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Abstract: Most of the current research on the diagnosis of rolling bearing faults is based on vibration
signals. However, the location and number of sensors are often limited in some special cases. Thus,
a small number of non-contact microphone sensors are a suboptimal choice, but it will result in
some problems, e.g., underdetermined compound fault detection from a low signal-to-noise ratio
(SNR) acoustic signal. Empirical wavelet transform (EWT) is a signal processing algorithm that has
a dimension-increasing characteristic, and is beneficial for solving the underdetermined problem
with few microphone sensors. However, there remain some critical problems to be solved for EWT,
especially the determination of signal mode numbers, high-frequency modulation and boundary
detection. To solve these problems, this paper proposes an improved empirical wavelet transform
strategy for compound weak bearing fault diagnosis with acoustic signals. First, a novel envelope
demodulation-based EWT (DEWT) is developed to overcome the high frequency modulation, based
on which a source number estimation method with singular value decomposition (SVD) is then
presented for the extraction of the correct boundary from a low SNR acoustic signal. Finally, the new
fault diagnosis scheme that utilizes DEWT and SVD is compared with traditional methods, and the
advantages of the proposed method in weak bearing compound fault diagnosis with a single-channel,
low SNR, variable speed acoustic signal, are verified.
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1. Introduction

Rotating machinery is a type of equipment that is widely used in various industries, the safety
and reliable operation of which have become increasingly important [1]. As a significant component
of rotating machinery, rolling bearings often operate under very harsh environments, such as high
temperatures, high speeds and heavy loads, and are thus prone to failure [2]. Therefore, it is of great
significance to make timely and accurate diagnoses of rolling bearing failures [3]. In most cases, rolling
bearing faults are often compound because of the mutual contact between various components, and
multiple fault features are superimposed and interfere with each other, thereby complicating the fault
features and creating difficulties in bearing fault diagnosis [4,5]. Bearing fault diagnosis is often based
upon vibration signals collected by acceleration sensors, but the sensor positions and numbers are
limited in some special cases, e.g., nuclear power equipment monitoring [6].

When acoustic sensors can be positioned in a non-intrusive and non-contacting way, the use of a
small number of microphone sensors to collect device status signals is an appropriate option for such
special cases. However, acoustic signals are easily interfered with environmental noise, which makes it
difficult to diagnose compound weak fault features [7].
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In recent decades, researchers have proposed a number of methods for weak bearing fault
diagnosis, a popular one among which is the adaptive signal decomposition method [8]. Empirical
wavelet transform (EWT) is a commonly used method that mainly solves already-existing problems in
the widely-used empirical mode decomposition (EMD) method, e.g., mode aliasing, endpoint effects,
and unclear physical meaning [9,10]. EWT first segments the Fourier spectrum of a signal, and then
constructs a series of empirical wavelet-based filter banks to extract the intrinsic mode of the original
signal. EWT has been extensively used in many fields, including bearing fault diagnosis [11–13].
Li [14] applied EWT to mechanical fault diagnosis. Li [15] proposed a bearing feature extraction and
classification method based on EWT and compared it with ensemble empirical mode decomposition
(EEMD), whose findings indicated that EWT has more adaptive feature extraction and fault classification
characteristics than EEMD. Chen [16] made a fault diagnosis of a generator bearing for a wind turbine
by using EWT with vibration signals. Kedadouche [17] applied EWT to the bearing fault diagnosis by
combining EWT and operational modal analysis (OMA), which improved the detection accuracy of
fault diagnosis. Yan [18] carried out research on bearing fault diagnosis based on order analysis and
EWT, revealing that the combination of order analysis and EWT can be used to accurately identify
bearing fault features under non-steady working conditions.

However, EWT still has some problems when dealing with compound weak bearing faults that
must be solved [19]. If the input signal is composed of two chirps that overlap in both time and
frequency domains, EWT will not be able to separate them. Additionally, the adaptive detection
of the number of signal modes is also a problem that must be further studied [9]. EWT boundary
detection is based upon the Fourier spectrum, and because the characteristics of weak faults are not
obvious, and the noise of the acoustic signal is relatively high, it is difficult to effectively identify the
fault impact. In addition, due to the mutual influence of bearing faults, multiple fault features are
superimposed and interfere with each other, thereby complicating the fault features and bringing
difficulties to bearing fault diagnosis [20]. The bearing signal also exhibits a modulation phenomenon,
and thus the bearing fault frequency cannot be accurately detected in the Fourier spectrum, especially
in the case of compound faults [21]. Hence, boundary detection is not well performed in the Fourier
spectrum. Therefore, EWT is unable to correctly determine the number of separation modes, and thus
cannot effectively separate the intrinsic modes from the measured bearing fault signal.

