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Abstract: Farmers belong to the group of high risk in terms of developing work-related musculoskeletal
disorders. A series of tasks, which are often performed in an uncomfortable position, loads exceeding
farmers’ physical abilities, as well as high repetition of work movements, all contribute significantly
to the development of irreversible changes in the musculoskeletal system. Taking into account the
above-mentioned circumstances, this study aimed at workload assessment expressed in maximal
voluntary contraction (%MVC) while delivering dairy-cattle feed. In the initial phase of this study,
a questionnaire was carried out, based on which a load of individual segments of the musculoskeletal
system during work was subjectively assessed. On this basis, the areas of the musculoskeletal system
were selected in which a risk of the ailments’ occurrence was the highest. These studies were carried
out directly on farms, where the surface electromyography (sEMG) method was used. On the basis of
obtained results, the permissible human load was determined based on mass of the shovel which was
used to load and unload maize silage. The obtained results can be used to ensure safe conditions
while performing work with high muscle exertion.
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1. Introduction

Disorders in the musculoskeletal system result often from work performed manually.
These ailments are particularly manifested by strain and pain in the arms, spine or in the neck
and the intensity of such effects may occur over time. The main reasons are manual loading, lifting,
pushing or pulling different weighted loads for various distances [1,2]. Current reports show that
musculoskeletal disorders are suffered by nearly 25% of European Union employees [3]. The cause
of these symptoms is long-term loads of the musculoskeletal parts of workers due to work in
inappropriate conditions.

In agriculture, due to a wide scope of performed activities, this problem requires a deeper
recognition in terms of determining the causes and possibilities to minimize the effects of physical
overloading of worker’s body. A wide range of occupational risk occurs while performing activities on
farms [4,5].

Despite the mechanization of agricultural production, the problem of ailments in the
musculoskeletal system is still noticeable [6], especially while obtaining the milk. Year by year,
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there are more systems in use, which ensure more precise feeding as well as livestock raising method
management [7,8].

Based on conducted studies, it was found that a milking process by means of milking pipeline
generated a lower load for milkers than corresponding milking into bubbles [9]. The influence on
development of disorders in the musculoskeletal system may cause muscle static load, which particularly
concerns truck drivers [10,11]. In order to measure with high precision a generated load of
musculoskeletal system, Hansson used surface electromyography [12]. The correct measurement was
used to design proper workstations [13,14]. An example of this is the studies conducted by [10,15,16]
who, based on the analysis of a driver’s body pressure on the seat surface, designed a proper seat
profile which reduced physical fatigue and discomfort while driving. So far, numerous ergonomic
factors have been discovered that influenced the level of occupational safety [17,18].

Precise estimation of the listed factors contributes to accurate determination of the permissible
mass of an object which can be transferred in working conditions at a measured repetition frequency [19].
Observation of manual workers behavior allows for constant increase in the level of safety at work by
equipping workstations with the necessary elements [20,21].

Jaworski, Lach, Fabunmi and Henk emphasized that a worker’s body during lifting accompanied
with high repetitiveness of tasks is the most common reason for the appearance of ailments in the
human musculoskeletal system, e.g., during manual loading and unloading [22–25].

The lumbar spine, according to Solecki is a part of the musculoskeletal system most exposed
to pain [26]. It results from force generated between the vertebrae while loading, e.g., bags with
fertilizer or feed and then moving them for a long time. Barrero, Xiang and Hodges confirmed
positive correlation between physical load and appearance of ailments in specific segments of the
musculoskeletal system [27–29]. The authors stated that there are many professions that require
in-depth analysis of the causes of musculoskeletal disorders.

In-depth assessment of both static and dynamic loads on human muscles can be performed using
the sEMG. In order to obtain accurate results, some of technical criteria should be met, e.g., precise
electrode placement on skin, proper preparation of the worker’s skin or accurate operation of the
preamplifiers. Both the depolarization of muscle fibers and the neuromuscular junction result in the
EMG signal. On basis of this signal a force generated by the muscles can be assessed.

Based on this assessment of the developed tone and strength of muscle, it is possible to determine
the chances of muscle injury or pain, including in the area of the lumbar spine [29]. Electromyography
is a non-invasive method which enables the assessment of the electrical potential of a working muscle
with a view to preventing it from being overloaded during work [30]. The EMG system is frequently
used in the rehabilitation of patients to determine the optimal positions of the postures of injured
people [31–33].

The use of electromyography in ergonomic studies by Swedish scientists has clearly highlighted
the need to change the approach to the way devices, such as milking machines, are designed [12].
In their work, they confirmed that the method of surface electromyography (sEMG) is easy to apply,
safe for the person being examined and is a precise method of testing loads experienced by farmers.

