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Featured Application: The proposed technique is an application of physical activity detection,
analyzing three challenging benchmark datasets. It can be applied in sports assistance systems
that help physical trainers to conduct exercises, track functional movements, and to maximize
the performance of people. Furthermore, it can be applied in surveillance system for abnormal
events and action detection.

Abstract: The classification of human activity is becoming one of the most important areas of human
health monitoring and physical fitness. With the use of physical activity recognition applications,
people suffering from various diseases can be efficiently monitored and medical treatment can be
administered in a timely fashion. These applications could improve remote services for health
care monitoring and delivery. However, the fixed health monitoring devices provided in hospitals
limits the subjects’ movement. In particular, our work reports on wearable sensors that provide
remote monitoring that periodically checks human health through different postures and activities
to give people timely and effective treatment. In this paper, we propose a novel human activity
recognition (HAR) system with multiple combined features to monitor human physical movements
from continuous sequences via tri-axial inertial sensors. The proposed HAR system filters 1D signals
using a notch filter that examines the lower/upper cutoff frequencies to calculate the optimal wearable
sensor data. Then, it calculates multiple combined features, i.e., statistical features, Mel Frequency
Cepstral Coefficients, and Gaussian Mixture Model features. For the classification and recognition
engine, a Decision Tree classifier optimized by the Binary Grey Wolf Optimization algorithm is
proposed. The proposed system is applied and tested on three challenging benchmark datasets to
assess the feasibility of the model. The experimental results show that our proposed system attained
an exceptional level of performance compared to conventional solutions. We achieved accuracy rates
of 88.25%, 93.95%, and 96.83% over MOTIONSENSE, MHEALTH, and the proposed self-annotated
IM-AccGyro human-machine dataset, respectively.

Keywords: binary grey wolf optimization; decision tree; electrocardiogram; Gaussian mixture model;
Mel frequency cepstral coefficients

1. Introduction

Chronic and physical fitness-related diseases are rapidly increasing as the population increases.
Physical activities are directly associated with human health benefits. Therefore, many researchers
strongly recommend 30 to 40 minutes of physical activity regularly for a healthier life, since it can reduce
the risk of many diseases, such as heart attacks, diabetes, cancer, cardiovascular disease, and so on [1].
In hospitals, many patients need continuous monitoring, which is quite expensive and inconvenient,
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especially for children and elderly people [2]. Instead of relying on expensive treatments and delayed
intervention, healthcare sensing technology can inform doctors of escalated incidents beforehand.
Among the primary health-care sensing categories, wearable inertial sensors show promising potential
for human locomotion tracking [3]. These sensors can monitor human activities conveniently and
effectively in a free living environment, and their use is rapidly increasing, representing up to 97% of
the market volume by 2020 [4].

Human activity recognition (HAR) can be broadly classified into template matching, generative and
discriminative categories [5,6]. Firstly, template matching algorithms, such as the K-Nearest Neighbors
classifier, compute the distances between the event data. Secondly, generative algorithms, e.g., the
Bayes network, use probabilistic graphs to classify human activities. Finally, discriminative approaches
model the boundaries between data events [7–9]. Although these machine learning algorithms operate
with little prior information, they nevertheless provide good classification results [10–15]. However,
their feature engineering requires deep expertise that can significantly reduce discriminant errors and
improve the performance of a recognition system.

In this paper, we propose new robust ‘multi-combined’ features to represent human body
movements and to classify human activity patterns using the time-series data from tri-axial inertial
signals via wearable sensors. These new features are combinations of 14 different kinds of features,
including statistical features, the Mel Frequency Cepstral Coefficients (MFCC), Electrocardiogram
(ECG) features, and Gaussian Mixture Model (GMM) features, which efficiently reduce discriminant
errors and improve the performance of the activity recognition system. For HAR, novel combined
classifiers such as Binary Grey Wolf Optimization (BGWO) and Decision Trees (DTs) are applied.
To examine the performance, a new continuous wearable human activity dataset (i.e., the IM-AccGyro
dataset) that contains 1D segmented signal sequences is provided; this can be used for the training
and testing data of different physical exercises. This will become a benchmark dataset in the field
of the wearable activity recognition of physical exercises based on inertial sensors. Additionally, we
apply the proposed method to public datasets such as the MOTIONSENSE and MHEALTH datasets.
For comparison studies, we consider state-of-the-art methods such as a Genetic algorithm optimized by
Ant Colony Optimization (ACO) and a Support Vector Machine (SVM) optimized by Particle Swarm
Optimization (PSO). We obtained remarkable improvements in the recognition rates over current
state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 presents related works. Section 3 presents
the complete system methodology, which is comprised of physical activity detection, preprocessing,
feature extraction, optimization, and classification methodologies. Section 4 explains the complete
experimental setting and describes the datasets. Section 5 describes the results and evaluation. Finally,
Section 6 presents the conclusion.