To solve these problems, an improved EWT strategy is proposed in this paper. First, a novel
envelope demodulation-based EWT (DEWT) is proposed. The signal is decomposed by DEWT, each
component is treated as a virtual observation signal, and all components constitute a new multi-channel
virtual observation signal. The multi-channel virtual observation signal is then input into singular
value decomposition (SVD). The mode number is determined by a method of adjacent singular
value difference, according to which the number of DEWT components is selected, and DEWT is
performed once more. Finally, the bearing health status is determined via spectrum analysis. The main
contributions of this paper are as follows.

(1) An envelope demodulation-based strategy for EWT boundary detection is developed. The
high-frequency modulation problem of the bearing vibration signal is solved, and the improved
EWT can be better used in the field of rolling bearing signal processing.

(2) A source number estimation method based on the DEWT and SVD is proposed to determine the
number of decomposed modes, which solves the problem of compound bearing fault diagnosis
with single-channel acoustic signals.

The remainder of this paper is organized as follows. The basic theory of the proposed method is
briefly introduced in Section 2. Section 3 describes the proposed method. Experimental validation and
method comparison are presented in Section 4. Finally, the conclusions are given in Section 5.
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2. Basic Theory and Method

2.1. Empirical Wavelet Transform

The empirical wavelet transform (EWT) divides the Fourier spectrum of a signal and constructs a
wavelet filter bank to extract the intrinsic modes, and can be divided into three main components.

1. Fourier spectrum segmentation of a signal
Assuming that the Fourier support [0,π] is segmented into contiguous N segments, then a total

number of N + 1 boundaries is needed. According to the local maximum values, the Fourier spectrum
of a signal is divided into N segments. Denote ωn to be the limits between each segments (where
ω0 = 0 and ωn = π). Each segment is represented as Λn = [ωn−1,ωn]. A transition phase Tn of width
2τn is then defined, as shown in Figure 1.
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2. Calculation of empirical scale function and empirical wavelet function
The empirical wavelets are defined as bandpass filters on each Λn. The empirical scale function

∧

φ(ω) and empirical wavelet function
∧

ψ(ω) can be calculated by Equations (1) and (2), respectively.

∧

φ(ω) =


1if |ω| ≤ (1− γ)ωn

cos
[
π
2

(
1

2γωn
(|ω| − (1− γ)ωn)

)]
if (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0otherwise

(1)

∧

ψ(ω) =



1if (1 + γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos
[
π
2 β

(
1

2γωn+1
(|ω| − (1− γ)ωn+1)

)]
if (1− γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

sin
[
π
2 β

(
1

2γωn+1
(|ω| − (1− γ)ωn)

)]
if (1− γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

0otherwise

(2)

The ratio γ in Equations (1) and (2) is restricted to a small value as 0 ≤ γ ≤

minn[(ωn+1 −ωn)/(ωn+1 +ωn)] to ensure the empirical scaling function and the empirical wavelets
are a tight frame of L2(R). ωn : τn = γωn, 0 < γ < 1. The function β(x) is an arbitrary Ck([0, 1])
function, the most used β(x) is defined as:

β(x) = x4
(
35− 84x + 70x2 + 20x3

)
(3)

3. Calculation of approximation coefficients and the detail coefficients
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The approximation coefficients wεf (0, t) and the detail coefficients wεf (n, t) can be calculated by
Equations (3) and (4), respectively.

wεf (0, t) =
〈

f ,φ1
〉
=

∫
f (τ)φ1(τ− t)dτ =

∧f (ω)∧φ1(ω)

 (4)

wεf (n, t) =
〈

f ,ψn
〉
=

∫
f (τ)ψn(τ− t)dτ =

∧f (ω)∧ψn(ω)

∨ (5)

where
∧

φ1(ω) and
∧

ψ(ω) are defined by Equations (1) and (2), respectively.
The inverse empirical wavelet transformation is carried out by the following equation:

f (t) = wεf (0, t) ∗φ1(t) +
N∑

n=1
wεf (n, t) ∗ψn(t)

