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Abstract: The timely and efficient generation of weed maps is essential for weed control tasks and
precise spraying applications. Based on the general concept of site-specific weed management
(SSWM), many researchers have used unmanned aerial vehicle (UAV) remote sensing technology to
monitor weed distributions, which can provide decision support information for precision spraying.
However, image processing is mainly conducted offline, as the time gap between image collection
and spraying significantly limits the applications of SSWM. In this study, we conducted real-time
image processing onboard a UAV to reduce the time gap between image collection and herbicide
treatment. First, we established a hardware environment for real-time image processing that integrates
map visualization, flight control, image collection, and real-time image processing onboard a UAV
based on secondary development. Second, we exploited the proposed model design to develop
a lightweight network architecture for weed mapping tasks. The proposed network architecture was
evaluated and compared with mainstream semantic segmentation models. Results demonstrate that
the proposed network outperform contemporary networks in terms of efficiency with competitive
accuracy. We also conducted optimization during the inference process. Precision calibration was
applied to both the desktop and embedded devices and the precision was reduced from FP32 to
FP16. Experimental results demonstrate that this precision calibration further improves inference
speed while maintaining reasonable accuracy. Our modified network architecture achieved an
accuracy of 80.9% on the testing samples and its inference speed was 4.5 fps on a Jetson TX2
module (Nvidia Corporation, Santa Clara, CA, USA), which demonstrates its potential for practical
agricultural monitoring and precise spraying applications.

Keywords: semantic segmentation network; UAV; real time; embedded device; weed mapping;
deep learning

1. Introduction

In farmland, timely weed control is crucial for ensuring optimal crop production. To minimize
the negative effects of herbicides, site-specific weed management (SSWM) protocols [1] are essential.
For SSWM, farmers obtain orthophoto maps of their fields, formulate an application plan, and generate
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prescription maps. Methods for obtaining orthophoto maps include satellite imaging and UAV
imaging [2]. The resulting remote sensing images are analyzed to map weed distribution information,
which can provide decision-making support information for precise spraying applications [3].

Based on their high spatial resolution, UAVs have been found to be appropriate for weed mapping
tasks. Ortizet et al. [4] collected UAV images and achieved good performance for weed mapping using
a semi-supervised method. Castaldi et al. [5] used UAV multispectral images to classify maize and
weeds. However, in previous studies, most image processing has been conducted offline, which results
in a significant time gap between image collection and spraying applications. This disadvantage
significantly limits the applications of SSWM because agronomy conditions may change during large
time gaps. In SSWM applications, the time gaps should be less than one day so that the herbicide
treatment can be applied before the agronomy conditions change. One possible solution to address
this issue is to utilize real-time image processing onboard UAVs. Based on real-time data collection
performed by embedded devices, UAVs can perform corresponding spraying actions immediately,
which can solve the problem of time gaps in the current model of SSWM.

Although there has been no related work in the domain of SSWM research, we identified some
related studies in industrial domains. One of the barriers in real-time image processing is that the
image data is large and difficult to process by embedded devices, and some studies have exploited to
reduce the amount of data while maintaining the monitoring objective. Barmpoutis et al. [6] used a
360-degree camera mounted on a UAV for fire detection. The use of 360-degree camera significantly
reduces the amount of data, which is meaningful in real-time processing scenarios. In addition to
the data catastrophe, the employment of deep learning models utilized by connecting desktops to
embedded devices is a major challenge in the industrialization of artificial intelligence. Currently, most
studies on employing deep learning models using embedded devices focus on reducing the model
size while maintaining reasonable accuracy. Alexander et al. [7] introduced a tiny solid-state drive
architecture that requires a storage space of only 2.3 MB to achieve a mean average precision of 61.3%
on the VOC 2007 challenge. Sabir et al. [8] proposed a lightweight model for multiple-object detection
and tracking that can integrate a deep-learning-based association metric approach with simple online
and real-time tracking. Their algorithm was deployed on an NVIDIA Jetson TX module and Intel
Neural Compute Stick. The results demonstrated the effectiveness of their algorithms for real-time
experiments onboard UAVs. Arpit et al. [9] proposed a modified MobileNetV2 architecture for fire
classification. They modified the last fully-connected layer of the MobileNetV2 architecture to fit the
fire detection task, and the resulting model exhibited better performance than that of previous models.
The proposed model was deployed on a Raspberry Pi 3B device and achieved a speed of 5 fps with an
accuracy of 0.92 on the dataset presented in [10].