2. Related Works

Several studies have classified human activity patterns. These activity patterns have been classified
using two major categories of sensor devices: vision sensors and wearable sensors. In vision-based
HAR, video cameras are used to capture image data. Babiker et al. [16] proposed digital image
processing techniques including background subtraction, binarization, and morphological operations.
Then, a multilayer feed-forward perceptron network is applied to recognize daily human movements
and to conduct HAR in indoor environments with a single static camera. Jalal et al. [17] obtained
video-based invariant features by applying the R transform to depth silhouettes. These silhouettes are
encoded into feature values using depth images. Then, the scaling invariant features are calculated
by computing the 2D and 1D features using Radon transform and R transform. Finally, principal
component analysis and the Hidden Markov Model are applied to the computed features to train and
recognize different human activities. Liu et al. [18] focused on the shapelet-based method to recognize
four different types of human activities. They evaluated their proposed approach on two public datasets.
Experimental results showed their proposed approach was efficient to handle complex activities.
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Instead of relying on image data, many researchers have designed wearable sensor technologies
for activity monitoring and classification. Jansi et al. [19] presented a multi-feature (time and frequency)
domain to enhance the classification of eight different human activities from inertial sensors installed
in smartphones. Tian et al. [20] proposed a two-layer diversity-enhanced multi-classifier recognition
method from one triaxle accelerometer to classify four different activities. Furthermore, they extracted
three-domain features (time, frequency, and AR coefficients) to optimize the performance of the
multi-classifier recognition system. Tahir et al. [21] proposed a multifused model to maximize
the optimal features values. The extracted features values are then optimized and classified using
adaptive moment estimation and a maximum entropy Markov Model. This method achieved an
accuracy of 90.91% over the MHEALTH dataset. Haresamudram et al. [22] introduced a masked
reconstruction-based BERT model for human activity recognition activities. The activities are pre-trained
as a self-supervised approach. The transformer encoder architecture is also applied for continuous data
from body worn sensors and achieved an accuracy of 79.86% over a MOTIONSENSE dataset. Jordao et
al. [23] implemented convolution neural network for wearable sensors human activity recognition data.
The authors evaluated the implemented methodology on an MHEALTH dataset by using the “leave
one subject out” validation protocol; they achieved an accuracy rate of 83%. Batool et al. [24] proposed a
physical activity detection model based on Mel Frequency Cepstral Coefficients (MFCC) and statistical
features. The extracted features were then optimized and classified with a PSO and SVM algorithm.
The implemented methodology was later evaluated over a MOTIONSENSE dataset, giving an accuracy
of 87.50%. Zha et al. [25] presented Logical Hidden Semi-Markov Models (LHSMMs), which are
a combination of Logical Hidden Markov Models (LHMMSs) and Hidden Semi-Markov Models,
to segment the duration of each activity. Moreover, a comparison of LHSMMs and LHMMs proved
that the given method is more robust and has higher probability results than the LHMM method.

Optical sensors like digital and bumblebee cameras can be used to improve human lifestyles.
However, there are limitations to the use of optical sensors for detecting human activities. With those
sensors, the detection of subject’s movements is restricted to a particular range and they have privacy
issues, e.g., recording in private places like restrooms or intruding on the user’s personal life. It is
uncomfortable for the subjects to carry optical sensors around with them because sensors are bulky,
invasive, and are not easily worn during working hours. Additionally, such cameras are relatively
more expensive than other wearable sensors. Despite previous human activity classification research,
there are still challenges in computation, multi-sensor support, and precise signal data acquisition.
Therefore, we suggest a novel method for human activity classification in this paper.

3. Methodology

The complete framework for human activity recognition using wearable inertial sensors is depicted
in Figure 1. Data are first collected by inertial sensors attached at the wrist, the knee, and the back of the
participants. The collected data are preprocessed using a band-stop filter. Fourteen different features
are extracted from the filtered data. Subsequently, the extracted features are optimized using BGWO.
Finally, the optimized features are fed to a DT classifier to obtain the final classification. A detailed
description of the system is given in the following section.
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representation to improve the quality of data. A second‐order band stop (notch) filter has two cut‐off 
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the upper cutoff are rejected. The bandwidth of the notch‐filter is calculated by subtracting the lower 
cut‐off frequency from the higher cut‐off frequency, as shown in Figure 2. The filtered data and 
unfiltered data of the accelerometer signal are plotted on the same axis. The red signal represents the 
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signals represent the filtered data and the unfiltered data, respectively. 

