMs in

Equation (21) in the FMBD analysis. The coordinate pi
F is then transformed with the approximated

mode shape matrix Φ̃i solving Equation (18) for the RFlex with Ni
m dominant modes as:

pi
F = Φ̃iai

F, Φ̃i =
[
Ξi

1, Ξi
2, · · · , Ξi

Ni
m

]
, (46)

where ai
F is a modal coordinate. Then, the coordinates in Equation (21) can be defined as:[

qi
R

pi
F

]
= B̃i

[
qi

R
ai

F

]
, B̃i

=

[
I 0
0 Φ̃

i

]
. (47)
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Using B̃, the EOMs in Equation (21) are additionally reduced as:

[
Mi

R M̃i
RF

M̃i
FR I

] [
q̈i

R
äi

F

]
+

[
0 0
0 Λ̃

i
F

] [
qi

R
ai

F

]
+

CT
qi

R

C̃T
ai

F

 λi =

(Qi
e

)
R(

Q̃i
e

)
F

+

(Qi
v

)
r(

Q̃i
v

)
F

 , (48)

and the component matrices and vectors are:

M̃i
RF = M̃i

FR
T
= Mi

RFΦ̃
i, C̃ai

F
= Cpi

F
Φ̃

i, Λ̃F = diag
(

χi
1, · · · , χi

Nm

)
.(

Q̃i
e

)
F
= Φ̃

iT(
Qi

e

)
F
,
(

Q̃i
v

)
F
= Φ̃

iT(
Qi

v

)
F
.

(49)

When Equation (48) is solved for the end time tend of the FMBD analysis, the solutions tqi
R and tai

F
are obtained, where the prefix superscript t denotes the time instant for t = t0, t1, · · · , tend. To restore
the original generalized coordinate tqi from the solutions, the following equations that premultiply
the transformation matrices Bi and B̃i by the solutions should be employed:

tqi =

[
tqi

R
tqi

F

]
≈ BiB̃i

[
tqi

R
tai

F

]
=

[
I 0
0 Ti

0

] [
I 0
0 Φ̃

i

] [
tqi

R
tai

F

]
. (50)

5. Numerical Examples

In this section, we report our investigation of the performance of the RFlex generation
iterative process using two numerical examples. In this study, a quadruple pendulum problem
and a slider-crank mechanism are considered. The FMBD simulation results were obtained using
RecurDyn [29], and the external subroutine program for the iterative algorithm was developed for
an RFlex generation. The generalized-α method [31] is used for a time integrator, where the initial
step size and the maximum time step were 10−6 and 10−2, respectively. The error tolerance of the
Newton–Raphson method is 5 × 10−3. The damping is neglected in this study.

5.1. Quadruple Pendulum Problem

A quadruple pendulum model consisting of four cylinders is considered. The pendulum consists
of three rigid bodies and one flexible body, and they are connected by spherical joints sequentially.
Body 1 is connected to the ground, and one side of the flexible body is modeled as a free end. The model
is described in Figure 2. When the simulation starts, the bodies fall freely in the −y direction due to
gravitational acceleration g = 9.806 m/s2, and the chaotic behavior appears. Here, the simulation end
time is seven seconds, and the number of steps is 500. The length and the radius of the cylinders are
0.3 m and 0.015 m, respectively. The distance from a spherical joint to a cylinder is 0.05 m. For the
flexible body modeling, the free-free boundary condition is applied. An ideal Young’s modulus,
which is half of steel’s, is 100 GPa. Poisson’s ratio v is 0.285, and the density ρ is 7850 kg/m3.

The flexible body is modeled using 3528 tetrahedron elements. The average and the minimum
size of the elements are 0.0075 m and 0.0056 m, respectively. The initial number of dominant modes
Ni

init is five, and the multi-point constraint (MPC) [29] node on the right side of the flexible body is
selected as the boundary node. The mode range Ni

m selected is 30, and the desired error tolerance
is considered to be 0.1%. The dynamic responses of node A in Figure 2 (right), which were selected
arbitrarily, are compared in the following numerical studies.
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Figure 2. A quadruple pendulum with a flexible body (left) and the flexible cylinder with node A
(right) to compare dynamics responses.