=

∧(
∧
w
ε

f (0,ω) ∗
∧

φ1(ω) +
N∑

n=1

∧
w
ε

f (n,ω) ∗
∧

ψn(ω)

)∨ (6)

2.2. Adjacent Singular Value Difference Method

The basic principle of the singular value decomposition (SVD) method is as follows: the covariance
matrix Rs of n signal sources s(t) is a square matrix of n*n, and the number of linearly independent
columns (rows) is the number of uncorrelated sources (NIS) of s(t). In general, the covariance matrix
Rs cannot be directly obtained (because the source signal s(t) is unknown), but the observation signal
covariance matrix Rx can be directly obtained. Therefore, the SVD method is conducted through Rx to
estimate the number of unrelated sources.

After singular value decomposition, a series of singular values ΛIMF =

diag
{
λ1 ≥ · · ·λn ≥ λn+1 ≥ · · ·λM ≥ 0

}
is obtained. Then, a set of adjacent singular values

Λi, j = λi − λ j, i = 1, 2, · · · , M − 1, j = i + 1 is obtained. When one or both of the λi and λ j
values are singular values of fault signals, Λi, j is larger. When both λi and λ j values are singular values
of noise signals, Λi, j is relatively smaller. The difference of the adjacent singular values is detected, the
minimum difference corresponds to the interface between the fault signal and noise subspace, and the
number of sources can then accordingly be estimated.

3. The Proposed Method

3.1. Envelope Demodulation-Based Empirical Wavelet Transform

The analytical signal g(t) of the original signal x(t) is obtained by Equations (7) and (8):

∧
x(t) = x(t) ∗

1
πt

=
1
π

∫ +∞

−∞

x(τ)
t− τ

dτ (7)

g(t) = x(t) + j
∧
x(t) (8)

The amplitude of g(t):

A(t) =

√
x2(t) +

∧

x2(t) (9)

A(t) is the envelope of the original real signal x(t).
A Fourier transform is then performed on Equation (7):

∧

X( f ) = X( f ) · F[1/(πt)] = X( f ) · [− jsgn( f )] (10)
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where F represents a Fourier transform of the function, and sgn() is a symbolic function.

Equation (10) shows that
∧

X( f ) is obtained by phase shifting in the frequency domain by X( f ),
delaying π/2 in the positive frequency domain and leading π/2 in the negative frequency domain.
The obtained demodulated signal is taken as the input. Based on the empirical scaling function and the
empirical wavelet expressions presented in Section 2.1, the approximation coefficients wεf (0, t) and the
detail coefficients wεf (n, t) are obtained, and are respectively represented by Equations (11) and (12).

wεf (0, t) =
〈
A,φ1

〉
=

∫
A(τ)φ1(τ− t)dτ =

∧A(ω)
∧

φ1(ω)

 (11)

wεf (n, t) =
〈
A,ψn

〉
=

∫
A(τ)ψn(τ− t)dτ =

∧A(ω)
∧

ψn(ω)

∨ (12)

where
∧

φ1(ω) and
∧

ψ(ω) are defined by Equations (1) and (2), respectively.
The schematic diagram of the proposed method is illustrated in Figure 2. We are assuming that

the Fourier support [0,π] is segmented into contiguous N segments. The red dashed lines in the figure
represent the boundary detected by EWT, and the solid blue lines represent the spectrum contour. Due
to the existence of high-frequency modulation, most of the boundaries detected by traditional EWT are
located in the bearing resonance frequency band, which leads to modal aliasing in EWT. The proposed
method demodulates the compound fault feature information through resonance demodulation. This
boundary detection mechanism solves the abovementioned problems well.
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3.2. Adaptive Estimation of the Modes Number

Because the object signal is measured from a single channel acoustic sensor in this study, the
dimension can be increased by DEWT. The specific steps are as follows:

Suppose you have the observation signal x(t) of the sensor;
x(t) is decomposed adaptively by DEWT to obtain the intrinsic mode, represented by matrix

xi = [c11, · · · , c1n], where c represents the intrinsic mode;
Combine x(t) and xi into a virtual multi-channel sensor observation signal xoi;
Calculate the covariance matrix Ri of xoi;
Singular value decomposition is carried out on Ri, by which n singular values are obtained. They

are then arranged in descending order;
The difference of adjacent singular values is obtained, and the number of sources is estimated

according to the adjacent singular value difference method.
A schematic diagram of the method proposed in this section is illustrated in Figure 3, in which

