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Abstract: A comparison is made of the ductility limits of one mild (normal) and two high-tensile
strength shipbuilding steels with an emphasis on stress state and loading path dependency.
To describe the ductile fracture behavior of the considered steels accurately, an alternative form
of ductile fracture prediction model is presented and calibrated. The present fracture model
combines the normalized Cockcroft–Latham and maximum shear stress criterion, and is dependent
on both stress triaxiality and Lode angle parameter. The calibrations indicate that, depending on
the hardening characteristics of the steels, ductile fracture behavior differs considerably with stress
state. It is demonstrated that the adopted fracture model is able to predict the ductile fracture
initiation in various test specimens with good accuracy and is flexible in addressing the observed
differences in the ductile fracture behavior of the considered steel grades.

Keywords: ductile fracture; shear fracture; shipbuilding steel; fracture prediction; stress triaxiality;
Lode angle parameter

1. Introduction

Ductile fracture resistance is an important structural performance requirement for the steel
components of naval structures. As discussed by Matic et al. [1], computational tools are capable of
implementing a range of elastic–plastic constitutive relations and ductile fracture initiation models
for analyzing the structural problems relevant to ship steels that involve considerable strain beyond
moderate plasticity, such as an analysis of the plastic zone ahead of the crack tip and, on a larger scale,
the plasticity generated due to forming [2,3] or extreme loads. Therefore, there is a demand for ductile
fracture models that can be calibrated and implemented easily in finite element analysis but represent
the micro-mechanisms of the failure process as accurately as possible.

Fracture initiation in ductile metals depends strongly on the stress state. Earlier studies on
micro-void-based fracture mechanisms highlighted the role of the hydrostatic pressure (or the first
invariant of the stress tensor) on void growth [4,5]. Experiments on notched round bars have been
conducted to achieve a range of axisymmetric tension stress states. The failure initiation results have
been correlated through stress triaxiality (hydrostatic stress normalized with equivalent von Mises
stress) and equivalent plastic strain [6,7], and micro-mechanism based models by McClintock [4]
and Rice and Tracey [5] have been verified, particularly for high-stress triaxialities. A parallel
development is the porous plasticity model by Gurson [8], which was later enhanced by Tvergaard [9],
and Tvergaard and Needleman [10]. Porous plasticity models incorporate the void volume fraction into
the constitutive behavior of the material, which evolves with void nucleation, growth, and coalescence
mechanisms in a phenomenological manner [10].

On the other hand, Johnson and Cook [11] proposed a purely empirical model using a stress
triaxiality sensitivity factor similar to the Rice and Tracey model and included the strain rate effect and
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thermal softening terms in a multiplicative format. Cockcroft and Latham [12] proposed an alternative
model based on the maximum principal tensile stress to predict fracture initiation in bulk metal forming
at a low and negative stress triaxiality. Oh et al. [13] modified the Cockcroft–Latham (CL) model
slightly by normalizing the maximum principal tensile stress with the von Mises equivalent stress.
CL model incorporates both the hydrostatic pressure (stress triaxiality) sensitivity and the deviatoric
stress state sensitivity (so-called Lode angle sensitivity) in an implicit manner.

Xue [14], who first interpreted the experimental results of Bao and Wierzbicki [15] correctly,
reported the strong dependence of ductile fracture on the deviatoric stress state or the third invariant of
the deviatoric stress tensor, i.e., the tendency of one of the principal stresses to dominate over the other
two. The test results by Bao and Wierzbicki [15] indicated that the equivalent plastic strain to fracture
does not decrease monotonically with increasing stress triaxiality, particularly at a low stress triaxiality
range bounded between pure shear and uniaxial tension, and between uniaxial tension and equi-biaxial
tension. Xue [14] emphasized that a second measure of the stress state, which is the Lode parameter
representing the third invariant of the deviatoric stress tensor, is needed to discriminate between
axisymmetric and shear-dominated stress states. Some other test results, such as those by Barsoum
and Faleskog [16] and Clausing [17], support Xue’s arguments. Consequently, Xue [18] proposed
a damage plasticity model for ductile fracture, which is dependent on the hydrostatic pressure and
the Lode angle. In addition, Xue [19] developed a Gurson-type model that included the void shearing
mechanism because of the Lode angle effect. Based on these recent developments, a dozen empirical
or phenomenological uncoupled ductile fracture models that incorporate the Lode angle effect and
particularly address fracture due to shear-dominated stress states were proposed recently [20–27].
An important set of these models adopts a simple weighted product format, incorporating terms
representing different micro-mechanisms of the ductile fracture initiation process.