Figure 3 is a relative eigenvalue error comparison of the previous [23] and the new error estimators
in Equation (43). Two cases with 50 and 100 dominant modes are considered here. The previous error
estimator well describes the relative eigenvalue errors with high accuracy, but it generally tends to be at
the low bounds of the exact error. This may lead to excessive coordinate reduction. Otherwise, the new
error estimator tends to be at the upper bounds of the exact error. In this work, in a conservative
manner, the new error estimator is considered, but both error estimators could be used as the lower
and upper bounds of the exact relative eigenvalue error. This is because neglecting the additional term
of the new error estimator directly leads to the previous one, as shown in Equations (42) and (45).

(a)

(b)
Figure 3. Comparison of the error estimator from the previous work [23] and the new error estimator
derived in Equation (43). The new error estimator gives the upper bound results for the different
number of dominant modes Ni

d = 50 and Ni
d = 100. (a) Ni

d = 50; (b) Ni
d = 100.
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To evaluate the performance of the proposed algorithm, the estimated and exact relative
eigenvalue errors change as the dominant mode is added for the n-th mode (shown in Figure 4).
Among the mode range, some modes (n = 1, 6, 10, 15, 16, 17, 19, 26, and 30) are only considered in
Figure 4 for better readability. We found that the accuracy of lower modes shows fast convergence
adding dominant modes than the accuracy of higher modes in Figure 4, which follows a typical
tendency of the mode superposition. To satisfy the error tolerance ei = 0.1% within the mode range of
Ni

m = 30,446 dominant modes are selected in the algorithm. It can be confirmed that the exact relative
eigenvalue error of the RFlex using the error estimator satisfies the specified error tolerance for the
n-th mode. The sufficiently accurate RFlex that satisfies the error tolerance ei for the desired mode
range can be obtained by using the newly derived error estimator at the upper bounds.

Figure 4. The changes of the relative eigenvalue error and its estimation with respect to the number of
dominant modes for the specific modes. The error tolerance ei and the mode range Ni

m are 0.1% and
30, respectively.

Here, dynamic responses are compared for three RFlex models that have different error tolerances
ei = 10%, 1%, and 0.1%. The selected number of dominant modes (Ni

d) is 35 and 58 for the error
tolerances ei = 10% and 1%, respectively. Although the number of dominant modes selected is
different, the size of the reduced flexible bodies for the error tolerances are identical to the one we
described in Equation (48). The position, velocity, and acceleration of node A in Figure 2 are plotted
in Figures 5–7, respectively. For the position x, y, and z in Figure 5, the absolute error |δx| of the
accelerations are calculated as |δx| = |xre f − xei |, where the superscripts re f and ei denote the solutions
from the reference model and the RFlex model generated using the error tolerance ei, respectively.
It can be seen that the smaller error tolerance leads the smaller the absolute error of the dynamic
response. It can be also found in the von Mises stress and strain in Figure 8.

We compared the absolute error of the von Mises stress and strain for the specific time instant in
Figures 9 and 10, where the selected time instant are t = 6.04 s and t = 6.8, respectively. The snapshots
of the contours are selected at the arbitrary time. The absolute error of von Mises stress described in
Figure 9 shows the area with a large error becoming smaller when decreasing error tolerance. In the
case of the von Mises strain, comparable errors occur when the error tolerance is 10% and 1%, but the
RFlex of ei = 0.1% gives a similar strain result to the reference model in the overall area.
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(a)

(b)

(c)

Figure 5. The x, y, and z positions of node A and their absolute error for the error tolerance ei = 10%, 1%,
and 0.1%. (a) Position x of node A and its absolute error; (b) position y of node A and its absolute error;
(c) position z of node A and its absolute error.
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(a) (b)

(c)

Figure 6. The x, y, and z velocities of node A for the error tolerance ei = 10%, 1%, and 0.1%. (a) Velocity
x of node A; (b) velocity y of node A; (c) velocity z of node A.