On the basis of the measured strength-forming potential of farmers’ muscles, it was possible
to determine the maximum mass of milking machine, which can be used when milking cows in a
“herring bone” milking shed [34,35].

This study aimed at determining the load of the selected musculoskeletal system of farmers while
loading, transport and unloading maize silage. Firstly, a survey was conducted among farmers and,
based on this, the most common loading tasks according to farmers’ opinions were selected. Another
purpose was to determine the maximum mass of the shovel so that the level of forearm load involved
does not exceed the permissible value (30% MVC) [36].



Appl. Sci. 2020, 10, 7125 3 of 12

2. Materials and Methods

2.1. Participants

The research sample consisted of 50 farmers (18 women and 32 men) who, while performing daily
farm work, were exposed to significant loads on the musculoskeletal system. During the research,
the farmers did not perform any other physical work which was unrelated to agricultural activity.
All farmers had been performed agricultural works at least 3 years. Each of the farmers was informed
about how the study was to be prepared, how the measurements should be carried out and what a
purpose of the study was, and those who agreed to complete the survey and the EMG measurements
signed a statement. The research-group characteristics are presented in Table 1.

Table 1. Anthropometric characteristic of the surveyed farmers (N = 50).

Anthropometric
Features

Men (n = 32) Women (n = 18)

Average Standard Deviation Average Standard Deviation

Age [years] 45 3.6 37 4.3

Height [cm] 177 6.1 168 10.0

Body mass [kg] 82 2.9 80 4.8

2.2. Survey

When choosing farmers for the surveys, the basic criterion was that they ran agricultural
production. In order to identify the problem of muscle load during manual work performed on a
farm, a survey consisting of 5 open questions was conducted. All the questions, addressed to farmers,
were the following:

• Which of the farm activities places the greatest load on your musculoskeletal system?
• Which parts of the body are most notably stressed when you perform the activity in question 1?

Please assess on a scale of 1–10 the level of physical load on the parts of the body you gave in
question 2.

• Do you feel any pain or discomfort when you perform the activities you gave in question 1?
• How many times a day do you perform the activity that you gave in question 1?

In Figure 1, the places where the farmers’ muscle-load measurements are to be made, determined
on the basis of the survey, are shown.

Muscle groups selected to these studies were the following; Interosseus, Brachioradialis, Latissimus
dorsi, Biceps branchii, and Neck extensors. These parts of worker’s body are the most common used
during such works.

2.3. Task Performance

According to farmers the most common loading task within a farmer’s daily work was feeding
the maize silage, which included manual loading, manual transport and manual unloading of feed.
The subjects of measurements constituted loads in the arms, in the forearms, in the neck, in the spine
and in the wrists. The first phase of work was manual loading of maize silage on a single-wheeled
wheelbarrow (total capacity 60 kg). The average distance between the silage pile and the cowshed was
20 m. The mean outdoor temperature ranged from 20 ◦C to 25 ◦C, humidity 60% (±5%). A hand-held
shovel (mass 2 kg without load) was used for this purpose. A wheelbarrow loaded with silage was
transported to the feed corridor in the cowshed, where the feed was unloaded manually (Figure 2).
Approximately 25 kg of silage per day was transported for each cow (mean 15 wheelbarrows/day
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per farm). As farmers noted, this task followed involved extra loads in the musculoskeletal system,
especially in the hands and in the spine.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 13 
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2.4. Muscle Load Measurement

Non-invasive, 4-channel surface electromyography (sEMG) was applied to these tests. On the
basis of numerous samples, this system has been awarded with two international certificates, SENIAM
and ISEK, for the high quality of given results. The sEMG set consists of electrodes, a preamplifier,
Wi-Fi adapter and computer system (display option) (Figure 3). For these studies, a 30 mm × 24 mm
dimensioned hydrogel AgCl electrode with a sampling frequency of 1600 Hz was used. The electrodes
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were placed directly on the muscle and the distance between them was 2 cm. The preamplifier provides
the highest quality of electric signal and it reduces the disturbances. Due to low-impedance output,
cable-motion distortion was eliminated. This element was made of medical stainless steel of 10 g in
mass. Before the measurement the farmer’s skin was washed and cleaned. The mean impedance
of the skin was 2.5 kΩ. Fixed frequency range for the EMG preamplifier was 10 Hz for the higher
range and 500 Hz for the lower range. The sampling rate was 1000 Hz. Additionally, the Fast Fourier
Transformation was used. The smoothing of recorded signal with RMS (Root Mean Square) was
defined in the time frame with 50 ms.
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Before taking the measurements, an exact location of the given muscle and connection of the
cables were determined. Besides, quality of the EMG baseline was checked. The level of EMG electrode
impedance was measured too. The electrode pair was placed centrally above the muscle, taking into
account the possibility of muscle relocation under the electrode, especially in the biceps brachii.