A comparative of several popular fracture models was made by Park et al. [28] relating to
the prediction accuracy for marine high-tensile strength steels. It was noted that the recent models
incorporating Lode angle sensitivity explicitly outperformed the relatively old fracture models such
as maximum shear stress criterion (MSS) and CL, yielding a very low error of calibration and high
accuracy, especially in the shear-fracture-dominated regime. In addition, the recent models exhibit
very similar fracture loci. Therefore, it was noted that the assumptions behind the models are of
less importance as compared to the mathematical flexibility that can cover a wide range of stress
states. The calibrations and applications of one of these advanced fracture models, namely the
Hosford–Coulomb model, were presented by the present authors in a series of recent papers for marine
structural steels and low-velocity impact problems [29–36]. On the other hand, despite their ease of
calibration and good prediction capability for certain ranges of stress states, MSS and CL criteria lack
mathematical flexibility, yielding high calibration errors in general. It was noted by Park et al. [28] that
the extension of the CL model by combining it with MSS criterion may provide a flexible alternative
format, as demonstrated by Gruben et al. [37].

This paper compares the ductility limits of mild and high-tensile strength shipbuilding steels
using an uncoupled ductile fracture model, which is postulated by combining the normalized
maximum shear stress and maximum principal tensile stress in a weighted sum format. A hybrid
experimental–numerical approach is adopted to identify the hardening law and fracture model
parameters for the steel grades considered. The predictive capabilities of the presented fracture model
are evaluated for marine structural steels.

2. Ductile Fracture Model

2.1. Model Formulation

The preliminary information characterizing the stress state and adopted plasticity model is
given in Appendix A. Following Gruben et al. [37], a ductile fracture model in association with
non-porous plasticity is formulated by combining the normalized maximum shear stress criterion
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(MSS) and maximum principal tensile stress criterion (modified version of CL criterion by Oh et al. [13])
in a weighted sum format (

C1
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))C2

ε̄p = C3 (1)

where C1 ∈ [0, 1] is the weighting factor between the normalized maximum principal tensile stress and
the normalized maximum shear stress. C2 is an exponent that represents the stress state-dependency
of the ductility. C3 is a constant that determines the overall ductility of the material. The operator
used for the maximum principal stress, i.e., 〈〉, is the Macaulay bracket, which yields zero for negative
values. Using the transformation of stress states given in Equation (A11) the proposed fracture model
can be expressed as follows
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The fracture model can be expressed as the macroscopic equivalent plastic strain at the instant of
first localization under strictly proportional loading paths as follows
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For general cases, i.e., non-proportional loading paths, the fracture indicator framework is adopted.
In this case, the strain to fracture under proportional loading serves as a stress-state-dependent
weighting function. The fracture indicator, D ∈ [0, 1], is defined as an integration of the weighted
equivalent plastic strain increment along the strain path as follows

dD =
dε̄p

ε̄
pr
f
[
η, θ̄
] (6)

Note that D is not coupled with the material’s elasto-plastic behavior, such that it does not
cause any irreversible weakening (softening) with increasing plastic deformation. For finite element
analysis of the implentation of the model in the software package Abaqus/Explicit, a user-defined
material subroutine (VUMAT) is developed. The user subroutine adopts a standard return-mapping
algorithm for plasticity calculations, where equivalent plastic strain increment is determined. Then,
it is used in Equation (6) together with the proposed fracture model as the weighing factor to calculate
the increment of fracture indicator. An element is assumed to have failed and deleted if all integration
points satisfy the condition D = 1.

2.2. Parameter Sensitivity

Before discussing the sensitivity of the fracture strain to model parameters, the dependencies
of the model to the stress triaxiality and the Lode angle parameter need to be introduced. Figure 1
shows the equivalent plastic strain to fracture obtained using the proposed model with the parameters
C1 = 0.85, C2 = 2.0, C3 = 0.2. Geometrically, the fracture locus is represented as a surface in the space
of (ε̄p, η, θ̄). The fracture locus is asymmetric with respect to the Lode angle parameter. However,
its dependence on stress triaxiality is monotonic.
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Figure 1. 3D fracture locus obtained using the proposed model with the parameters
C1 = 0.85, C2 = 2.0, C3 = 0.2.

Figure 2 gives an example 2D plot of the fracture locus in the plane of (ε̄p, η) for several fixed
values of the Lode angle parameter. The stress triaxiality dependence is a monotonically decreasing one,
which is in agreement with the previous stress-triaxiality-dependent models [4,5,11]. At high stress
triaxialities, the effects of the Lode angle vanish and all three curves converge to a single one. Figure 3
shows a 2D plot of the fracture locus in the plane (ε̄p, θ̄) for several fixed values of the stress triaxiality.
The asymmetric nature of the Lode angle dependency is more evident in this figure. The Lode angle
dependency explains the difference in ductility observed for axisymmetric tension-compression and
generalized shear state states.
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Figure 2. Stress triaxiality dependence of the proposed fracture model for C1 = 0.85, C2 = 2.0, C3 = 0.2.