However, regarding the requirements of SSWM applications, there are some limitations to the
methods proposed in the aforementioned studies. (1) Although previous studies have developed
various approaches to reduce the number of model parameters, they have largely focused on
classification [9] and detection models [7,8,11]. In studies on SSWM, semantic segmentation models [12]
have proven to be effective at weed mapping tasks [13,14]; however, their optimization cannot be
guaranteed based on the results of the aforementioned studies. One of the greatest obstacles for
implementing such deep learning networks for widespread deployment on embedded devices is their
high computational and memory requirements. In general, semantic segmentation models are difficult
to optimize for small devices because they use 2D information that requires significant computation,
making them less suitable for the research described in this paper. (2) The aforementioned studies
only considered model design and optimization, while ignoring the optimization of the inference
process, which may have the potential to achieve better efficiency. (3) Most previous studies have only
conducted model design and validation on computers or embedded devices. However, in the context
of SSWM applications, a real-time spraying machine requires modules for map visualization, flight
control, image collection, image processing, and spraying. Based on the objectives of this study, it was
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necessary to construct a basic hardware environment to support modules for map visualization, route
planning, image collection, and image processing.

Therefore, the main goals of this study were to (1) develop a hardware system integrating map
visualization, flight control, image collection, and image processing; (2) perform model design to achieve
a compact size while maintaining reasonable prediction accuracy; and (3) exploit the optimization of
the inference process, which can further improve inference speed. There are two main contributions
of this work. First, we propose a lightweight network architecture for weed mapping tasks, which
improves inference speed while maintaining reasonable accuracy. Second, we propose combining
precision calibration with model design to improve speed, which has not been discussed in other
related papers.

2. Hardware Development for a UAV System

The developed system can be divided into three main components: (1) a map visualization
module for selecting flight areas and generating flight plans, (2) flight control module for controlling
the UAV, and (3) onboard image collection and processing module. These components are illustrated
in Figure 1a. To apply this system in an experiment, a user must first select an area of interest on a map.
The software on the laptop then automatically generates corresponding routes. Waypoints are then
uploaded to the flight control system via wireless serial communication. The flight control system
controls the UAV and begins to collect images. During the flight process, newly collected images
are processed directly by the image processing module. In this step, a fully convolutional network
(FCN) is used to map weed distributions at the pixel level. Finally, a weed cover map is generated in
real-time, which can provide decision support information for spraying machines. In this study, we
adopted the M100 UAV platform (DJI Co., Ltd., Shenzhen, China). The Jetson TX2 module (Nvidia
Corporation, Santa Clara, CA, USA) was selected as a control center to realize flight control, image
collection, and! timage processing. The main components of the UAV can be observed in Figure 1b.
The M100 UAV platform was chosen for its flight stability against airflow disturbance, and the Jetson
TX2 was chosen for its GPU unit which is powerful in the inference of the deep learning models.
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2.1. Map Visualization Module

In this study, the map visualization module (see Figure 2a) was developed using the Google Maps
API (Google Inc., Mountain View, CA, USA). The ground station software has two main functions:
(i) selecting areas of interest on the map and automatically generating routes, and (ii) transferring flight
points to the flight control system via serial communication. The main objective of the ground station
software is to provide a map for a user to select an area of interest. The selection of an area of interest
is a basic requirement for the subsequent route planning procedure, autonomous flight, and image
acquisition performed by the UAV. The map used in this software is a mosaic of map tiles downloaded
from Google Maps. Map tiles are offline resources on the laptop that do not need to be accessed via
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the internet. The map only provides a real-world overview of the area and does not contain specific
location information, such as building locations, obstacles, and real-time weather data. Before flight
planning begins, the user must define the forward lap and side lap. The overlap rate, flight altitude,
and resolution of the camera are then used to generate flight routes. As shown in Figure 2b, during
the course of a flight mission, UAVs perform image acquisition along the planned waveform path.

1 
 

 

  
(a) (b) 

 Figure 2. The map module. (a) User interface of the map module. (b) One example of route planning.