3.2. Feature Extraction and Selection 

After framing and preprocessing the data, fourteen different features are extracted in each frame, 
including statistical features, Mel Frequency Cepstral Coefficients (MFCC) features, ECG features, 
and GMM features. The statistical features are computationally less intensive and can be easily 
extracted in real time [26–28]. The statistical features applied in this paper are the mean, median, 

Figure 1. Flow architecture of the proposed methodology for human activity recognition.

3.1. Preprocessing and Filtration of Sensor Data

Initially, signal enhancement is applied to the inertial sensor data to eliminate redundancy,
irrelevancy, and inconsistency in the framed data. The band stop notch filter [26] is used for signal
representation to improve the quality of data. A second-order band stop (notch) filter has two cut-off

frequencies, lower cut-off and upper cut-off, which are applied to the framed data. Such a filter passes
all frequencies from zero to both cutoff frequencies. All the frequencies between the lower cutoff

and the upper cutoff are rejected. The bandwidth of the notch-filter is calculated by subtracting the
lower cut-off frequency from the higher cut-off frequency, as shown in Figure 2. The filtered data and
unfiltered data of the accelerometer signal are plotted on the same axis. The red signal represents the
filtered data and the blue signal represents the unfiltered data. Moreover, an on-figure magnifier is
added on the plotted accelerometer data showing the zoom-in area of the graph.
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Figure 2. Band-stop filtration of the accelerometer data in the preprocessing step. The red and blue
signals represent the filtered data and the unfiltered data, respectively.

3.2. Feature Extraction and Selection

After framing and preprocessing the data, fourteen different features are extracted in each frame,
including statistical features, Mel Frequency Cepstral Coefficients (MFCC) features, ECG features,
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and GMM features. The statistical features are computationally less intensive and can be easily
extracted in real time [26–28]. The statistical features applied in this paper are the mean, median,
harmonic mean, position vector, sine, and cosine. The MFCC features represent the frequency and
amplitude of the sensor signals and are individually helpful in finding the pattern of each activity.
The ECG features are commonly used to find the absolute pattern of a signal. In this paper, the ECG
features include the autoregressive, waveform length, slope sign change, and Willison amplitude,
which can efficiently detect the specific pattern of each activity. Furthermore, the GMM features include
the weighting ratio, mean, and covariance for activity recognition. Figure 3 defines the flowchart of
feature combinations as:
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3.2.1. Mean Feature

The mean feature is the average value of the sampled signal in each frame [29]. It is calculated by
taking the sum of the features and dividing it by the total number of samples.

3.2.2. Median Feature

The median feature is the middle value of the samples, which divides the data sample into two
halves with equal numbers of observations [29]. It separates the higher half from the lower half of the
sample data.
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3.2.3. Harmonic Mean Feature

The harmonic mean feature HMi(t) specifically measures the reciprocal of the arithmetic mean as
a ratio that gives equal weight to each data point in the sample data. It is defined as:

HMi(t) = f (t)n /

 1

f (t)i

+
1

f (t)i+1

· · · · · · · · ·+
1

f (t)i+N

, (1)

where fn is the total number of samples in each frame and fi corresponds to the current sample of
the signal and ranges from fi to fi+N. Figure 4 represents the overall 1D plot of the means, medians,
and harmonic means. The blue signal and red signal represent the sitting down and standing up data
taken from the accelerometer. Moreover, purple dots, green dots, and yellow dots on accelerometer
signals represent mean, median, and harmonic mean value, respectively.
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Figure 4. Means, medians, and harmonic means of data samples. The blue and red dots represent the
sitting down data and the standing up data taken from the accelerometer.

3.2.4. Sine Feature

The sine feature SinӨ measures the angle along the x-axis by calculating the magnitude and
direction angle along SinӨ. The magnitude of the sine vector measures the length of a line segment and
the direction measures the angle of the ith coefficient signal values between two consecutive sample
values t−1 and t. The sine magnitude and angle are defined as:

SinΘ(t− 1, t) =
[√

f12(t−1) + f 2(t)
2

]
Sin

[
tan−1

(
f t−1
i / f t

i+1

)]
, (2)

where fi and fi+1 represent the current samples of the signal, and tan−1 represents the return angle
between two corresponding feature vectors fi and fi+1.