The parameter C1 regulates the effects of the maximum shear stress and maximum principal
tensile stress. For the limiting case of C1 = 1, the proposed model reduces to the normalized maximum
shear-stress criterion, which is not stress-triaxiality-dependent. The other limiting case, C1 = 0,
reduces the proposed model to the normalized CL criterion (the modified CL criterion proposed
by [13]), in which case both the Lode angle- and stress triaxiality-dependencies are retained. Figure 4
presents several plots of the proposed fracture model under plane stress conditions considering several
C1 values. The parameter C1 has no effect on the strain to fracture for in-plane shear (η = 0). Large C1
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values yield a fracture locus with a noticeable hump at uniaxial tension (η = 1/3) and a plane
strain tension (η = 1/

√
3) “valley”, i.e., a trough between uniaxial tension and equi-biaxial tension

(η = 2/3). This effect is due mainly to the Lode angle dominance on the stress-state dependency of
ductility. In addition, stress trixiality sensitivity decreases with increasing C1, as the maximum shear
stress criterion dominates. Hence, C1 plays an important in regulating the stress triaxiality and Lode
angle competition. Moreover, a stress-triaxiality-dependent cut-off region value for each C1 value is
noticeable in Figure 4. Ductile fracture will not occur below the cut-off value.
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Figure 3. Lode angle parameter dependence of the proposed fracture model for C1 = 0.85, C2 = 2.0, C3 = 0.2.
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Figure 5 presents several plots of the proposed fracture model under plane stress conditions
considering several different C2 values. The overall effect of C2 is emphasizing the stress
state-dependency by reflecting both the stress triaxiality and Lode angle sensitivities.

Figure 6 shows the effects of C3. C3 does not alter the stress-state-dependency of the ductility
significantly but shifts the fracture locus up and down. Note that the value of C3 does not correspond
to the strain to fracture for any particular stress state.
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Figure 5. Effect of C2 on the proposed fracture model for C1 = 0.8, C3 = 0.2.
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In the general case, the border of the cut-off region can be derived from Equation (5). The strain
to fracture approaches infinity when the following condition is met
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6
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+ (1− C1)
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〈3η + 2 cos

[
π
6
(
1− θ̄

)]
〉

3

)
= 0 (7)

This equation defines a plane in the space of (ε̄p, η, θ̄). Figure 7 shows the projection of the cut-off
plane to the plane of (η, θ̄) for C1 = 0.6. As mentioned earlier, the parameter C1 controls the shape of
the cut-off plane. For C1 = 0, the cut-off plane is identical to the biaxial compression part of the plane
stress curve, −2/3 ≥ η ≥ −1/3. No cut-off plane exists for the limiting case of C1 = 1.
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Figure 7. Shape of the cut-off region of the proposed fracture model for C1 = 0.6.

3. Experiments

The experimental data for one normal strength and two high-strength steel grades, which are
widely used maritime industry, are used to demonstrate the calibration procedure and validate
the model. The target steels are:

• A grade (KR) normal-strength (mild) steel plate (6 mm);
• AH36 grade (ASTM A131) high-strength steel plate (6 mm);
• DH36 grade (LR) high-strength steel plate (7 mm).

Cerik et al. [32] published the test results for grade DH36 steel and Park et al. [28] presented
the data for AH36. The tests for A grade are reported in the present study. The base plates with
the thicknesses given above are procured from three different Korean steel producers. According to
the mill test certificates, Table 1 lists the chemical composition of the steel plates considered. The test
specimens are cut from the mid-layer of the plates given above using the CNC wire-cutting method
perpendicular to the plate rolling direction.
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Table 1. Chemical composition of the tested steels (wt.%).

Grade C Si Mn P S Cu Cr Ni Mo Al Nb V Ti

A 0.1395 0.183 0.511 0.0101 0.0042 - - - - - - - -
AH36 0.16 0.34 1.4 0.019 0.005 0.03 0.02 0.01 0.003 0 0.002 0.003 0.001
DH36 0.1254 0.272 1.495 0.0114 0.0038 0.085 0.05 0.09 0 0.042 0.029 0.002 0.016

Standard flat dog-bone specimens with a 50-mm-long, 12.5-mm-wide and 2-mm-thick gauge
section are used to obtain the flow stress before the onset of diffuse necking. The loading speed is
1 mm/min. In general, marine structural steels display planar-isotropic characteristics, as reported
by Park et al. [36]. For simplicity, the mechanical properties of the tested steel grades are assumed to
be isotropic. Figure 8 presents the measured true stress versus logarithmic plastic strain curves for
the three steel grades up to diffuse necking.
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Figure 8. Experimentally obtained true stress-equivalent plastic strain data.