2.2. Flight Control Module

In this study, the flight control system was developed using the open-source Onboard Software
Development Kit provided by the producer of the M100 (DJI Co., Ltd., Shenzhen, China). The flight
control system realizes secondary control of the UAV platform. Communication between the flight
control system and laptop is realized using a wireless serial module. Communication between the flight
control system and UAV platform is realized using the controller area network protocol [15].

2.3. Image Collection and Processing

The image processing module in the UAV has two main functions: (i) automatically directing
image acquisition according to the planned routes and predefined overlaps and (ii) processing collected
images in real time. The camera (see Figure 1b) used in the image acquisition module of the system
is a TOP-T10X camera (Tuopu Lianchuang co., ltd., Beijing, China) [16], which is stabilized by
an optimized three-axis gimbal. On the M100 UAV, image acquisition is accomplished using the
“opencvsdk” library [17]. Figure 3 presents the overall workflow of the system. The software acquires
the most recent frame from the camera at a resolution of 1280 × 720 pixels. Images are cropped
according to the central 720 × 720 pixel area and then resized to 1000 × 1000 pixels, which was proven
to be a suitable image size for weed mapping by the previous work of our team [14]. The camera can
acquire images at up to 60 fps. The overall processing speed is determined by the network model and
the capabilities of the GPU.

2.4. Task Assignment

During flight, the Jetson TX2 module performs several tasks. It is necessary to assign these tasks
to different components onboard the Jetson TX2 module. It is equipped with a 256 core NVIDIA Pascal
GPU and six core ARMv8 64-bit CPU complex. According to the designs presented in related papers,
the CPU serves as the host and is responsible for task scheduling, while the GPU serves as a device
and performs the computing tasks required for image processing. For semantic segmentation models,
more than 80% of the operation time of most algorithms is consumed by convolution, deconvolution,
and matrix operations. A GPU can handle these high-density and high-volume operations using
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highly parallel multi-threading, while the CPU is responsible for the UAV flight control program and
communication processing, as shown in Figure 4.
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3. Model Design and Optimization

3.1. Model Design

Related studies have demonstrated that a FCN is appropriate for weed mapping tasks. In contrast
to a traditional convolutional neural network, an FCN is an end-to-end network structure that can
perform dense prediction tasks, allowing it to determine the weed densities at a target site, which can
be directly used as references for accurate spraying tasks. For an FCN, input data can be images of
arbitrary size and a corresponding output size can be obtained through effective inference. An FCN
transforms all fully-connected layers into convolutional layers. In this form, the spatial information of
an input image is preserved. By using deconvolutional operations, the feature maps screened from the
final convolutional layer are up-sampled and the output image is restored to the same size as the input
image. The general architecture of an FCN is presented in Figure 5.
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Similar to other studies, we adopted a pre-trained network and fine-tuned it using a relevant
dataset. Commonly used pre-trained networks include the ResNet [18] and VGGNet [19] models.
These models tend to outperform their counterparts in terms of accuracy. However, according to the
research presented in [14], these models are relatively time consuming, that is, they are inappropriate
for real-time tasks. Therefore, we selected AlexNet as a pre-trained model because it is a relatively
lightweight framework. As shown in Figure 6, AlexNet contains five convolutional layers and three
fully connected layers. To reduce the number of model parameters, we removed the FC6 and FC7
layers. Additionally, the number of neurons in the final fully connected layer was reduced to three to
match the number of classes (each pixel was classified as “rice”, “weed”, or “other”). Next, the last
fully connected layer was transformed into a convolutional layer and a deconvolutional layer was
appended to restore the feature map to the original image resolution.
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3.2. Optimization of the Inference Process

Most deep learning models train and evaluate neural networks with full 32-bit precision (FP32).
However, once a model is fully trained, inference computations can use half-precision FP16 instead
because gradient backpropagation is not required for inference. Using a lower precision results in a
smaller model size, lower memory utilization and latency, and higher throughput. In this case, we
applied FP32 for training and used FP16 for inference. However, it is worth noting that this will have
an impact on recognition accuracy.
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4. Results

In this section, we proposed a light weight network for weed mapping and compared its
performance with the mainstream segmentation models. After that, the proposed network was
transferred from the desktop to the embedded devices. Precision calibration was used to optimize the
inference process. All models were evaluated in terms of accuracy and efficiency. For the accuracy,
the metrics of overall accuracy and mean intersection over union (IoU) were applied. The overall
accuracy is computed using the ratio of the pixels accurately classified to all pixels, and the mean
intersection over union is calculated using the percent overlap between the target mask and our
prediction output. For the efficiency, the frames per second (fps) was used as the metric, which
represents how many images can be processed in one second.