Λ1,2 to Λ6,7 represent the differences between two adjacent singular values. When the difference
between two adjacent singular values is as close to 0 as possible, the number of modes is the point
abscissa value minus 1. For example, in this diagram, the value of Λ4,5 is close to 0, and the subsequent
values are also close to 0, which means that the number of modes is 3.Appl. Sci. 2020, 10, x 7 of 17 
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3.3. Improved EWT Strategy

The method proposed in Section 3.1 improves the boundary detection mechanism of EWT, and a
new method for determining the number of modes of EWT was proposed in Section 3.2. Through
the improvement of the EWT boundary detection mechanism and mode number estimation method,
they can be better applied to the compound weak fault diagnosis of the rolling bearings. Experiments
using a variable speed acoustic signal were conducted to verify the effectiveness of the method. The
reason that using the variable speed signal is that the early weak fault of the bearing is more easily
exposed during the variable speed phase. The acoustic signal was used because an acoustic sensor
can simultaneously monitor multiple parts of the device, and can thus overcome the limited number
of sensor installations. Because the bearing speed slowly increases linearly, angular resampling was
used in this study to conduct preprocessing. The flow chart of the method proposed in this paper is
presented in Figure 4.
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4. Cases Studies

4.1. Test Rig

The acoustic signal was collected using a microphone sensor from a rolling bearing fault simulation
test rig with an acceleration process. The test rig was driven by an electric motor, and the power
was transmitted to the rotating shaft through flexible coupling. The fault bearing was installed at the
farthest end of the motor. The locations of the fault bearing and the microphone sensor are shown in
Figure 5.
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Figure 6. The fault bearing, with defects in (left) inner and our race, (right) rolling element.

4.2. Performance Analysis

4.2.1. The Proposed Method

The time domain diagram of the collected original signal is presented in Figure 7. From the signal
waveform, it can be concluded that the bearing state experienced three stages: static, linear acceleration
and uniform speed. In the linear acceleration phase, the time-domain waveform was stable without
obvious periodic impact. It can also be found that the amplitude of the signal was low, and contained
some noise interferences. The linear acceleration signal required in this study was obtained from the
collected signal. Through the signal waveform, the 40,000th to 100,000th points of the acceleration
process were selected, and the instantaneous speed at each time point was calculated by the speed
pulse signal collected by the tachometer. The equation of the accelerating speed was fitted as follows:
V = 5.0003× t + 6.1888, where V is the instantaneous speed (Hz) and t is the sampling time point (s).
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In this study, the variation of bearing speed was slow and linear, so an angle domain resampling
method was used to process the variable speed signal. The angular resampling frequency was set as
200 Hz, i.e., 200 points were sampled per revolution. The angular domain waveform and envelope
order spectrum of the original signal are respectively shown in Figures 7 and 8 as determined by the
fitting of the speed equation. The fault characteristic orders of the bearing in the angle domain are
listed in Table 1.
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Table 1. Parameters of the bearing.

Outer-Race (fo) Roller (fr) Inner-Race (fi)

Order 4.05 5.05 5.95

Because the original signal-to-noise ratio (SNR) of the variable speed signal was very low, as
shown in Figure 9, the extraction of the fault characteristic order after angular domain resampling was
difficult. It can be determined from the envelope order spectrum that the amplitude of the signal was
very small. There was only a low-frequency component in the low-frequency part, which does not
accurately reflect the state of the bearing. The proposed method was then used to extract the bearing
fault characteristic order under such complicated conditions, and the superiority of the proposed
method was proven.

In the first step, the DEWT-SVD was used to estimate the source number. After the signal was
decomposed by DEWT, 10 components were obtained. These 10 components were combined with the
original signal to form a virtual multi-channel observation signal. The virtual observation signal was
then processed by SVD, and 11 singular values were obtained, as presented in Table 2. The adjacent
singular value difference is presented in Table 3. Figure 10 illustrates the broken line diagram of the
adjacent singular value difference. It is evident from Tables 2 and 3 and Figure 10 that the singular
value change after λ4 was very small, as was the difference between λ4 and λ5, which was about equal
to 0. Hence, it can be concluded that the number of source signals of the compound signal was 3, which
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is consistent with the three fault sources of the inner ring, outer ring, and rolling element fault that had
been artificially processed prior. The results of this step indicate that the proposed DEWT-SVD source
number estimation method exhibits superior performance.
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Figure 10. A line graph of adjacent singular value differences obtained by the demodulation-based
empirical wavelet transform-singular value decomposition (DEWT-SVD) method.