Uniaxial tension tests are performed on central hole and notched specimens. These tension
specimens are also 2-mm thick. The first type of flat specimen, designated as NT20, has a circular
cut-out with a notch radius of 20 mm. The gauge section width is 10 mm. The second type of notched
specimen, designated as PST, has a smaller notch radius and but larger gauge width. The central hole
specimen (CH) features a 6-mm hole at the center. The shear specimen is adopted from the design
proposed by Peirs et al. [38]. Its thickness is 4 mm. Figure 9 shows the scantlings of the test specimens.
The tests are performed with a speed of 0.5 mm/min. The reported displacement correspond to
the extensometer measurements at 50-mm gauge length. The tests are conducted three times and
the repeatability of the results is confirmed.
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NT20CH PST SH
Figure 9. Test specimen geometries (dimensions in mm).

4. Fracture Model Calibration

4.1. Hardening Model

The combined Swift-Voce hardening model, following the general format give by Sung et al. [39],
is adopted

k = f
[
ε̄p
]
= αkS

[
ε̄p
]
+ (1− α)kV

[
ε̄p
]

(8)

Here, α ∈ [0, 1] is the weighting factor between the Swift and the Voce hardening laws. The Swift
hardening law is given as

kS
[
ε̄p
]
= A

(
ε0 + ε̄p

)n (9)

The Voce law can be written as

kV
[
ε̄p
]
= k0 + Q

(
1− exp

[
−βε̄p

])
(10)

The hardening law parameters {A, ε0, and n}, and Voce law parameters {k0, Q, and β} are
determined separately using the standard tension test data of flat dog-bone specimens. Only the
portion up to the diffuse necking is used. Beyond that point, an iterative procedure is applied to
determine the weighting factor α. The test data of NT20 specimen are used for this purpose because
the location of fracture initiation in this specimen is precisely defined. Cerik et al. [32] explains this
procedure and its rationale in detail. Finite element software Abaqus is used in the analysis of the tests.
One eighth of the full gage section of the NT20 specimen is modeled using the symmetry conditions.
The model is meshed using eight-node solid elements (C3D8R). The gauge section of the NT20 is
meshed with ten elements through half of the thickness. The corresponding element edge length is
0.1 mm. This value is determined after a convergence test with regards to equivalent plastic strain
in the gauge section. Figure 10 presents the corresponding hardening curves, and Figure 11 shows
the simulation and test results for NT20 specimen. The Swift law overestimates the force levels after
the onset of necking, whereas the Voce law yields early localization and softening. It is evident
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the combined Swift–Voce law provides the closest estimate for the response at large strains. Table 2
lists the final hardening law parameters.
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Table 2. Identified hardening law parameters.

Grade A (MPa) ε0 n k0 (MPa) Q (MPa) β α

A 848 0.012914 0.2627 270.5 312.4 11.49 0.65
AH36 1053 0.005407 0.2194 335.0 340.2 22.14 0.52
DH36 1058 0.007986 0.1794 444.7 293.1 21.89 0.55

4.2. Loading Paths

The loading paths to fracture initiation, i.e., the history of stress-state parameters (η, θ̄) at
the material point where the fracture initiates, are obtained from the numerical analyses. Analysis of
the fracture test specimens (CH, PST, SH) are conducted in a manner similar to NT20 specimen analysis.
The same mesh size (0.1 mm) is used in all specimens. Abaqus/Explicit is used with the mass-scaling
option to achieve reasonable analysis durations. The total simulation time is 0.01 s, which is long
enough to keep the inertial forces negligible. This has been determined by comparing the kinetic energy
of the system with the total strain energy. In a quasi-static simulation, as a rule of thumb, the ratio
of these two should be lower than 5%. The assumed fracture initiation location is the element that
has the maximum equivalent plastic strain at the instant where the experimental force-displacement
curve exhibits a sharp decrease. The critical element in CH, PST and NT20 specimens is at the center of
the specimens. In the SH specimen, it is on the free surface, slightly away from the center of the gauge.