4.1. Data Collection

In this study, experimental data were collected from a rice field located in Southern China
(113.636888 N, 23.240441 E). Data collection was conducted when the weeds and crops were in their
early tillering stages. The flight height was set to 6 m above the ground and the forward lap and side
lap for imaging were set to 50% and 60%, respectively. A total of 1092 samples were collected and each
sample was a 1000 × 1000 pixel RGB UAV image, where each image corresponds to a 30 cm × 30 cm
field area. Each pixel in each image was classified as one of three classes: rice, weed, and other.
To perform network training and validation, the images were manually labeled at the pixel level, as
shown in Figure 7. In our dataset, 892 samples were used for training and the remaining 200 images
were used for network validation.
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4.2. Model Design

As described in Section 3.2., a lightweight classification architecture (AlexNet) was selected as a
baseline network. To reduce the number of network parameters, the first two fully-connected layers
were removed, the number of neurons of the final fully-connected layer was set to three, and this layer
was eventually transformed into a convolutional layer. A deconvolutional layer was appended to
restore the feature map to the original image resolution. The training data were augmented using data
enhancement (translation, rotation, and tailoring).

During the training process, the Adam optimizer was used for adaptive momentum estimation.
The Adam gradient descent method is an adaptive learning rate method with different parameters
that yields a fast convergence speed. The entire training process was limited to 30 epochs, where each
iteration traversed all training samples. After forward computation, the sigmoid cross-entropy loss
function was used as a cost function. The initial learning rate was set to 0.00001. Since the learning rate
can be adjusted adaptively according to the rate of gradient descent, the convergence speed of the
model was improved, as shown in Figure 8. After 30 epochs, testing on the validation dataset resulted
in an overall accuracy of 91.2%. As shown in Table 1, the model operates on a GTX1060 GPU at 0.9 fps,
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while implementing the same network on the Jetson TX2 module results in a rate of only 0.11 fps,
which is insufficient for real-time processing applications.

Our modified AlexNet-FCN was compared with the classic VGGNet, GoogLeNet, and ResNet.
For the VGGNet-FCN, the skip architecture was omitted to increase speed. For the GoogLeNet, ReLU
was used as the activation function, and the dropout strategy was used to overcome the problem
of overfitting. For the ResNet-FCN, the ResNet-101 model was selected as a baseline architecture
because it provides the best balance of accuracy and efficiency [20]. The performances of all models
are summarized in Table 1. One can see that the accuracy of AlexNet-FCN is slightly lower than that of
VGGNet-FCN and GoogLeNet-FCN. However, it is almost four times faster than the VGGNet-FCN
and two times faster than the GoogLeNet-FCN, meaning it can meet the requirements of real-time
scenarios. The accuracy of the ResNet-FCN is the highest among the three models based on its deep
structure and residual architecture. However, this model is so large that the GTX 1060 GPU could
not even perform the forward computation. In this case, we used the GTX 1080 TI GPU for network
training and evaluation. However, the GPU resources of the GTX 1060 are greater than those of
embedded devices. Therefore, it is impossible to copy the ResNet-FCN from the GTX 1080 TI GPU to
the embedded Jetson TX2 module.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 11 

To perform network training and validation, the images were manually labeled at the pixel level, as 
shown in Figure 7. In our dataset, 892 samples were used for training and the remaining 200 images 
were used for network validation. 

 
(a) (b) 

Figure 7. Example of image labeling: (a) Input images, and (b) labels. 

4.2. Model Design 

As described in Section 3.2., a lightweight classification architecture (AlexNet) was selected as a 
baseline network. To reduce the number of network parameters, the first two fully-connected layers 
were removed, the number of neurons of the final fully-connected layer was set to three, and this 
layer was eventually transformed into a convolutional layer. A deconvolutional layer was appended 
to restore the feature map to the original image resolution. The training data were augmented using 
data enhancement (translation, rotation, and tailoring). 