The results were expressed in milivolts (mV), as well as percentage (%) of Maximal Voluntary
Contraction (%MVC) generated by examined muscle. The measurement’s error was ±2 mV and
the median ranged from 40 mV to +40 mV. During the studies, all the data were stored in an extra
disk [36–38].

2.5. Statistics

The ANOVA test for independent groups was carried out to analyze the differences between a
worker’s workload by means of the STATISTICA 12 program.

The ANOVA test was conducted for inspections where there was normality in the distribution of
the feature being examined, it was an independent model and where in all populations there was equal
variance in the examined variable. If any of these conditions were not met, then the Student’s test was
conducted. The significance level for this test was 0.05. Moreover, a Levene’s test was conducted. From
the one hand when the significance of Levene’s test is less than 0.05 such difference is significant and
the variances are not homogeneous (not similar). From the other hand, while significance of Levene’s
test is higher than 0.05 the differences are insignificant. The data were presented as mean ± SD.
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3. Results

In the first step of this study the survey was conducted. In Section 3.1 subchapter the results of
this survey were presented.

3.1. Survey

On the basis of this survey, it was found that feeding cows with maize silage were performed nearly
by 40% farmers. For silage feeding task, farmers individually determined the degree of perceived load
in selected parts of their body. When farmers evaluated their body part load in the range 1–4 points
it was acceptable, 5–7 points medium loaded and 8–10 points it was overloaded. In order to study
the actual EMG load level, segments of the musculoskeletal system were determined for which the
farmers’ subjective level of was at least 5 points.

From the conducted survey it follows, that the highest loads, according to farmers, were felt
in the lumbar spine, forearms, arms, neck and wrists (Table 2). All the mentioned segments in the
musculoskeletal system will be analyzed in the next part of this study by means of the sEMG method.

Table 2. Subjective assessment of the average load level expressed in range of 1–10 resulting from
silage feeding (manual loading, transport and unloading).

Body Part Level of Physical Load Load Level

Neck 5.1 Medium
Arm 7.6 Medium

Forearm 8.2 High
Lumbar spine 8.4 High

Wrist 5.0 Medium

3.2. Manual Silage Loading

While loading the maize silage on wheelbarrow the highest external load was focused on the
forearms, which were exposed to performing numerous repetitions. The spine, inclined forward,
was exposed to higher load, especially in the lumbar part. The neck makes repetitive movements to
the left or right sides, hence increased discomfort and pain. For instance, in the forearms, where the
mean load for women was 29% MVC, among men, it was 27% MVC. The peak value for women was
36% MVC, whereas 34% MVC reached for men.

On the basis of the statistical analysis, the distribution of dynamic load in the forearm was
presented in Figure 4. From the student’s test it follows that the load = among studied group was not
statistically significant; the probability value (p) obtained in the student’s t-test was p = 0.36. This means
that average dynamic load in the studied group was very similar.
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The highest acceptable dynamic load in the forearms should not exceed 30% MVC. Therefore,
the maximum total mass of the shovel (2 kg) plus the mass of silage was determined on the basis of the
forearm muscle load (Figure 5).
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3.3. Manual Transport and Unloading

During feed transport, the farmer was exposed to static load, which resulted from body posture.
For women, mean load values were lower than corresponding values for men and ranged from
32.5% MVC to 39.5% MVC. For men, muscle load reached 32–44% MVC.

Mean load as well as standard deviation were shown in Figure 7. On the basis of statistical analysis,
it was found that results obtained in the group of examined farmers did not indicate a significant
statistical difference. The probability in the student’s t-test was p = 0.55, (p > 0.05), therefore there
were not significant statistical differences between the loads between men and women. Additionally,
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in the Levene’s test p-value was 0.45, hence the differences in the results between women and men
were insignificant.
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Differences in the obtained findings resulted mainly from the mass of the transported load. Usually
women transported smaller unit loads of silage, and as consequence they made more work repetitions.
The highest load among men during feed transport occurred in the lumbar spine, approximately
reaching 41% MVC, whereas the lowest was in the muscle spine: 17% MVC. Among women the
highest farmer’s muscle load in the lumbar spine was 44% MVC (Table 3).

Table 3. Mean %MVC values of selected farmer’s muscle groups during silage transport to the cowshed.