Figures 12 and 13 show the predicted force-displacement curves and test results for the A
and AH36 grade test specimens, respectively. It is evident that the force-displacement responses
are predicted with good accuracy using the calibrated hardening curves employing combining
the Swift–Voce law. Figure 14 shows the loading paths for all three steel grades. The loading paths
indicate the evolution of stress-state parameters with increasing equivalent plastic strain. If the
stress-state parameters are constant until fracture initiation, the loading path is called proportional.
For the CH and SH specimens, the loading paths are relatively proportional, i.e., (η, θ̄) remain almost
constant until fracture initiation. However, PST and NT20 specimens display non-proportional loading
paths immediately after necking. Towards fracture initiation, the Lode angle parameter decreases and
approaches zero. This observation is in close agreement with the proposed model, where the fracture
prefers generalized shear stress states.
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Figure 12. Comparison of force-displacement curves for the A grade steel specimens.
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Figure 13. Comparison of numerically predicted and experimentally obtained force displacement
curves for the AH36 grade steel specimens.
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Figure 14. Loading paths to fracture initiation.
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4.3. Determination of Fracture Model Parameters

To determine the optimal set fracture model parameters χ = {C1, C2, C3}, an optimization
problem is set. The loading paths obtained from numerical simulations for each test (ηi

[
ε̄p
]

, θ̄i
[
ε̄p
]
)

and the corresponding fracture indicator Di =
∫ ε̄ f ,i

0
dε̄p

ε̄
pr
f [χ,ηi ,θ̄i]

are used. All four specimens are

considered. The cost function is defined as follows

f [χ] =
4

∑
i=1

(∫ ε̄ f ,i

0

dε̄p

ε̄
pr
f
[
χ, ηi, θ̄i

] − 1

)2

(11)

Hence, the optimization problem can be written as

χ = arg min
χ

{ f [χ]} (12)

The optimization problem is solved with the aid of the Matlab toolbox. In addition, the constraints
on C1, C2 and C3 are constrained as positive values. Table 3 presents the optimal set of the model
parameters. Figure 15 presents the resulting 3D fracture loci. The black curves plotted over the 3D
fracture loci denote the plane stress condition. Figure 16 shows the plane stress fracture loci.

Several conclusions may be drawn from the calibrated fracture loci. Among the three steel grades,
the ductility limits of normal-strength steel, grade A, showed a relatively low Lode angle dependence
which could be best described by a fracture locus similar to the Cockcroft–Latham model. On the other
hand, the fracture locus of AH36 elucidates the Lode angle effect. Interestingly, AH36 shows higher
ductility for certain stress states, such as uniaxial tension and equi-biaxial tension, compared to A grade
steel. DH36 showed the lowest ductility among the three steel grades. The fracture locus of DH36
exhibited a relatively high stress-triaxiality-dependence but moderate Lode angle effect. A similar
conclusion is drawn by [32]. For negative stress triaxialities and plane strain tension, AH36 and DH36
have similar ductility levels.

Figure 17 shows the predicted fracture indicator using the calibrated fracture model at the instant
of experimental fracture initiation. Here, the prediction error should be read as deviation from unity.
It is apparent that the prediction errors are very low, particularly for the case of the SH specimen. It can
concluded that the proposed model could describe the experimental data accurately for all steel grades
and test specimens.

Table 3. Identified fracture model parameters.

Grade C1 C2 C3

A 0.069 0.648 1.154
AH36 0.882 3.860 0.148
DH36 0.529 1.330 0.633
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A
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Figure 15. Calibrated 3D fracture loci of the steel grades considered.
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Figure 17. Accuracy of the prediction of fracture initiation using the proposed model.

5. Conclusions

The experimental results from a series of tests on three different marine structural steel sheets are
used to calibrate a proposed ductile fracture initiation model, which is formulated as a weighted sum
of normalized maximum shear and principal stresses. A hybrid experimental-numerical approach is
adopted. As a by-product of the fracture model calibration process, the flow stresses of the three steel
grades at large strains are obtained. The experimental results and simulations are compared in terms
of the force-displacement curves and the onset of fracture. Based on the results obtained, the following
conclusions can be drawn:

• Ductile fracture behavior is closely associated with hardening behavior in large strains;
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• The proposed model shows good flexibility for calibration and could predict the onset of fracture
accurately for all the test specimens and steel grades considered;

• The ductility limits of normal strength steel, grade A, showed a relatively low Lode angle
dependence. The Cockcroft–Latham model is appropriate for describing the ductile fracture
locus of grade A steel;

• AH36 shows considerable Lode angle sensitivity. Despite being a high-tensile strength steel,
AH36 shows higher ductility as compared to mild steel A for certain stress states, such as uniaxial
tension and equi-biaxial tension;

• The fracture locus of DH36 exhibited a relatively high stress-triaxiality-dependence but moderate
Lode angle effect.
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Appendix A.