During the training process, the Adam optimizer was used for adaptive momentum estimation. 
The Adam gradient descent method is an adaptive learning rate method with different parameters 
that yields a fast convergence speed. The entire training process was limited to 30 epochs, where each 
iteration traversed all training samples. After forward computation, the sigmoid cross-entropy loss 
function was used as a cost function. The initial learning rate was set to 0.00001. Since the learning 
rate can be adjusted adaptively according to the rate of gradient descent, the convergence speed of 
the model was improved, as shown in Figure 8. After 30 epochs, testing on the validation dataset 
resulted in an overall accuracy of 91.2%. As shown in Table 1, the model operates on a GTX1060 GPU 
at 0.9 fps, while implementing the same network on the Jetson TX2 module results in a rate of only 
0.11 fps, which is insufficient for real-time processing applications. 

 
Figure 8. The loss and accuracy curves during training process. 

  

Figure 8. The loss and accuracy curves during training process.

Table 1. Comparisons of the proposed FCN-Alexnet with other mainstream network architectures.

Model Device Overall
Accuracy (%)

Mean IoU
(%)

Frames Per
Second

The proposed FCN-Alexnet model GTX 1060 91.2 70.5 12.5
VGGNet-FCN by Simonyan et al. [19] GTX 1060 92.3 72.8 3.1
GoogLeNet-FCN by Szegedy et al. [21] GTX 1060 91.9 71.3 5.9

ResNet-FCN by He et al. [18] GTX 1080 TI 94.2 77.2 9.3

4.3. Optimization of the Inference Process

To reduce the model size, the data precision requirement of the network was changed from FP32
to FP16. The Jetson TX2 module uses half-precision mode to reduce the size of the model to half of its
original size. Table 2 lists the results of precision calibration for the modified AlexNet-FCN. One can
see that precision calibration improves inference efficiency by approximately three to four times on
both the GTX 1060 (Nvidia Corporation, Santa Clara, CA, USA) and Jetson TX2 module. Although the
prediction accuracy decreases slightly, the overall accuracy is acceptable for agricultural applications
because it can provide rapid judgments regarding weed density.
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Table 2. Inference optimization in the desktop and the embedded devices.

Device Precision Clibration Overall Accuracy (%) Mean IoU (%) Frames Per Second

GTX 1060 FP32 91.2 70.5 12.5
Jetson TX2 FP32 91.2 70.5 1.2
GTX 1060 FP16 80.9 62.8 35.6
Jetson TX2 FP16 80.9 62.8 4.5

Figure 9 presents the output images corresponding to several testing samples before and after
precision calibration. In Figure 9c, one can see that our modified AlexNet-FCN can correctly distinguish
the rice and weed areas. Following precision calibration, the prediction accuracy decreases by a small
amount. The weed area in the third sample (blue dotted lines) was classified as the “other” category
by the model following precision calibration. However, following precision calibration, our model still
correctly classifies most areas in the input images, demonstrating its capability to provide decision
support information for spraying machines.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 11 
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5. Conclusions

UAV remote sensing and precision spraying are two important components of SSWM. However,
the time gap between image collection and herbicide treatment significantly limits the application
of SSWM technology. This study used real-time image processing onboard a UAV with the goal of
eliminating the time gap between image collection and herbicide treatment. First, we established a
hardware environment for real-time image processing that integrates map visualization, flight control,
image collection, and real-time image processing onboard a UAV based on secondary development.
Second, we exploited the proposed model design and presented a lightweight network architecture
for weed mapping tasks. The proposed network architecture was evaluated and compared with
mainstream semantic segmentation models. Experimental results demonstrated that the proposed
network is almost two times faster than the mainstream segmentation models with competitive accuracy.
Next, we conducted optimization of the inference process. Precision calibration was applied on both
desktop and embedded devices and the precision was reduced from FP32 to FP16. Experimental
results demonstrated that precision calibration further improves inference speed while maintaining
reasonable prediction accuracy. Our modified network architecture achieved an accuracy of 80.9% on
the testing samples and the inference speed of 4.5 fps on the Jetson TX2 module, which demonstrates
its potential for practical agricultural monitoring and precise spraying applications.

In the future, we plan to collect additional UAV images for model training and validation.
Additionally, we plan to combine our system with variable spraying technology. The classification
results of UAV images can provide decision-making information for sprayers, which can help maintain
pesticide effects while reducing the use of chemicals.
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