3.2.5. Cosine Feature

The cosine feature CosӨ measures the angle along the y-axis and calculates the magnitude and
angle of a vector using the cosine feature. The magnitude of the cosine vector represents the length of
a line segment from its origin to a target point (see Figure 5). Meanwhile, the direction represents the
angle of the line formed along the y-axis. The cosine is defined as:

CosΘ(t− 1, t) =
[√

f12(t−1) + f 2(t)
2

]
Cos

[
tan−1

(
f t−1
i / f t

i+1

)]
, (3)
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3.2.6. Position Vector Feature

The position vector feature Pi measures the difference between the ith coefficient values between
two consecutive sample values. It generates a straight line between two points and is defined as:

Pi(t− 1, t) =
√

fi2 + f 2
i+1 + f 2

i+2, (4)

where fi, fi+1, and fi+2 represent the current three samples of the sensor signal, as shown in Figure 6.
The running and walking activities are represented by a red signal and a blue signal. The position
vector of the running activity is represented with a purple dotted line and the position vector of
the walking activity is represented with a green dotted line. The purple and green dots are further
extended along the x-axis and y-axis to represent them more precisely.
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3.2.7. MFCC Vector Feature

The Mel Frequency Cepstral Coefficients (MFCC) measure the rate of change of information in a
spectral band. These features calculate the peak values in the periodic element of a sensor signal and
the resulting signal is neither in the frequency domain nor in the time domain but is in the quefrency
domain. The MFCC relates the perceived signal to the actual sensor signal and is defined as:

M( f eatures) =
N−1∑
n=0

fnCos[pi/N(n + 0.5)k], (5)
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where fn is the log filter bank amplitude, which is calculated by using a discrete cosine transform.
Meanwhile, N represents the total number of filter bank channels.

3.2.8. Autoregressive Feature

The autoregressive (AR) feature samples each activity signal as a linear combination of the
previous sample plus the error sequence. These features map the particular pattern of an activity
and return a true value if the pattern is detected. It is specifically used for feature extraction and it is
defined as:

Auto(reg) =
N∑

n=0

ai fn−i +ωn, (6)

where fn-i is the n-i feature of the sample data, ai represents the AR coefficient and the current sample
of the sensor signal n is the error sequence. The second- and fourth-order ARs are used in this paper
since they give the best results for each activity pattern.

3.2.9. Waveform Length Feature

The Waveform Length (WL) features are mainly used in ECG signals to measure the complexity of a
signal. These are used to detect human physical activities using wearable inertial sensors. Additionally,
they efficiently estimate the complexity of each activity signal by taking the negative of the current
sample from the last sample and summing them. These features give the amplitude, frequency,
and time information. Its formula is:

Wave( f orm)(t) =
N∑

n=0

∣∣∣ f t
i − f t

i−1

∣∣∣, (7)

where fi is the feature vector of the current sample, fi−1 is the past sample, and N is the total number of
samples in the current frame.

3.2.10. Slope Sign Change Feature

The slope sign change feature is the ratio of the vertical and horizontal changes between two
sample points of a window segment. The vertical change between two sample points is called the rise,
and the horizontal change is known as the run. The slope sign change is defined as:

Sl(sign)( f eatures) = ( f1 − h)2 + ( f2 − k)2, (8)

where h and k are the x and y coordinates of a point in the signal sample in the current frame, respectively.
f 1 and f 2 represent the current sample points.

3.2.11. Willison Amplitude Feature

The Willison amplitude is used for the detection of ECG signals. In HAR, it is defined as the
number of counts for each change in the inertial sensor signal that exceeds the threshold. We used
thresholds ranging from 0.01 to 0.27 to detect different human activities since they give efficient
performance over time. It is defined as:

William(t)
(amp)

( f eatures) =
N−1∑
n=1

∣∣∣∣ f (t)n − f t
n+1

∣∣∣∣ > T, (9)

where fn and fn+1 are the current and previous samples, respectively. Meanwhile, N is the total number
of samples in the current frame.
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3.2.12. GMM Mean Feature

The GMM is statistically used for density estimation and clustering models. It consists of
covariance matrices, a mixture weight, and a mean vector. In this paper, the GMM mean vector is
calculated by using the maximum likelihood estimation that effectively estimates the mean vector of
the inertial signal. It is defined as:

G(mean) =

[∑
fi+ fi+1 + · · · · · ·+ fi+n

N

]
, (10)

3.2.13. GMM Weighting Ratio Feature

The GMM weighting ratio calculates the maximum likelihood probability for the detection of each
activity signal. In this paper, the GMM weighting ratio is calculated using the iterative maximization
method and is defined as:

G(weight) =

(
1 +

fi+1 − fi
fi

)2

− 1, (11)

where fi is the current feature of the signal and is subtracted from the next predicted fi+1 feature of the
signal to estimate the weighted ratio of the current feature.