Appendix A.1. Definition of the Stress State

For an isotropic solid material, the stress tensor can be represented by the ordered principal
stresses (σ1 ≥ σ2 ≥ σ3) or using its invariants

I1 = tr [σ] = σ1 + σ2 + σ3 (A1)

J2 =
1
2

s : s =
1
6
{(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2} (A2)

J3 = det [s] = (σ1 − σm)(σ2 − σm)(σ3 − σm) (A3)

Here, I1 represents the first invariant of the Cauchy stress tensorσ. The invariants of the deviatoric
stress tensor, s, are denoted as J2 and J3. The stress tensor may be decomposed into hydrostatic and
deviatoric parts

σ =
1
3

I1I + s = σmI + s (A4)

where I is the identity matrix and σm = (σ1 + σ2 + σ3)/3 is the hydrostatic stress.
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The stress state is characterized by the two non-dimensional ratios of the invariants or the principal
stresses. In this paper, the stress triaxiality, η, and Lode angle parameter, θ̄, were used as the stress
state parameters. The stress triaxiality (−∞ < η < ∞), which represents the first invariant, is obtained
by normalizing hydrostatic stress, σm, with the von Mises equivalent stress, σ̄ =

√
3J2

η =
σm

σ̄
=

I1

3
√

3J2
(A5)

The third invariant can be normalized as follows

ξ =
27
2

J3

σ̄3 = cos [3θ] (A6)

where θ is the Lode angle (0 ≤ θ ≤ π/3). The normalized Lode angle, which is called the Lode angle
parameter (−1 ≤ θ̄ ≤ 1), is expressed as follows

θ̄ = 1− 6θ

π
= 1− 2

π
arccos [ξ] (A7)

θ̄ = 0 designates generalized shear (e.g., pure shear or plane strain tension), whereas θ̄ = 1 corresponds
to axisymmetric tension and θ̄ = −1 represents axisymmetric compression. An alternative measure of
the third invariant is the so-called Lode parameter, L

L =
σ2 − σn

τmax
=

2σ2 − σ1 − σ3

σ1 − σ3
(A8)

where maximum shear stress, τmax, and normal stress, which acts on the same plane as maximum
shear stress, σn, are defined as follows

τmax =
σ1 − σ3

2
(A9)

σn =
σ1 + σ3

2
(A10)

The stress vector can be defined in the Cartesian coordinate system using the principal
stresses (σ1, σ2, σ3). Alternatively, a cylindrical coordinate system may be used based on (σ̄, η, θ).
The transformation from (σ1, σ2, σ3) to (σ̄, η, θ̄) is obtained as follows

σ1 = σ̄

(
η +

2
3

cos
[π

6
(
1− θ̄

)])
(A11a)

σ2 = σ̄

(
η +

2
3

cos
[π

6
(
3 + θ̄

)])
(A11b)

σ3 = σ̄

(
η − 2

3
cos

[π

6
(
1 + θ̄

)])
(A11c)

In the cylindrical coordinate system, the direction of the stress vector can be defined using stress
triaxiality and Lode angle parameter. If these two parameters, which define the stress state, does not
vary until fracture, a proportional loading path is experienced.

Under plane stress condition (σ3 = 0), the stress state can be represented by σ2/σ1. In that case,
the following relation holds

θ̄ = 1− 2
π

arccos
[
−27

2
η

(
η2 − 1

3

)]
(A12)
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Appendix A.2. Plasticity

Isotropic von Mises yield criterion is adopted. The von Mises yield surface is given as

f [σ, k] = σ̄− k = 0 (A13)

where k is the deformation resistance. An associated flow rule is assumed

dεp =
(
dε̄p
) ∂σ̄

∂σ
(A14)

where dεp is the plastic strain increment vector The equivalent plastic strain increment, dε̄p is given as
the work-conjugate of the equivalent stress

σ : dεp = σ̄dε̄p (A15)

An isotropic strain hardening function defines the deformation resistance, k,

k = k
[
ε̄p
]

(A16)

References

1. Matic, P.; Geltmacher, A.; Rath, B. Computational aspects of steel fracturing pertinent to naval requirements.
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140127. [CrossRef]

2. Takahashi, K.; Yamatoki, S.; Namegawa, T.; Kinoshita, M.; Fujioka, M. Dominant factors influencing ductile
fracture on cutting surface during cold forming. In Proceedings of the ASME 2018 37th International
Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 17–22 June 2018; American Society
of Mechanical Engineers: New York, NY, USA, 2018; Volume 4: Materials Technology. [CrossRef]

3. Kanno, K.; Nishino, S.; Ohya, K. Evaluation of the form-forming mechanism for high-tensile-strength steel
plate. Mater. Trans. 2017, 58, 1708–1714. [CrossRef]

4. McClintock, F.A. A criterion for ductile fracture by the growth of holes. J. Appl. Mech. 1968, 35, 363–371.
[CrossRef]