(a) (b)

(c)

Figure 7. The x, y, and z accelerations of node A for the error tolerance ei = 10%, 1%, and 0.1%.
(a) Acceleration x of node A; (b) acceleration y of node A; (c) acceleration z of node A.
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(a)

(b)
Figure 8. The von Mises stress and the von Mises strain of node A for the error tolerance ei = 10%, 1%,
and 0.1%. (a) The von Mises stress of Node A and its absolute error; (b) the von Mises strain of Node A
and its absolute error.

(a) (b) (c)

Figure 9. The error contour of the von Mises stress of the different error tolerance ei = 10%, 1%,
and 0.1% for t = 6.04 s. (a) ei = 10%; (b) ei = 1%; (c) ei = 0.1%.
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(a) (b) (c)

Figure 10. The error contour of the von Mises strain of the different error tolerance ei = 10%, 1%,
and 0.1% for t = 6.8 s. (a) ei = 10%; (b) ei = 1%; (c) ei = 0.1%.

5.2. Slider-Crank Mechanism

Let us consider the slider-crank system shown in Figure 11 (left) with the flexible connecting
rod (right). When torque is imposed on the crank, the slider reciprocates up and down inside the
cylinder. The crank is constrained to the ground and the connecting rod with a revolute joint, and the
connecting rod is connected to the pin. The inner cylindrical surfaces of the connecting rod are modeled
using MPC (see Figure 11, middle), and the nodes on the center of the cylindrical surfaces are the
connecting points of the joints. The revolute joint is also used to pin and the slider moves only in the
x-direction due to the translational joint with the cylinder, where the cylinder is fixed to the ground.
The dimensions of the bodies are described in Figures 11 and 12. Free-free boundary conditions are
applied for the flexible connecting rod. The Young’s modulus E, Poisson’s ratio ν, and density ρ of the
flexible connecting rod are E = 70 GPa, v = 0.33, and 2710 kg/m3, respectively, which are the material
properties of aluminum alloy 6061-T6. The total mass of the system is measured from the CAD kernel
of RecurDyn [29] based on the geometries as 5.407 kg. The number of tetrahedron elements used to
model the flexible connecting rod is 4380. The average and the minimum size of elements are 0.0036 m
and 0.001 m, respectively. The driving torque T shown in Figure 11 (right) is applied to the crank,
which increases to 1 Nm for up to 0.1 s and remains until the simulation end time 0.5 s. The initial
number of the dominant mode Ni

init is five, and the selected mode range Ni
m is 10. We select node A,

which represents the maximum stress in Figure 11 (middle) to compare the dynamic responses.

Figure 11. The slider-crank system (left) and the flexible connecting rod (middle). The driving torque
with respect to time (right) is imposed to rotate the crank.
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Figure 12. Main dimensions of the bodies.

The relative eigenvalue errors from the previous [23] and the new error estimator in Equation (43)
are compared in Figure 13. In this example, the cases of the number of dominant modes are 30 and 60.
The results show that the new error estimator is at the upper bounds in all mode ranges in both cases.

(a)

(b)
Figure 13. Comparison of the error estimator from the previous work [23] and the new error estimator
derived in Equation (43). The new error estimator gives the upper bound results for the different
numbers of dominant modes Ni

d = 30 and Ni
d = 60. (a) Ni

d = 30; (b) Ni
d = 60.

The proposed algorithm is applied for the desired mode range Ni
m = 10 and the error tolerance

ei = 0.1%. For Modes 4, 5, and 6, the changes of the relative eigenvalue error and its estimation when
the number of dominant modes is added are shown in Figure 14.
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Figure 14. The changes of the relative eigenvalue error and its estimation with respect to the number
of dominant modes for the specific modes. The error tolerance ei and the mode range Ni

m are 0.1% and
10, respectively.