3.2.14. GMM-Based Covariance Ratio Feature

The GMM covariance measures the joint variability of two samples in the current window.
The result of the covariance is always positive for a greater value of the second data sample and
vice versa.

G(covar) =
N−1∑
n=1

( fi − µx)
(

fi−1 − µy
)
/(n− 1), (12)

where µx is the mean of the current sample fi, and µy is the mean of the previous sample fi−1.

3.3. Basic Classifier

In this paper, three basic classifiers, along with optimization algorithms, were used to evaluate
the proposed preprocessing and feature extraction methodology. These are the Decision Tree classifier
optimized by BGWO, the SVM optimized by particle PSO, and the Genetic Algorithm optimized by
ACO. Figure 7 defines the flowchart of feature optimization and classification.
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3.4. Pre-Classification Using Binary Grey Wolf Optimization

Binary Grey Wolf Optimization (BGWO) is an optimization algorithm inspired by grey wolves
that live in groups of 5 to 12 [30]. To estimate the leadership in an individual group, four levels named
alpha, beta, delta, and omega are considered. Alpha includes the leaders of the individual group of
males and females. Beta gives suggested feedback to the alpha when making decisions. Delta includes
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the roles of sentinels, elders, caretakers, and scouts. The omega wolves only obey other groups of
wolves [31]. The BGWO algorithm is calculated as:

B = Xp(t) + (2a× r1− a) ×
(
2× r2×Xp(t) −X(t)

)1
2

, (13)

where Xp is the prey’s position vector. X mimics the position of wolves in n-dimensional space. r1 and
r2 are random vectors that lie from 0 to 1 in each iteration. In the hunting process, alpha is the optimal
solution, while beta and delta need to know the possible position of prey. Out of all possible solutions,
only the three best possible solutions are selected to modify the decision space consistent with the
best [32].

In BGWO, a is the main component of the algorithm. a is processed from increase to decrease
vector of each dimension using the following formula to obtain the optimal solution [33]. The equation
is defined as:

a = 2− t×
2

maxiter
, (14)

where t is the total number of iterations and maxiter is the maximum number of iterations in the
optimization algorithm.

BGWO is applied on three datasets, including the MOTIONSENSE, MHEALTH, and IM-AccGyro
datasets. The final sample data convergence results and optimization results are shown in Figures 8–10.
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3.5. HAR Using a Decision Tree

The Decision Tree (DT) classifier [34] is commonly used as a predictive model for clustering,
prediction, and recognition. A tree is built based on divide-and-rule, and certain parameters are
applied to the DT to get the classification result.

The internal nodes of a DT are compared to the attribute values, and the decisions of the branches
are made for the current node according to certain attribute conditions [35]. Finally, the leaf nodes
provide conclusions. The above-defined process is repeated on a new node and forms a child of the
root tree. Every non-leaf node is an input attribute of the sample data, and every leaf node is an output
attribute of the sample data.

In a Decision Tree, each path from a root node to a leaf node resembles a set of attributes of
conjunctions, while the tree itself represents the disjunction of these attributes of conjunctions [36].
Therefore, a DT is easily converted from IF-THEN statements to classification procedures and rules.
The Decision Tree algorithm is described as follows.

3.5.1. Initialization of Attributes

In this case, every internal node is named attribute Ai. Every arc is marked as a predicate, which is
applied to the corresponding attribute of the parent node. Finally, each node is named as a class as C1,
C2, ..., and CN, respectively.

3.5.2. Classification and Prediction

A Decision Tree is built using training data, and this is commonly known as the induction of a
decision tree. Classification and prediction methods are based on the given induction data matrix.

3.5.3. Building a DT from Training Data

To build a DT from training data, DT is built based on gain and gain ratio. The training data is
divided into two classes Pi (acceptable level) and Ni (unacceptable level). The information needed to
identify the classes of an element is made based on the following information.