5. Rice, J.; Tracey, D. On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 1969,
17, 201–217. [CrossRef]

6. Hancock, J.; MacKenzie, A. On the mechanisms of ductile failure in high-strength steels subjected to
multi-axial stress-states. J. Mech. Phys. Solids 1976, 24, 147–160. [CrossRef]

7. Hancock, J.; Brown, D. On the role of strain and stress state in ductile failure. J. Mech. Phys. Solids 1983,
31, 1–24. [CrossRef]

8. Gurson, A.L. Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and
flow rules for porous ductile media. J. Eng. Mater. Technol. 1977, 99, 2–15. [CrossRef]

9. Tvergaard, V. Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fract. 1981,
17, 389–407. [CrossRef]

10. Tvergaard, V.; Needleman, A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 1984,
32, 157–169. [CrossRef]

11. Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates,
temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [CrossRef]

12. Cockcroft, M.G.; Latham, D.J. Ductility and the workability of metals. J. Inst. Met. 1968, 96, 33–39.
13. Oh, S.I.; Chen, C.C.; Kobayashi, S. Ductile fracture in axisymmetric extrusion and drawing-part 2:

Workability in extrusion and drawing. J. Eng. Ind. 1979, 101, 36. [CrossRef]
14. Xue, L. Ductile Fracture Modeling: Theory, Experimental Investigation and Numerical Verification.

Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2007.
15. Bao, Y.; Wierzbicki, T. On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci.

2004, 46, 81–98. [CrossRef]
16. Barsoum, I.; Faleskog, J. Rupture mechanisms in combined tension and shear-experiments. Int. J. Solids Struct.

2007, 44, 1768–1786. [CrossRef]

http://dx.doi.org/10.1098/rsta.2014.0127
http://dx.doi.org/10.1115/OMAE2018-77177
http://dx.doi.org/10.2320/matertrans.P-M2017840
http://dx.doi.org/10.1115/1.3601204
http://dx.doi.org/10.1016/0022-5096(69)90033-7
http://dx.doi.org/10.1016/0022-5096(76)90024-7
http://dx.doi.org/10.1016/0022-5096(83)90017-0
http://dx.doi.org/10.1115/1.3443401
http://dx.doi.org/10.1007/BF00036191
http://dx.doi.org/10.1016/0001-6160(84)90213-X
http://dx.doi.org/10.1016/0013-7944(85)90052-9
http://dx.doi.org/10.1115/1.3439471
http://dx.doi.org/10.1016/j.ijmecsci.2004.02.006
http://dx.doi.org/10.1016/j.ijsolstr.2006.09.031


Appl. Sci. 2020, 10, 7034 21 of 21

17. Clausing, D. Effect of plastic strain state on ductility and toughness. Int. J. Fract. Mech. 1970, 6. [CrossRef]
18. Xue, L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading.

Int. J. Solids Struct. 2007, 44, 5163–5181. [CrossRef]
19. Xue, L. Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng. Fract. Mech.

2008, 75, 3343–3366. [CrossRef]
20. Wierzbicki, T.; Bao, Y.; Lee, Y.W.; Bai, Y. Calibration and evaluation of seven fracture models. Int. J. Mech. Sci.

2005, 47, 719–743. [CrossRef]
21. Bai, Y.; Wierzbicki, T. A new model of metal plasticity and fracture with pressure and Lode dependence.

Int. J. Plast. 2008, 24, 1071–1096. [CrossRef]
22. Bai, Y.; Wierzbicki, T. Application of extended Mohr-Coulomb criterion to ductile fracture. Int. J. Fract. 2010,

161, 1–20. [CrossRef]
23. Lou, Y.; Huh, H. Extension of a shear-controlled ductile fracture model considering the stress triaxiality and

the Lode parameter. Int. J. Solids Struct. 2013, 50, 447–455. [CrossRef]
24. Wen, H.; Mahmoud, H. New model for ductile fracture of metal alloys. I: monotonic loading. J. Eng. Mech.

2016, 142, 04015088. [CrossRef]
25. Hu, Q.; Li, X.; Han, X.; Chen, J. A new shear and tension based ductile fracture criterion: modeling and

validation. Eur. J. Mech. A/Solids 2017, 66, 370–386. [CrossRef]
26. Mu, L.; Zang, Y.; Wang, Y.; Li, X.L.; Araujo Stemler, P.M. Phenomenological uncoupled ductile fracture

model considering different void deformation modes for sheet metal forming. Int. J. Mech. Sci. 2018,
141, 408–423. [CrossRef]

27. Quach, H.; Kim, J.J.; Nguyen, D.T.; Kim, Y.S. Uncoupled ductile fracture criterion considering secondary
void band behaviors for failure prediction in sheet metal forming. Int. J. Mech. Sci. 2020, 169, 105297.
[CrossRef]