The time transient accelerations ax and ay of node A for the error tolerances ei = 10%, 1%,
and 0.1% are shown in Figure 15. The selected number of dominant modes (Ni

d) for the error tolerances
10%, 1%, and 0.1% are 8, 25, and 105, respectively, but the reduced flexible models with ei = 10%, 1%,
and 0.1% are identical to 10 by 10 matrices to provide a fair comparison study. The results on the left
column of Figure 15 shows the absolute error |δa| of the accelerations calculated as |δa| = |are f − aei |.
It can be seen that the errors of the model with ei = 10% and 1% are bigger than in the case of ei = 10%,
whereas in the case of ei = 0.1%, the error is close to zero for the overall simulation time.

(a)

(b)
Figure 15. The time transient accelerations ax and ay of node A are compared for the different error
tolerances ei = 10%, 1%, and 0.1% (left) and the errors (right). (a) Acceleration x of node A and its
absolute error; (b) acceleration y of node A and its absolute error.

The von Mises stress and strain are compared in Figure 16 in the same manner. The absolute errors
of the von Mises stress and strain show that the RFlex model with ei = 0.1% leads to a more accurate
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solution for the reference model than the models with the error tolerances ei = 10% and ei = 1%.
In order to confirm the trend in the global area, the absolute error contours for von Mises stress and
von Mises strain were compared for a specific time instant. Figure 17 shows the absolute stress error
for different errors ei at t = 0.4495 s, and Figure 18 shows the strain error at t = 0.207 s. We found that
local errors of the connecting rod, which has a relatively complicate geometry, become more significant
than the first simple cylinder problem. The snapshots of the contours are selected at the arbitrary time.

It should also be noted that the decisions of the desired error tolerance and the target mode range,
which are problem dependent parameters, are not covered in the the proposed iterative algorithm.

(a)

(b)
Figure 16. The von Mises stress and strain of node A for the different error tolerances ei = 10%, 1%,
and 0.1% and their errors. (a) The von Mises stress of node A and its absolute error; (b) the von Mises
strain of node A and its absolute error.

(a) (b) (c)

Figure 17. The error contour of the von Mises stress of the different error tolerance ei = 10%, 1%,
and 0.1% for t = 0.4495 s. (a) ei = 10%; (b) ei = 1%; (c) ei = 0.1%.
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(a) (b) (c)

Figure 18. The error contour of the von Mises strain of the different error tolerance ei = 10%, 1%,
and 0.1% for t = 0.207 s. (a) ei = 10%; (b) ei = 1%; (c) ei = 0.1%.

6. Conclusions

In this work, an iterative coordinate reduction algorithm for fast FMBD simulation is introduced.
In this proposed algorithm, the dominant flexible modes within the initially determined number
are selected based on the well-known frequency cut-off rule. Using the selected dominant modes,
the flexible model is reduced, and then, a novel a posteriori error estimator is employed to evaluate its
reliability. The error estimator newly derived here provides the upper bound of the relative eigenvalue
error. If the estimated error does not satisfy the desired error tolerance, the above process is iterated
with the increase in the number of dominant modes. The iterative algorithm with the theoretical mode
selection and error estimation criteria can overcome the lack of consistent coordinate reduction in the
empirical approaches. The proposed algorithm is developed for the CB-based coordinate reduction
of the FFRF, which has been widely used for the FMBD analysis. However, the main idea could be
employed for various coordinate reduction techniques with those mode selection and error estimation
methods. It should also be noted that the proposed algorithm is based on the linear elastic motion of
the flexible bodies and inherits the independent coordinate reduction of the flexible bodies without
considering the nonlinearity of the total system dynamics. Therefore, the accuracy of the FMBD
simulation using the proposed algorithm may not be enough in highly nonlinear problems. To handle
this issue, developing robust mode selection and error-estimation techniques based on nonlinear
system dynamics is a prerequisite.
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Appendix A. Enhanced Transformation Matrix