It can be clearly seen from Figure 10 that the value of Number 4 is close to 0, which is also an
obvious inflection point. At the same time, due to the low signal-to-noise of the bearing acoustic
signal, there is a large noise interference in the low-frequency region, so set N = 4. The angle domain
waveform and envelope order spectrogram of each component state after decomposition are presented
in Figures 11 and 12, respectively.

By analyzing the time domain of each component of DEWT, the obvious periodic impact can
be observed. The corresponding order of fault can also be clearly determined by the envelope order
spectrum of each component. The second order of the rotation frequency can be clearly found in
component 1, and the obvious fault characteristic order corresponding to the outer ring, rolling
body and inner ring can be respectively found in components 2, 3 and 4. The experimental results
demonstrate that the proposed method can effectively extract the fault characteristic order in a complex
environment. To prove the superiority of the proposed method as compared to traditional methods,
the traditional EWT and EMD methods were used for comparison.
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4.2.2. Comparison with Conventional EWT

First, by using the same treatment method, the adjacent singular value difference graph of
EWT-SVD is presented in Figure 13. Because there is no clear zero value point, the number of original
signals cannot be clearly estimated from the figure.
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For better comparison with the method proposed in this paper, the number of separated modes
was also set to four. EWT was used to decompose the original signal in the same way. As a result, no
obvious cyclical impact is apparent in the angle domain spectrum (Figure 14), and no fault features can
be found in the corresponding envelope order spectra (Figure 15) of the modes extracted by EWT.
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These results demonstrate the problems that EWT presents in dealing with the signals mentioned
herein. Due to the existence of high-frequency modulation phenomena, the EWT method cannot detect
the correct boundary, and thus cannot extract the fault features. Therefore, it is evident from Figure 15
that the components still contain redundant information after EWT decomposition.
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The adjacent singular value difference graph of EMD-SVD is presented in Figure 16, from which it
is clear that the EMD-SVD method incorrectly estimated the number of sources as two.
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Figure 16. A line graph of adjacent singular value differences obtained by the empirical mode
decomposition-singular value decomposition (EMD-SVD) method.
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EMD was used to decompose the original signal in the same way. As a result, no fault features
can be found in the corresponding envelope order spectra of the modes extracted by EMD, as shown
in Figure 17.
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Figure 17. The corresponding spectrums of extracted modes by empirical mode decomposition (EMD).
The dashed red line in the figure represents the theoretically calculated fault characteristic order. The
waveforms of the four mode envelope spectra are almost the same. The above conditions prove the
existence of mode aliasing in EMD.

The results in this section clearly reflect the difficulties of EMD, such as the mode aliasing problem
(which is evident from Figure 17; each component contains almost the same information), which is
also a popular research topic by scholars.

The results presented in this section demonstrate that neither EWT nor EMD can effectively
extract the fault characteristic order in such a complicated environment. The problems revealed in
the experimental results are in line with the authors’ expectations, and prove the correctness of the
experiment. The superiority of the method proposed in this paper is therefore well verified.

5. Conclusions

An improved EWT strategy for the compound weak fault diagnosis of rolling bearings is proposed,
and the EWT is improved from two aspects. First, DEWT is proposed to solve the high-frequency
modulation phenomenon, which effectively improves its boundary detection capability. Then a source
number estimation method based on the DEWT and SVD is proposed to adaptively determine the
number of the modes. Through the DEWT and mode number estimation method, the method proposed
in this paper can be better applied to the composite weak fault diagnosis of rolling bearings.

A fault simulation experiment of rolling bearing with variable speed is performed, and the acoustic
signal of a weak compound fault is collected. Through preliminary analysis of experimental data, the
fault characteristics are very weak and contain huge noise interference. Experimental results prove
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that the proposed method has excellent effects, even on variable speed acoustic signals with extremely
low signal-to-noise ratio.
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