28. Park, S.J.; Cerik, B.C.; Choung, J. Comparative study on ductile fracture prediction of high-tensile strength
marine structural steels. Ships Offshore Struct. 2020. [CrossRef]

29. Cerik, B.C.; Park, S.J.; Choung, J. Ductile fracture modeling of DH36 grade steels. In Proceedings of the 37th
International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 17–22 June 2018; ASME:
NewYork, NY, USA, 2018; p. V11AT12A008. [CrossRef]

30. Cerik, B.C.; Lee, K.; Park, S.J.; Choung, J. Simulation of ship collision and grounding damage using
Hosford-Coulomb fracture model for shell elements. Ocean Eng. 2019, 173, 415–432. [CrossRef]

31. Cerik, B.C.; Ringsberg, J.W.; Choung, J. Revisiting MARSTRUCT benchmark study on side-shell collision
with a combined localized necking and stress-state dependent ductile fracture model. Ocean Eng. 2019,
187, 106173. [CrossRef]

32. Cerik, B.C.; Park, B.; Park, S.J.; Choung, J. Modeling, testing and calibration of ductile crack formation
in grade DH36 ship plates. Mar. Struct. 2019, 66, 27–43. [CrossRef]

33. Cerik, B.C.; Choung, J. On the prediction of ductile fracture in ship structures with shell elements at low
temperatures. Thin-Walled Struct. 2020. [CrossRef]

34. Cerik, B.C.; Park, S.J.; Choung, J. Use of localized necking and fracture as a failure criterion in ship collision
analysis. Mar. Struct. 2020, 73, 102787. [CrossRef]

35. Cerik, B.C.; Choung, J. Rate-dependent combined necking and fracture model for predicting ductile fracture
with shell elements at high strain rates. Int. J. Impact Eng. 2020, 146, 103697. [CrossRef]

36. Park, S.J.; Lee, K.; Cerik, B.C.; Choung, J. Ductile fracture prediction of EH36 grade steel based on
Hosford-Coulomb model. Ships Offshore Struct. 2019, 14, 219–230. [CrossRef]

37. Gruben, G.; Hopperstad, O.; Børvik, T. Evaluation of uncoupled ductile fracture criteria for the dual-phase
steel Docol 600DL. Int. J. Mech. Sci. 2012, 62, 133–146. [CrossRef]

38. Peirs, J.; Verleysen, P.; Degrieck, J. Novel technique for static and dynamic shear testing of Ti6Al4V sheet.
Exp. Mech. 2012, 52, 729–741. [CrossRef]

39. Sung, J.H.; Kim, J.H.; Wagoner, R.H. A plastic constitutive equation incorporating strain, strain-rate,
and temperature. Int. J. Plast. 2010, 26, 1746–1771. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF00183662
http://dx.doi.org/10.1016/j.ijsolstr.2006.12.026
http://dx.doi.org/10.1016/j.engfracmech.2007.07.022
http://dx.doi.org/10.1016/j.ijmecsci.2005.03.003
http://dx.doi.org/10.1016/j.ijplas.2007.09.004
http://dx.doi.org/10.1007/s10704-009-9422-8
http://dx.doi.org/10.1016/j.ijsolstr.2012.10.007
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001009
http://dx.doi.org/10.1016/j.euromechsol.2017.08.005
http://dx.doi.org/10.1016/j.ijmecsci.2018.04.025
http://dx.doi.org/10.1016/j.ijmecsci.2019.105297
http://dx.doi.org/10.1080/17445302.2020.1743552
http://dx.doi.org/10.1115/OMAE2018-78681
http://dx.doi.org/10.1016/j.oceaneng.2019.01.004
http://dx.doi.org/10.1016/j.oceaneng.2019.106173
http://dx.doi.org/10.1016/j.marstruc.2019.03.003
http://dx.doi.org/10.1016/j.tws.2020.106721
http://dx.doi.org/10.1016/j.marstruc.2020.102787
http://dx.doi.org/10.1016/j.ijimpeng.2020.103697
http://dx.doi.org/10.1080/17445302.2019.1565300
http://dx.doi.org/10.1016/j.ijmecsci.2012.06.009
http://dx.doi.org/10.1007/s11340-011-9541-9
http://dx.doi.org/10.1016/j.ijplas.2010.02.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Ductile Fracture Model
	Model Formulation
	Parameter Sensitivity

	Experiments
	Fracture Model Calibration
	Hardening Model
	Loading Paths
	Determination of Fracture Model Parameters

	Conclusions
	
	Definition of the Stress State
	Plasticity

	References