In f o(Pi, Ni) = −
Pi

Pi + Ni
log2

Pi
Pi + Ni

−
Ni

Pi + Ni
log2

Ni
Pi + Ni

, (15)
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The training set is partitioned based on features Xi. into different classes based on the weighted
average. The Info(Pi,Ni) is represented with Info(TS) as follows:

In f o(Xi, TS) =
n∑

i=1

|TSi|

|TS|
In f o(TSi) (16)

Next, the information gain is calculated with the difference in the basis of features to identify the
desired elements. The information gain on each element of the feature Xi is defined as:

Gain(Xi, TS) = In f o(TS) − In f o(Xi, TS), (17)

The classification decisions are made based on the greatest value of the gain. Such a decision
process is repeated until all the features are properly classified. Each node in DT is located with the
greatest gain. The gain has a shortcoming effect, where the number of features is too big. To cope
with this issue, the gain ratio is calculated based on gain information and split information. The split
information is the split values of two classes Pi (acceptable level) and Ni (unacceptable level), which are
represented with TS. The gain ratio is defined as:

Gainratio(Xi, TS) =
Gain(Xi, TS)
split(Xi, TS)

(18)

split(Xi, TS) =
n∑

i=1

|TSi|

|TS|
log2

(
|TSi|

|TS|

)
(19)

A DT is a learning model that uses the information gain to evaluate a target node, and the complete
function uses divide-and-rule, a no-return strategy, and a top-down approach. Every branch of a node
subset acts recursively and builds Decision Tree nodes and leaves until the classification model is
achieved [37]. The final result is shown in Figure 11.
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4. Experimental Settings and Datasets

4.1. Dataset Description

A platform is established to evaluate the performance of the proposed methodology using a
three-axis accelerometer and gyroscope. Wearable sensors are used to acquire human activity data,
and the data are uploaded to signal processing software. Our algorithm can be applied in real-time
situations, especially for the health care assessments of children and elderly people.

Three datasets were used in this experiment. The MOTIONSENSE dataset [38] is taken from the
accelerometer and gyroscope sensors of an iPhone with a time constraint of 6 seconds. Six activities
were performed by 24 participants in different manners, i.e., downstairs, jogging, going upstairs, sitting,
walking, and standing.

The MHEALTH dataset [39] is an accelerometer, gyroscope, and magnetometer dataset. In this
paper, only the accelerometer and gyroscope sensor data were used to evaluate the proposed model.
The sensors were placed on the subject’s chest, right wrist, and left ankle. Twelve outdoor activities
were performed, including walking, climbing stairs, standing still, sitting and relaxing, waist bending
forward, cycling, jogging, running, jump forward and back, knees bending, frontal elevation of arms,
and lying down.

The IM-AccGyro dataset [40] is our self-annotated human–machine interactive dataset.
Three accelerometer sensors were attached at three different locations, which were the arm, leg,
and neck of the subject, as shown in Figure 10. The ages of the participants ranged from 15 to 30 years.
Six different indoor and outdoor physical exercise activities were performed including boxing, walking,
running, sitting-down, standing-up, and clapping.

4.2. Hardware Platform

In the experimental setup, the hardware platform comprised three GY-521 sensors. These sensors
were interfaced with the Arduino device using jumper wires for electrical communication, and Bluetooth
modules (HC-05) were also connected via GY-521 sensors. All the modules including GY-521, HC-05,
and Arduino Uno along with a 9-Volt battery were fixed in a specially designed protective case that
was then mounted on a belt and tied on the human body at the arm, leg, and neck position, as shown
in Figure 12. Therefore, no sensor component would misbehave during the activities. The Bluetooth
HC-05 transceiver modules were responsible for wireless communication and 9-Volt batteries were
used with the setup to ensure uninterrupted data collection. The open-source Arduino software (IDE)
was used to simulate operation in a real-time environment. During the trials, no loss of data occurred.

The GY-521 sensor provides six-degree-of-freedom (DOF) motion tracking. It consists of a
three-axis accelerometer and a three-axis gyroscope embedded in a small chip, and it is based on a
micro electro mechanical system (MEMS). The purpose of using the GY-521 sensor is its built-in digital
motion processor (DMP) for motion processing. We received data angles of yaw, roll, and pitch with
the GY-521. Thus, the burden of a host computer in the manipulation of motion data was minimized.

The limitation with the current setup is the 9-Volt battery. The power of the battery can operate
the system for up to two days. There is a need to recharge or to replace the battery often to operate the
prototype system for longer periods.
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5. Experimental Results and Evaluation

The proposed system is evaluated using the “leave one subject out” (LOSO) cross-validation
method with training and testing data. The three chosen classifiers with optimization algorithms are the
following: the GA optimized by ACO, the DT optimized by wolf optimization, and the SVM optimized
by PSO. The human activity classification algorithm is validated using precision, recall, and F-measure
to identify different postures and movements. The precision is defined as the True positive (instances
that belong to the class) by the total number of instances (True positive and False positive).