Body Part Men Female

MVC [%]

Forearm 28 30
Wrist 22 24
Neck 17 21
Spine 41 44
Arm 31 34

As results from the ergonomic norm of static loads, in all cases presented in Table 3 the acceptable
values of loads resulting from the maintained farmer’s body position were exceeded. Therefore,
overloaded muscles could cause disorders. The statistical analysis showed that differences in the
generated load were not statistically significant in each group. The probability in the student’s t-test
was 0.71. Maintaining the body posture during feed unloading was not comfortable because it required
the generation of a lot of physical effort. The measurements were made also for other parts of a farmer’s
musculoskeletal system. The highest recorded values were recorded in the lumbar spine for men at
41% MVC and women at 35% MVC, respectively, (Figure 8). The Levene’s test showed insignificant
difference between examined groups.

Unloading of silage caused the highest load in the spine. In order to keep the right posture,
the external load and gripping the handle of the wheelbarrow both affect the high load in the wrists.
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4. Discussion

The use of surface electromyography in order to determine the dynamic load for farmer workers
is an innovative approach in the field of ergonomic research, as well as workplace safety among
Polish farmers. The indisputable advantage of the method is its high accuracy of measurement in
comparison to the tabular or quantitative-qualitative methods that have so far been used. So far,
Komarnicki analyzed a load influenced biological material, but in this study, they described a load
generated by farmer’s muscles during silage feeding [39]. This was the case with milking activities in a
herring bone milking shed and when milking with a bubble milking machine. One of the research
assumptions in this work was the determination of the maximum unit mass of the load that was
being transferred in the process of silage loading. This goal guided the research of scientists in the
past, where, for example, a maximum mass of 3 kg was determined for the milking machine in the
milking shed [34]. The forearm load values that were obtained, expressed in % MVC, are similar to
the results of the loads for a milker while washing, massaging and attaching the milking apparatus,
being in the range of 15–25% MVC [34]. Stal emphasized in their scientific papers that a %MVC score
above 15% may be a contributory factor in the development of musculoskeletal complaints among
employees [14,40,41]. The physical-load results obtained by milkers, in most cases, was in excess of the
acceptable level, reaching values above 30% MVC. The authors also emphasized that roughly 50% of all
farm workers have complained of pain and discomfort when performing physical activities on a farm.

In the case of manually transporting silage, the forearm load exceeded 30% MVC, hence it can
lead to discomfort while working and, consequently, could lead to injury or other complaints. Similar
studies were carried out among employees who were handling manual loads of 10–30 kg in production
halls. The EMG results showed the load to be in the range of 30%–40% MVC, i.e., similar to the result
obtained in the work of farmers who were transporting silage.

The results that were obtained expand the scope of the current state of knowledge in regarding
women’s physical loads, determining the level of the maximum unit load for repetitive tasks. In addition,
in the studies conducted by Zaniewska, 5% of surveyed farmers noted that negative symptoms in the
musculoskeletal occurred regularly after physical load [42]. For instance, a work in the construction
industry can be classified as one of the most dangerous professions, because of many disorders
occurring in the worker’s musculoskeletal [43]. Ensuring safety on construction site is one of the
most important elements of the entire safety management [44]. Musculoskeletal disorders are one of
the most common health problems at work and affect millions of employees every year [45]. So far,
the OCRA (Occupational Repetitive Actions) or Strain Index (SI) methods have been used to assess the
load associated with the physical work of upper limbs. These methods are based on specific patterns.
They allow one to evaluate an occupational risk [46,47]. From the point of view of muscle load, a time
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of load, body position, but also work breaks are important. Miedema developed the concept of the
optimal position during work in order to reduce muscle fatigue [48]. Yates evaluated some of postures
among workers. He defined the most acceptable position at work. From his studies it follows that, right
work condition without overloading body parts result in lower risk of musculoskeletal disorders [49].
Generally, they observed workers at work, in comparison to these studies, when the EMG system
allows to record real biological signal adequate to examined farmer. Nowadays, the worker’s muscles
are exposed to different disorders. It depends mainly on the structure of the muscle, load of the
muscle or hormonal balance. Therefore, very important issue is to reduce muscle overload especially
at work [50].

5. Conclusions

This assessment of loads in the human musculoskeletal system is particularly important from the
point of view of the possibility of introducing preventive actions in similar positions. With reference
to the obtained results, it needs to be stated that, for manual loading of maize silage at a specified
frequency of repetition, the maximum mass of the load for women to carry, determined on the basis of
the measurements, should be 5.2 kg, and for men, 7.0 kg. The highest load values while loading silage
were recorded in the spine area both of women and men: 19% MVC in men and 25% MVC in women.
During the process of unloading, the highest load occurred in the farmers’ backbone: 35% MVC for
women and 40% MVC for men. Subjective assessments of the level of physical load on employees do
not differ significantly from the results that were obtained on the basis of load measurement. The risk
of ailments in the musculoskeletal system is higher among women than among men for the jobs that
were compared.
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