Equation (14) can be explicitly presented as:

qi
F = Ti

0pi
F =

[
Φi

d Φi
r Ψi

0 0 I

] pi
d

pi
r

qi
b

 . (A1)



Appl. Sci. 2020, 10, 7143 22 of 24

Using the transformation matrix Ti
0 for the projection in Equation (9), we have:

M̂i
Fp̈i

F + K̂i
Fpi

F = 0, (A2a)

M̂i
F = Ti

0
T

Mi
FTi

0, K̂i
F = Ti

0
T

Ki
FTi

0, (A2b)

[
d2

dt2 M̂i
F + K̂i

F

]
pi

F =


Λ̂

i
d 0 d2

dt2 M̂i
cd

0 Λ̂
i
r

d2

dt2 M̂i
cr

d2

dt2 [M̂i
cd
]T d2

dt2 [M̂i
cd
]T K̂i

b +
d2

dt2 M̂i
b

 pi
F = 0, (A2c)

where the component matrices are:

Λ̂
i
d = Λi

d +
d2

dt2 Ii
d, Λi

d = Φi
d

T
Ki

sΦi
d, Ii

d = Φi
d

T
Mi

sΦi
d, (A3a)

Λ̂
i
r = Λi

r +
d2

dt2 Ii
r, Λi

r = Φi
r

T
Ki

sΦi
r, Ii

r = Φi
r

T
Mi

sΦi
r, (A3b)

M̂i
cd
= Φi

d
T

Ai, M̂i
cr = Φi

r
T

Ai, Ai = Mi
sΨi + Mi

c, (A3c)

K̂i
b = Ki

b + Ki
c

T
Ψi, M̂i

b = ΨiT
Mi

sΨi + ΨiT
Mi

c + Mi
c

T
Ψi + Mi

b. (A3d)

From the second row in Equation (A2c), the coordinate vector of the residual terms can be
expressed as:

pi
r = −[Λ̂

i
r]
−1
[

d2

dt2 M̂i
cr

]
qi

b. (A4)

Substituting Equation (A4) into Equation (A1), the generalized coordinates qi
s for the interior

containing the residual modal effects can be rewritten as:

qi
s = Φi

dpi
d + Ψiqi

b −
d2

dt2 F̂i
rAiqi

b, F̂i
r = Φi

r[Λ̂
i
r]
−1

Φi
r

T
, (A5)

where F̂i
r means the residual flexibility matrix. Using d2/dt2 = −ω2 and the series expansion, F̂i

r can
be written as:

F̂i
r = Φi

r[Λ
i
r −ω2Ii

r]
−1Φi

r
T
= Φi

r[Λ
i
r]
−1Φi

r
T
+ ω2Φi

r[Λ
i
r]
−2Φi

r
T
+ · · · . (A6)

Neglecting the higher order terms, F̂i
r can be approximated as:

Fi
rs = Φi

r[Λ
i
r]
−1Φi

r
T
= [Ki

s]
−1 −Φi

d[Λ
i
d]
−1Φi

d
T

. (A7)

Frs can be simply computed by subtracting the dominant flexibility matrix from the full flexibility
matrix, which were already computed in the original CB reduction formulation.

Using Equation (A7) in Equation (A5), qs can be also approximated as:

qi
s ≈ Φi

dpi
d + Ψiqi

b + ω2FrsAiqi
b. (A8)

Considering the newly derived qi
s, an enhanced transformation matrix Ti

1 could be derived.
Consequently, qi

F can be approximated with high fidelity as:

qi
F ≈ Ti

1pi, Ti
1 = Ti

0 + ω2Ti
r, Ti

r =

[
0 Fi

rsAi

0 0

]
. (A9)
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This clearly shows that Ti
1 is a refined transformation matrix with a residual modal effect. Therefore,

using Ti
1, one can expect a better representation of the modal behavior of the original flexible bodies

than with the conventional CB transformation matrix Ti
0.
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