Precision =
TP

TP + FP
(20)

The recall is defined as the proportion of instances classified in one class by the total instances.
Total instances include True Positive (TP) and True Negative (TN) values.

Recall =
TP

TP + TN
(21)

The F-measure is the combination of precision and recall and is defined as:

F−measure =
2× Precision×Recall

Precision + Recall
(22)

The classification results of the three classifiers, i.e., support vector machine, genetic algorithm,
and decision tree on MOTIONSENSE, MHEALTH, and IM-AccGyro datasets are reported in Tables 1–3.
All classifiers are trained on the training set. The classification results in Tables 1–3 were obtained
by using the testing set. In Table 3, we got a better classification result on the IM-AccGyro dataset
with an F-measure of more than 90% compared to the classification results of Tables 1 and 2, i.e., the
MOTIONSENSE, and MHEALTH datasets. The overall results showed that our proposed method
achieved better performance than other state-of-the-art methods.
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Table 1. The classification results of three classifiers on the MOTIONSENSE dataset.

Dynamic
Activities Support Vector Machine Genetic Algorithm Decision Tree

Activities Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

DWS 0.860 0.830 0.844 0.910 0.875 0.892 0.927 0.890 0.908
UPS 0.843 0.878 0.860 0.873 0.838 0.855 0.989 0.985 0.987
WLK 0.884 0.849 0.866 0.809 0.834 0.821 0.807 0.880 0.842
JOG 0.908 0.873 0.890 0.925 0.890 0.907 0.820 0.845 0.832
SIT 0.853 0.818 0.835 0.844 0.869 0.856 0.895 0.860 0.877
STD 0.882 0.937 0.908 0.854 0.829 0.841 0.865 0.835 0.849

DWS = Downstairs, UPS = Upstairs, WLK = Walking, JOG = Jogging, SIT = Sitting, STD = Standing.

Table 2. The classification results of three classifiers on the MHEALTH dataset.

Dynamic
Activities Support Vector Machine Genetic Algorithm Decision Tree

Activities Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

WLK 0.867 0.907 0.886 0.858 0.891 0.874 0.918 0.960 0.938
CLS 0.968 0.873 0.918 0.836 0.876 0.855 0.953 0.925 0.939
STS 0.882 0.977 0.927 0.818 0.858 0.837 0.933 0.985 0.958
STR 0.874 0.834 0.853 0.932 0.892 0.911 0.905 0.955 0.929
WBF 0.843 0.884 0.863 0.912 0.872 0.891 0.949 0.935 0.942
CYC 0.890 0.931 0.910 0.956 0.816 0.880 0.963 0.930 0.946
JOG 0.876 0.836 0.855 0.857 0.814 0.834 0.928 0.970 0.948
RUN 0.962 0.933 0.947 0.909 0.869 0.888 0.965 0.965 0.965
JFB 0.877 0.846 0.861 0.806 0.848 0.826 0.919 0.975 0.946

KNB 0.947 0.987 0.966 0.965 0.925 0.944 0.966 0.860 0.910
FEA 0.855 0.894 0.874 0.879 0.839 0.858 0.936 0.888 0.911
LYD 0.943 0.911 0.926 0.952 0.915 0.933 0.954 0.935 0.944

WLK = Walking, CLS = Climbing stairs, STS = Standing still, STR = Sitting & relaxing, WBF = Waist bend forward,
CYC = Cycling, JOG = Jogging, RUN = Running, JFB = Jump front & back, KNB = Knees bending, FEA = Frontal
elevation of arms, LYD = Lying down.

Table 3. The classification results of three classifiers on the IM-AccGyro dataset.

Dynamic
Activities Support Vector Machine Genetic Algorithm Decision Tree

Activities Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

STU 0.907 0.900 0.903 0.906 0.913 0.909 0.945 0.955 0.950
WLK 0.921 0.928 0.924 0.911 0.904 0.907 0.970 0.970 0.970
CLP 0.917 0.910 0.913 0.919 0.912 0.915 0.980 0.985 0.982
BOX 0.912 0.905 0.908 0.916 0.923 0.919 0.989 0.945 0.966
RUN 0.915 0.922 0.918 0.908 0.902 0.904 0.970 0.990 0.980
STD 0.913 0.906 0.909 0.921 0.914 0.917 0.955 0.965 0.960

STU = Standing Up, WLK = Walking, CLP = Clapping, BOX = Boxing, RUN = Running, STD = Sitting Down.

Table 4 depicts the confusion matrix of the MOTIONSENSE dataset for six different activities with
a mean accuracy of 88.25%. Table 5 presents the mean accuracy of 93.95% on the MHEALTH dataset of
12 different activities. Table 6 shows the confusion matrix of the IM-AccGyro dataset for six different
activities with an average accuracy of 96.83%. Table 7 presents the comparison results of the proposed
approach over MOTIONSENSE, MHEALTH, and IM-AccGyro datasets, respectively.
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Table 4. Confusion matrix of MOTIONSENSE dataset.

Dynamic Activities DWS JOG UPS SIT WLK STD

DWS 89.00 1.00 5.50 0 4.50 0
JOG 0 98.50 0 1.50 0 0
UPS 0 0 88.00 9.50 0 2.50
SIT 0 0 15.50 84.50 0 0

WLK 3.50 0 0 0 86.0 10.50
STD 3.50 0 0 7.50 5.50 83.50

Mean Accuracy = 88.25%

Table 5. The classification results of three classifiers on the MHEALTH dataset.

Dynamic
Activities WLK CLS STS STR WBF CYC JOG RUN JFB KNB FEA LYD

WLK 96.00 0 0 0 0 0 0 2.50 1.50 0 0 0
CLS 0 92.50 1.50 1.50 0.50 0.50 0.50 0.50 0 2.50 0 0
STS 0 0 98.50 0 0 0 0 0 0 0 0 1.50
STR 0.50 0 0 95.50 0 0 0 0 0 0 2.50 1.50
WBF 0 0 2.50 0 93.50 0 0 0 3.50 0 0 0.50
CYC 0 2.50 0.50 0 0 93.00 0 0.50 1.00 0 2.50 0
JOG 0 0.50 0 0 0 1.50 97.00 0 0.50 0 0.50 0
RUN 0 0 0 2.50 0.50 0 0 96.50 0 0 0.50 0
JFB 0 0 0 0 0 0 2.50 0 97.50 0 0 0

KNB 5.50 0 0 3.50 4.00 0 0.50 0 0 86.00 0 0.50
FEA 2.50 1.50 2.50 0 0 1.00 0.50 0 2.00 0.50 88.0 0.50
LYD 0 0 0 2.50 0 0.50 3.50 0 0 0 0 93.50

Mean Accuracy = 93.95%

Table 6. Confusion matrix of IM-AccGyro dataset.

Dynamic Activities STU WLK CLP BOX RUN STD

STU 95.50 0 0 0 0 4.50
WLK 2.50 97.00 0 0 0.50 0
CLP 0 0 98.50 1.00 0.50 0
BOX 0 2.50 1.00 94.50 2.00 0
RUN 0 0.50 0.50 0 99.00 0
STD 3.00 0 0.50 0 0 96.50

Mean Accuracy = 96.83%

Table 7. Comparison of state-of-the-art methods with the proposed approach.

Methods MOTIONSENSE MHEALTH IM-AccGyro

Entropy Markov Model [21] - 90.91 -
BERT model [22] 79.86 - -

Neural Network [23] - 83.00 -
Optimized method [24] 87.50 - -

Proposed Approach 88.25 93.95 96.83

6. Conclusions and Future Works

In this paper, we proposed a novel robust framework, called the multi combined features of
the HAR system, which recognizes human activities via the inertial measurements captured from
wearable sensors. The multi combined features examined the spatiotemporal variation, optimal pattern,
structural uncertainty, rehabilitation motion, and transitional activity features. These features are
then passed through three classifiers with optimization algorithms including the Genetic Algorithm
(GA) optimized by Ant Colony Optimization (ACO), the Decision Tree (DT) optimized by Binary
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Grey Wolf Optimization (BGWO), and the Support Vector Machine (SVM) optimized by Particle
Swarm Optimization (PSO). During the experiments, we used three challenging inertial sensors
datasets including the MOTIONSENSE, MHEALTH, and a proposed self-annotated IM-AccGyro
human–machine dataset. The recent work done by numerous researchers using state-of-the-art
classifiers (SVM [41] and GA [42]) has shown good classification results against multiple benchmark
HAR datasets. That is why we evaluated our proposed model against these classifiers. Our proposed
method achieved remarkable recognition accuracy performance over the state-of-the-art methods.

As future work, we will improve the efficiency of our multi combined features by adding wavelet
and frequency-domain features. Additionally, we are planning to develop more complex activities for
different scenarios such as smart homes, offices, and hospitals using various other wearable sensors.
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